Приказ основних података о документу

dc.creatorAngelopoulos, Panagiotis M.
dc.creatorManić, Nebojša
dc.creatorTsakiridis, Petros
dc.creatorTaxiarchou, Maria
dc.creatorJanković, Bojan
dc.date.accessioned2022-09-19T19:07:23Z
dc.date.available2022-09-19T19:07:23Z
dc.date.issued2020
dc.identifier.issn1388-6150
dc.identifier.urihttps://machinery.mas.bg.ac.rs/handle/123456789/3409
dc.description.abstractRhyolite is an extrusive, igneous rock of aluminosilicate composition that upon rapid cooling forms obsidian. Obsidian is amorphous and contains limited water portions ( lt 2 mass%); however, secondary hydration turns it either to perlite (H2O approximate to 2-5 mass%) or pitchstone (> 5 mass%). In the current study, kinetics of hydrous rhyolite dehydration were investigated by thermogravimetry up to 1000 degrees C, at heating rates of 2.5, 5, 10 and 20 degrees C min(-1)and under inert atmosphere. The mass loss is approx. 7.6 mass%, occurs along wide temperature range (100-800 degrees C) and is solely attributed to the release of molecular water ((H2O)(m)) and hydroxyl groups (OH). Rhyolite dehydration was considered as a solid-state reaction, and the apparent activation energy (E-a) of dehydration was calculated throughout the whole conversion range (a) by applying the isoconversional Friedman and advanced Vyazovkin methods. Both methods revealed inverse sigmoid trend in E(a)values versus conversion degree, possessing almost stable value of 61 +/- 5 kJ mol(-1)for Friedman method and 59.44 kJ mol(-1)for Vyazovkin method on conversion range between 0.25 and 0.75, and sharp increase at higher conversion degree. The intensive change inE(a)during dehydration progression is attributed to the change in releasing species (from (H2O)(m)to OH). Raman and FT-IR spectroscopy analyses of raw and partially dehydrated samples at different stages revealed that up to 300 degrees C mainly (H2O)(m)is diffused out of the material causing sample enrichment in OH groups. OH release, which occurs at relatively higher temperature, is accompanied by increase in apparent E(a)value of dehydration. Concerning microstructure of raw rhyolite, it exhibits a network of micro-fractures which serve as water release routes. Upon heating, more and wider fractures are created. At 600 degrees C, fractures merging occurs creating voids, which constitute forerunners of the expansion phenomenon. Further temperature increase causes material softening allowing local plastic deformation, which under the high pressure that is exerted by the releasing water species incites the formation of large cavities and fractures, initiating expansion.en
dc.publisherSpringer, Dordrecht
dc.rightsrestrictedAccess
dc.sourceJournal of Thermal Analysis and Calorimetry
dc.subjectVolcanic glass dehydrationen
dc.subjectIsoconversional methodsen
dc.subjectHydrous rhyoliteen
dc.subjectExpanded perliteen
dc.subjectDehydroxylationen
dc.subjectActivation energyen
dc.titleDehydration of rhyolite: activation energy, water speciation and morphological investigationen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage407
dc.citation.issue1
dc.citation.other142(1): 395-407
dc.citation.rankM21
dc.citation.spage395
dc.citation.volume142
dc.identifier.doi10.1007/s10973-020-10105-2
dc.identifier.scopus2-s2.0-85089090806
dc.identifier.wos000556688000003
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу