Mirković, Miljana

Link to this page

Authority KeyName Variants
orcid::0000-0003-2335-455X
  • Mirković, Miljana (4)
Projects

Author's Bibliography

Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition

Anđelković, Ljubica; Šuljagić, Marija; Mirković, Miljana; Pavlović, Vera P.; Petronijević, Ivan; Stanković, Dalibor M.; Jeremić, Dejan; Uskoković, Vuk

(Elsevier, 2023)

TY  - JOUR
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
AU  - Mirković, Miljana
AU  - Pavlović, Vera P.
AU  - Petronijević, Ivan
AU  - Stanković, Dalibor M.
AU  - Jeremić, Dejan
AU  - Uskoković, Vuk
PY  - 2023
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7060
AB  - The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.
PB  - Elsevier
T2  - Ceramics International
T1  - Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition
EP  - 23498
SP  - 23491
VL  - 49
DO  - 10.1016/j.ceramint.2023.04.182
ER  - 
@article{
author = "Anđelković, Ljubica and Šuljagić, Marija and Mirković, Miljana and Pavlović, Vera P. and Petronijević, Ivan and Stanković, Dalibor M. and Jeremić, Dejan and Uskoković, Vuk",
year = "2023",
abstract = "The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition",
pages = "23498-23491",
volume = "49",
doi = "10.1016/j.ceramint.2023.04.182"
}
Anđelković, L., Šuljagić, M., Mirković, M., Pavlović, V. P., Petronijević, I., Stanković, D. M., Jeremić, D.,& Uskoković, V.. (2023). Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International
Elsevier., 49, 23491-23498.
https://doi.org/10.1016/j.ceramint.2023.04.182
Anđelković L, Šuljagić M, Mirković M, Pavlović VP, Petronijević I, Stanković DM, Jeremić D, Uskoković V. Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International. 2023;49:23491-23498.
doi:10.1016/j.ceramint.2023.04.182 .
Anđelković, Ljubica, Šuljagić, Marija, Mirković, Miljana, Pavlović, Vera P., Petronijević, Ivan, Stanković, Dalibor M., Jeremić, Dejan, Uskoković, Vuk, "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition" in Ceramics International, 49 (2023):23491-23498,
https://doi.org/10.1016/j.ceramint.2023.04.182 . .
1
1

Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials

Đukić, Dunja; Šuljagić, Marija; Anđelković, Ljubica; Pavlović, Vera P.; Bučevac, Dušan; Vrbica, Boško; Mirković, Miljana

(ETRAN, 2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Šuljagić, Marija
AU  - Anđelković, Ljubica
AU  - Pavlović, Vera P.
AU  - Bučevac, Dušan
AU  - Vrbica, Boško
AU  - Mirković, Miljana
PY  - 2022
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/4064
AB  - The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties.
PB  - ETRAN
T2  - Science of Sintering
T1  - Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials
EP  - 294
IS  - 3
SP  - 287
VL  - 54
DO  - 10.2298/SOS2203287D
ER  - 
@article{
author = "Đukić, Dunja and Šuljagić, Marija and Anđelković, Ljubica and Pavlović, Vera P. and Bučevac, Dušan and Vrbica, Boško and Mirković, Miljana",
year = "2022",
abstract = "The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials",
pages = "294-287",
number = "3",
volume = "54",
doi = "10.2298/SOS2203287D"
}
Đukić, D., Šuljagić, M., Anđelković, L., Pavlović, V. P., Bučevac, D., Vrbica, B.,& Mirković, M.. (2022). Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering
ETRAN., 54(3), 287-294.
https://doi.org/10.2298/SOS2203287D
Đukić D, Šuljagić M, Anđelković L, Pavlović VP, Bučevac D, Vrbica B, Mirković M. Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering. 2022;54(3):287-294.
doi:10.2298/SOS2203287D .
Đukić, Dunja, Šuljagić, Marija, Anđelković, Ljubica, Pavlović, Vera P., Bučevac, Dušan, Vrbica, Boško, Mirković, Miljana, "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials" in Science of Sintering, 54, no. 3 (2022):287-294,
https://doi.org/10.2298/SOS2203287D . .

Synthesis and characterization of metal-glass composite material

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Mirković, Miljana; Luković, Jelena; Maslarević, Aleksandar; Matović, Branko

(Faculty of Technology, University of Novi Sad, 2019)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Mirković, Miljana
AU  - Luković, Jelena
AU  - Maslarević, Aleksandar
AU  - Matović, Branko
PY  - 2019
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7327
AB  - Parts of industrial machines and structures are often exposed to aggressive environments, which in a short period of time can cause the loss of their integrity. Depending on working conditions, a surface of the material can be exposed to various mechanisms of damage, of which corrosion damage stands out. Commercial stainless steel have a significant application in making machine parts in the industry because of their outstanding properties. However, the high prices of this material can sometimes be a limiting factor. For this reason, the idea is to replace expensive stainless steel with a composite material with lower price and improved mechanical properties.
Austenitic stainless steel is a material which is widely used in an industry primarily due to good corrosion resistance. Powder of commercial austenitic stainless steel (SURFIT TM 316L) of the diameter from 45 to 63 µm was used, in our experiment. The steel powder has a spherical shape which is obtained by gas atomization. The source of glass was andesite basalt rock from the locality "Donje Jarinje" Leposavic, the Republic of Serbia. Basalt is a hard aluminosilicate rock which has a relatively low melting point and low viscosity. The composite material was manufactured by mechanical mixing of stainless steel powders with freshly crushed basalt rock in diameter about 10 µm. The composite material consists of stainless steel and different content of basalt.
The green compact was obtained by a hydraulic pressing of the mixture, with a pressure of 150 MPa using a steel mold. Sintering is done at 1250 ⁰C an a time of 30 minutes in a high-temperature vacuum furnace.
Semi-quantitative analysis of andesite basalt powder is obtained by energy dispersive X-ray spectrometry (EDS). Starting powder as well as sintered composites were characterized by X-ray diffraction method (XRD), Morphology of powders and microstructure of sintered sample were followed by scanning electron microscope (SEM) and a light optical microscope (LOM). The hardness of the composite material is determined by the VIckers method.
PB  - Faculty of Technology, University of Novi Sad
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
T1  - Synthesis and characterization of metal-glass composite material
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7327
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Mirković, Miljana and Luković, Jelena and Maslarević, Aleksandar and Matović, Branko",
year = "2019",
abstract = "Parts of industrial machines and structures are often exposed to aggressive environments, which in a short period of time can cause the loss of their integrity. Depending on working conditions, a surface of the material can be exposed to various mechanisms of damage, of which corrosion damage stands out. Commercial stainless steel have a significant application in making machine parts in the industry because of their outstanding properties. However, the high prices of this material can sometimes be a limiting factor. For this reason, the idea is to replace expensive stainless steel with a composite material with lower price and improved mechanical properties.
Austenitic stainless steel is a material which is widely used in an industry primarily due to good corrosion resistance. Powder of commercial austenitic stainless steel (SURFIT TM 316L) of the diameter from 45 to 63 µm was used, in our experiment. The steel powder has a spherical shape which is obtained by gas atomization. The source of glass was andesite basalt rock from the locality "Donje Jarinje" Leposavic, the Republic of Serbia. Basalt is a hard aluminosilicate rock which has a relatively low melting point and low viscosity. The composite material was manufactured by mechanical mixing of stainless steel powders with freshly crushed basalt rock in diameter about 10 µm. The composite material consists of stainless steel and different content of basalt.
The green compact was obtained by a hydraulic pressing of the mixture, with a pressure of 150 MPa using a steel mold. Sintering is done at 1250 ⁰C an a time of 30 minutes in a high-temperature vacuum furnace.
Semi-quantitative analysis of andesite basalt powder is obtained by energy dispersive X-ray spectrometry (EDS). Starting powder as well as sintered composites were characterized by X-ray diffraction method (XRD), Morphology of powders and microstructure of sintered sample were followed by scanning electron microscope (SEM) and a light optical microscope (LOM). The hardness of the composite material is determined by the VIckers method.",
publisher = "Faculty of Technology, University of Novi Sad",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad",
title = "Synthesis and characterization of metal-glass composite material",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7327"
}
Pavkov, V., Bakić, G., Maksimović, V., Mirković, M., Luković, J., Maslarević, A.,& Matović, B.. (2019). Synthesis and characterization of metal-glass composite material. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
Faculty of Technology, University of Novi Sad..
https://hdl.handle.net/21.15107/rcub_machinery_7327
Pavkov V, Bakić G, Maksimović V, Mirković M, Luković J, Maslarević A, Matović B. Synthesis and characterization of metal-glass composite material. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad. 2019;.
https://hdl.handle.net/21.15107/rcub_machinery_7327 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Mirković, Miljana, Luković, Jelena, Maslarević, Aleksandar, Matović, Branko, "Synthesis and characterization of metal-glass composite material" in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad (2019),
https://hdl.handle.net/21.15107/rcub_machinery_7327 .

The applicability of construction and demolition waste components for radionuclide sorption

Jelić, Ivana; Sljivić-Ivanović, Marija; Dimović, Slavko; Antonijević, Dragi; Jović, Mihajlo; Mirković, Miljana; Smiciklas, Ivana

(Elsevier Sci Ltd, Oxford, 2018)

TY  - JOUR
AU  - Jelić, Ivana
AU  - Sljivić-Ivanović, Marija
AU  - Dimović, Slavko
AU  - Antonijević, Dragi
AU  - Jović, Mihajlo
AU  - Mirković, Miljana
AU  - Smiciklas, Ivana
PY  - 2018
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/2943
AB  - Following the guiding "3R" principle of sustainable development (Reduce, Reuse and Recycle), the potential applicability concerning various components of construction and demolition waste (C&DW) was investigated for radionuclide sorption (Sr, Co, Ni). Collected samples of waste concrete, facade, bricks and asphalt were characterized in respect to mineralogical and surface composition, pH and radioactivity, while their sorption capacities were determined in batch conditions. Selectivity of potential sorbents differed in respect to Co2+ and Ni2+ ions, whereas sorption of Sr2+ was generally low. Concrete and facade have demonstrated both: the highest sorption capacities and the strongest interaction with the investigated cations, as revealed by sequential extraction analysis of loaded sorbents. Taking into account chemical compatibility with mixtures, commonly used for the solidification of radioactive waste, and expressed high affinity for studied cations, waste cement materials and debris are promising matrices for radionuclide immobilization.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of Cleaner Production
T1  - The applicability of construction and demolition waste components for radionuclide sorption
EP  - 332
SP  - 322
VL  - 171
DO  - 10.1016/j.jclepro.2017.09.220
ER  - 
@article{
author = "Jelić, Ivana and Sljivić-Ivanović, Marija and Dimović, Slavko and Antonijević, Dragi and Jović, Mihajlo and Mirković, Miljana and Smiciklas, Ivana",
year = "2018",
abstract = "Following the guiding "3R" principle of sustainable development (Reduce, Reuse and Recycle), the potential applicability concerning various components of construction and demolition waste (C&DW) was investigated for radionuclide sorption (Sr, Co, Ni). Collected samples of waste concrete, facade, bricks and asphalt were characterized in respect to mineralogical and surface composition, pH and radioactivity, while their sorption capacities were determined in batch conditions. Selectivity of potential sorbents differed in respect to Co2+ and Ni2+ ions, whereas sorption of Sr2+ was generally low. Concrete and facade have demonstrated both: the highest sorption capacities and the strongest interaction with the investigated cations, as revealed by sequential extraction analysis of loaded sorbents. Taking into account chemical compatibility with mixtures, commonly used for the solidification of radioactive waste, and expressed high affinity for studied cations, waste cement materials and debris are promising matrices for radionuclide immobilization.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of Cleaner Production",
title = "The applicability of construction and demolition waste components for radionuclide sorption",
pages = "332-322",
volume = "171",
doi = "10.1016/j.jclepro.2017.09.220"
}
Jelić, I., Sljivić-Ivanović, M., Dimović, S., Antonijević, D., Jović, M., Mirković, M.,& Smiciklas, I.. (2018). The applicability of construction and demolition waste components for radionuclide sorption. in Journal of Cleaner Production
Elsevier Sci Ltd, Oxford., 171, 322-332.
https://doi.org/10.1016/j.jclepro.2017.09.220
Jelić I, Sljivić-Ivanović M, Dimović S, Antonijević D, Jović M, Mirković M, Smiciklas I. The applicability of construction and demolition waste components for radionuclide sorption. in Journal of Cleaner Production. 2018;171:322-332.
doi:10.1016/j.jclepro.2017.09.220 .
Jelić, Ivana, Sljivić-Ivanović, Marija, Dimović, Slavko, Antonijević, Dragi, Jović, Mihajlo, Mirković, Miljana, Smiciklas, Ivana, "The applicability of construction and demolition waste components for radionuclide sorption" in Journal of Cleaner Production, 171 (2018):322-332,
https://doi.org/10.1016/j.jclepro.2017.09.220 . .
26
19
25