Show simple item record

dc.creatorStanković, Koviljka
dc.creatorKovačević, Uroš
dc.date.accessioned2022-09-19T18:31:32Z
dc.date.available2022-09-19T18:31:32Z
dc.date.issued2018
dc.identifier.issn0093-3813
dc.identifier.urihttps://machinery.mas.bg.ac.rs/handle/123456789/2881
dc.description.abstractThis paper is aimed at expressing the expanded combined measuring uncertainty of capacitive divider with concentrated capacitance on a high-voltage scale. The tested capacitive divider is constructed to have a minimal measuring uncertainty. Measuring uncertainty of type A is expressed by means of the statistical processing of an experimentally determined random variable of pulse voltage amplitude and random variable of step voltage amplitude uncertainty budget of type B was derived from: 1) the influence of uncertainty values of a high-voltage and low-voltage capacitances on the transmission ratio; 2) the influence of frequency on the transmission ratio; and 3) measuring uncertainty type B of the used instrument. The experiments were performed under well-controlled conditions. Measuring uncertainty of type B for the first budget component is obtained theoretically using the Monte Carlo method, for the second budget component by using experimental-analytical method, while for the third budget component it is taken from the instructions manual of the manufacturer. The Gaussian distribution is attributed to the influential effects of the instruments measuring uncertainty type B. The results obtained show that most impact on measuring uncertainty of type B has the measuring uncertainty type B of the used instrument and the measuring uncertainty type B of divider by the influence of frequency. Values of expanded combined measuring uncertainty for 95% of coverage probability are 5.2% for frequencies equal to 50 MHz, 6.1% for frequencies equal to 1 GHz, and 7.1% for frequencies equal to 4 GHz. Comparing to our results for relative error of capacitive divider for measuring fast pulse voltages, it is shown that the tested capacitive divider has very good characteristics.en
dc.publisherIeee-Inst Electrical Electronics Engineers Inc, Piscataway
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171007/RS//
dc.rightsrestrictedAccess
dc.sourceIeee Transactions on Plasma Science
dc.subjectuncertainty budgeten
dc.subjectMonte Carlo procedureen
dc.subjectmeasuring uncertaintyen
dc.subjectCapacitive divideren
dc.titleCombined Measuring Uncertainty of Capacitive Divider With Concentrated Capacitance on High-Voltage Scaleen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage2978
dc.citation.issue8
dc.citation.other46(8): 2972-2978
dc.citation.rankM23
dc.citation.spage2972
dc.citation.volume46
dc.identifier.doi10.1109/TPS.2018.2850914
dc.identifier.scopus2-s2.0-85050586543
dc.identifier.wos000441427100022
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record