Labus, Nebojša J.

Link to this page

Authority KeyName Variants
557a2e7b-2a12-487a-a41e-ddfd56ce3c4d
  • Labus, Nebojša J. (2)
Projects

Author's Bibliography

Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance

Nikolić, Maria Vesna; Labus, Nebojša J.; Pavlović, Vera P.; Marković, Smilja; Luković, Miloljub D.; Tadić, Nenad B.; Vujančević, Jelena; Vlahović, Branislav; Pavlović, Vladimir B.

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Labus, Nebojša J.
AU  - Pavlović, Vera P.
AU  - Marković, Smilja
AU  - Luković, Miloljub D.
AU  - Tadić, Nenad B.
AU  - Vujančević, Jelena
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2020
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3373
AB  - Nanocrystalline Zn2SnO4/SnO2 powder was obtained by a solid state reaction of ZnO and SnO2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30-90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 degrees C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 degrees C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.
PB  - Springer, Dordrecht
T2  - Journal of Electroceramics
T1  - Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance
EP  - 147
IS  - 4
SP  - 135
VL  - 45
DO  - 10.1007/s10832-021-00232-z
ER  - 
@article{
author = "Nikolić, Maria Vesna and Labus, Nebojša J. and Pavlović, Vera P. and Marković, Smilja and Luković, Miloljub D. and Tadić, Nenad B. and Vujančević, Jelena and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2020",
abstract = "Nanocrystalline Zn2SnO4/SnO2 powder was obtained by a solid state reaction of ZnO and SnO2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30-90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 degrees C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 degrees C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.",
publisher = "Springer, Dordrecht",
journal = "Journal of Electroceramics",
title = "Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance",
pages = "147-135",
number = "4",
volume = "45",
doi = "10.1007/s10832-021-00232-z"
}
Nikolić, M. V., Labus, N. J., Pavlović, V. P., Marković, S., Luković, M. D., Tadić, N. B., Vujančević, J., Vlahović, B.,& Pavlović, V. B.. (2020). Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance. in Journal of Electroceramics
Springer, Dordrecht., 45(4), 135-147.
https://doi.org/10.1007/s10832-021-00232-z
Nikolić MV, Labus NJ, Pavlović VP, Marković S, Luković MD, Tadić NB, Vujančević J, Vlahović B, Pavlović VB. Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance. in Journal of Electroceramics. 2020;45(4):135-147.
doi:10.1007/s10832-021-00232-z .
Nikolić, Maria Vesna, Labus, Nebojša J., Pavlović, Vera P., Marković, Smilja, Luković, Miloljub D., Tadić, Nenad B., Vujančević, Jelena, Vlahović, Branislav, Pavlović, Vladimir B., "Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance" in Journal of Electroceramics, 45, no. 4 (2020):135-147,
https://doi.org/10.1007/s10832-021-00232-z . .
5
5

Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3

Živojinović, Jelena; Pavlović, Vera P.; Labus, Nebojša J.; Blagojević, Vladimir A.; Kosanović, Darko; Pavlović, Vladimir B.

(ETRAN, Beograd, 2019)

TY  - JOUR
AU  - Živojinović, Jelena
AU  - Pavlović, Vera P.
AU  - Labus, Nebojša J.
AU  - Blagojević, Vladimir A.
AU  - Kosanović, Darko
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3162
AB  - The initial-stage of sintering plays a significant role in determining the final microstructure that defines the main characteristics of electroceramics materials such as functional properties. In this article non-isothermal sintering of non-activated and mechanically activated SrTiO3 samples was investigated up to 1300 degrees C. Dilatometric curves indicate that mechanical activation leads to an earlier onset of sintering, suggesting that it should lead to a more homogenous and denser sintered product. Analysis of the initial stage of sintering reveals that the sintering process of all examinated samples consists of two or three overlapping single-step processes, with a change in the dominant mass transport mechanism. The values of apparent activation energy of the considered single-step process exhibit a significant decrease with an increase in mechanical activation time. The values of the density of samples after isothermal sintering indicate that the final stage of sintering has not been reached by 1300 degrees C.
PB  - ETRAN, Beograd
T2  - Science of Sintering
T1  - Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3
EP  - 208
IS  - 2
SP  - 199
VL  - 51
DO  - 10.2298/SOS1902199Z
ER  - 
@article{
author = "Živojinović, Jelena and Pavlović, Vera P. and Labus, Nebojša J. and Blagojević, Vladimir A. and Kosanović, Darko and Pavlović, Vladimir B.",
year = "2019",
abstract = "The initial-stage of sintering plays a significant role in determining the final microstructure that defines the main characteristics of electroceramics materials such as functional properties. In this article non-isothermal sintering of non-activated and mechanically activated SrTiO3 samples was investigated up to 1300 degrees C. Dilatometric curves indicate that mechanical activation leads to an earlier onset of sintering, suggesting that it should lead to a more homogenous and denser sintered product. Analysis of the initial stage of sintering reveals that the sintering process of all examinated samples consists of two or three overlapping single-step processes, with a change in the dominant mass transport mechanism. The values of apparent activation energy of the considered single-step process exhibit a significant decrease with an increase in mechanical activation time. The values of the density of samples after isothermal sintering indicate that the final stage of sintering has not been reached by 1300 degrees C.",
publisher = "ETRAN, Beograd",
journal = "Science of Sintering",
title = "Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3",
pages = "208-199",
number = "2",
volume = "51",
doi = "10.2298/SOS1902199Z"
}
Živojinović, J., Pavlović, V. P., Labus, N. J., Blagojević, V. A., Kosanović, D.,& Pavlović, V. B.. (2019). Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3. in Science of Sintering
ETRAN, Beograd., 51(2), 199-208.
https://doi.org/10.2298/SOS1902199Z
Živojinović J, Pavlović VP, Labus NJ, Blagojević VA, Kosanović D, Pavlović VB. Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3. in Science of Sintering. 2019;51(2):199-208.
doi:10.2298/SOS1902199Z .
Živojinović, Jelena, Pavlović, Vera P., Labus, Nebojša J., Blagojević, Vladimir A., Kosanović, Darko, Pavlović, Vladimir B., "Analysis of the Initial-Stage Sintering of Mechanically Activated SrTiO3" in Science of Sintering, 51, no. 2 (2019):199-208,
https://doi.org/10.2298/SOS1902199Z . .
2
4
5