Приказ основних података о документу

dc.creatorErić, Aleksandar M.
dc.creatorNemoda, Stevan
dc.creatorKomatina, Mirko
dc.creatorRepić, Branislav
dc.creatorDakić, Dragoljub
dc.date.accessioned2022-09-19T18:44:31Z
dc.date.available2022-09-19T18:44:31Z
dc.date.issued2019
dc.identifier.issn0354-9836
dc.identifier.urihttps://machinery.mas.bg.ac.rs/handle/123456789/3074
dc.description.abstractThis paper presents numerical and experimental investigations of complex and interrelated physical and chemical phenomena that occur during combustion of baled soybean residue in the furnace with the cigarette type of combustion. The result of comprehensive research is reactive flow model of biomass combustion inside furnace. Model is described by set of PDE which define momentum, heat and mass transfer processes in porous and fluid system. The main aim of developed CFD model is numerical simulation of combustion process inside the cigarette furnace. It is also used to provide deeper insight in complex processes occurring during biomass combustion. Verification of proposed numerical model was performed through comprehensive experimental tests on the experimental-industrial plant of 1.5 MW boiler for heating the greenhouses in the Agricultural Corporation in Belgrade. The tests included measurement of flow rate and air and flue gas temperature input and output values on the furnace that are taken as the boundary conditions of the developed model. Comparison of the experimental results shows satisfactory agreement with numerical results (the maximum relative deviation of calculation and measurement temperatures are 10-45%), therefore the developed mathematical model could be used to analyse the effects of structural and parametric (fuel composition, power rate, air excess etc.) changes of the facility, from the standpoint of energy efficiency and ecology.en
dc.publisherUniverzitet u Beogradu - Institut za nuklearne nauke Vinča, Beograd
dc.relationstep forward in developing energy efficient and environmentally sound waste combustion technology in fluidized bed combustors
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/42011/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/33042/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceThermal Science
dc.subjectmodelingen
dc.subjectexperimentalen
dc.subjectcombustionen
dc.subjectbaled biomassen
dc.titleModeling of transport processes in the cigarette principle combustion furnaceen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.epageS1510
dc.citation.other23: S1499-S1510
dc.citation.rankM22
dc.citation.spageS1499
dc.citation.volume23
dc.identifier.doi10.2298/TSCI180226318E
dc.identifier.fulltexthttp://machinery.mas.bg.ac.rs/bitstream/id/1742/3071.pdf
dc.identifier.scopus2-s2.0-85084043719
dc.identifier.wos000509489400009
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу