First passage of stochastic fractional derivative systems with power-form restoring force

Wei Li, Lin cong Chen, Natasa Trisovic, Aleksandar Cvekovic, Junfeng Zhao

A R T I C L E I N F L O O D

International Journal of Non-Linear Mechanics

Abstract

In this paper, the first-passage failure of stochastic dynamical systems with fractional derivative and power-form restoring force subjected to Gaussian white-noise excitation is investigated. With application of the stochastic averaging method of quasi-Hamiltonian system, the system energy process will converge weakly to an Itô differential equation. After that, Backward Kolmogorov (BK) equation associated with conditional reliability function and Generalized Pontryagin (GP) equation associated with statistical moments of first-passage time are constructed and solved. Particularly, the influence on reliability caused by the order of fractional derivative and the power of restoring force are also examined, respectively. Numerical results show that reliability function is decreased with respect to the time. Lower power of restoring force may lead the system to more unstable evolution and lead first passage easy to happen. Besides, more viscous material described by fractional derivative may have higher reliability. Moreover, the analytical results are all in good agreement with Monte-Carlo data.

1. Introduction

First-passage [1], aims to determine the probability that systems response reaches the boundary of a bounded safe domain of state space within its lifetime. Being as one branch of reliability in mathematics, it can exactly describe the response feature and fatigue life of certain structures such as offshore platform, civil construction, etc. In the last several decades, stochastic averaging method has been proved as a powerful technique to solve the first passage problem of stochastic non-linear dynamics. The main feature of this method is that it can leads original systems to a Markovian approximation with systems dimensions reduced as well. Many authors dedicated their efforts to searching for first passage by using the stochastic averaging method. For example, Ariaratnam and Pi [2] explored first passage time for envelope crossing for a linear oscillator. Robert and Spanos [3–5] developed standard stochastic averaging method and applied it to study reliability under evolutionary seismic excitations by transforming random dynamical systems into a partial differential equation. In 1990s, Zhu et al. [6] proposed the stochastic averaging of quasi-Hamilton systems and investigated first passage problem in random dynamical systems under stationary noise excitations.

Recently, the corresponding author and his coworker [7] examined the first passage failure of MDOF quasi generalized Hamiltonian systems based on the stochastic averaging method of quasi generalized Hamiltonian systems.

In recent years, with the development of new material called viscoelastic material such as liquid crystal, rubber, polymer, etc., the mathematical theory of fractional derivative to describe viscoelasticity especially viscous damping attracts much attention. In this regard, Makris and Constantiou [8] explored fractional derivative in deterministic Maxwell model for viscous-damper. Mainardi [9] and Rossikhin and Shitikova [10,11] provided an excellent perspective about the research on application of fractional derivative in the field of solid mechanics. Mainardi [12] gave a tutorial survey on fractional calculus in linear viscoelasticity and the time-fractional derivative in relaxation process. Shen et al. [13] studied the primary resonance of Duffing oscillator with two kinds of fractional derivative terms using the averaging method. It should be pointed out that the work mentioned above endowed with fractional derivative were all proceeded in deterministic systems.

At the beginning of new century, however, some researchers have begun to engage in random dynamical system with fractional derivative involved. Agrawal [14] suggested an analytical scheme for stochastic dynamical systems containing fractional derivative. Huang and Jin [15] applied the stochastic averaging method for deriving the stationary response and stability in a quasi-Hamiltonian system.

Keywords:
First-passage failure
Fractional derivative
Power-form restoring force
Stochastic averaging method

Article history:
Received 30 December 2014
Accepted 2 February 2015

Journal homepage: www.elsevier.com/locate/ijnlm

© 2015 Published by Elsevier Ltd.

Please cite this article as: W. Li, et al., First passage of stochastic fractional derivative systems with power-form restoring force, International Journal of Non-Linear Mechanics (2015), http://dx.doi.org/10.1016/j.ijnonlinmec.2015.02.002
Q5 system. Spanos and Evangelatios [16] achieved non-stationary
response in a non-linear system with fractional derivative restoring
force by utilizing Newmark algorithm and statistical linearization.
Q6 Paola et al. [17] examined stationary and non-stationary stochastic
response of linear fractional viscoelastic system. Chen and his cow-
workers [18] proposed a review on stochastic dynamics and fractional
order optimal control of quasi integrable Hamiltonian systems with
damping modeled by a fractional derivative. Xu et al. [19,20]
developed an perturbation technique by combining the LP method
and multiple scales method to investigate the responses of the
stochastic Duffing oscillator with fractional damping which shows
good agreement with numerical simulations. More recently, Matteo
et al. [21] obtained the stochastic response of non-linear oscillator
with fractional derivatives elements via the Wiener path integral.
It should be noted that the work with respect to fractional
derivative in random dynamical systems mainly dedicates to those
restoring forces with integer-power especially odd-integer power
restoring force. In fact, restoring force in engineering structures
especially in elastic–plastic seismic structures may be modeled as
purely non-linear function with arbitrary order of power-law, for
example, \(g(x) = \text{sgn}(x) x^\beta\), where \(\beta\) is arbitrary value, and many
references [22–29] have considered oscillators with such non-linear
restoring force in deterministic systems. In 2003, Gottlieb [22]
analyzed the frequencies of oscillators with fractional-power non-
linearities and obtained an expression for the exact period. Next year,
Plipichuk [23] considered a class of elastic oscillators with power of
non-linear restoring force taking as real fraction, rational or irrational
number respectively. Recently, Kovacic and Rakarik [24] applied Ritz
method to derive higher-order approximations for oscillators with a
fractional-order restoring force. Wang and Yang [25] even proposed a
positive-power non-linear restoring force by studying amplitude-
frequency and phase-frequency characteristics of forced oscillators.
Except that, references [26–29] have emphasized the importance and
widely background of this kind of restoring force.

In this paper, the first passage failure of a commonly fractional
derivative system with a power-form non-linear restoring force,
where the power can be a fraction, is addressed by using the
combined method of stochastic averaging method for quasi Hamil-
tonian systems and diffusion theory of first passage failure. Two
cases, namely, purely power-form non-linear restoring force and
combination of linear with non-linear restoring forces are consid-
ered. Besides, the Monte-Carlo simulation will be employed to
examine the efficiency and accuracy of the proposed approaches.

2. Model and formulations

Consider non-linear dynamical systems with fractional deriva-
tive and power-form restoring force subjected to Gaussian white-
noise excitations, the motion of equation can be expressed in the
following form:

\[\ddot{x} + sf(x, \dot{x}) + g(x) = \epsilon^{1/2} h(x, \dot{x}) W(t), \quad (k = 1, 2, \ldots, m, m \in Z^+) \]

(1)

where \(x(t)\) is a non-Markov process, usually, denotes generalized
displacement, \(f(x, \dot{x})\) and \(h(x, \dot{x})\) are linear or non-linear functions
with respect to \(x\) and \(\dot{x}\), and \(\epsilon\) is a small parameter, and \(W(t)\) are
uncorrelated Gaussian white- noise with zero means and correlation
functions, which satisfy

\[E[W(t)W(t + r)] = 2\Delta \delta(r), \quad k = 1, 2, \ldots, m \]

where \(\delta(r)\) is the Dirac Delta function, \(\Delta\) are constants. \(D^n x(t)\) is
Caputo-type fractional derivative and defined by

\[D^n x(t) = \frac{1}{\Gamma(n - \alpha)} \int_0^t \frac{x^n(t - \tau)}{\tau^{n - \alpha}} d\tau, \quad n = [\alpha] + 1, \quad n - 1 < \alpha \leq n \]

\(g(x)\) is a non-linear restoring force and characterized by a power-
form function

\[g(x) = \sum_{\alpha} C_{\alpha} \text{sgn}(x)|x|^{\beta} \]

where \(\beta\) is an arbitrary non-negative real number and \(C_{\alpha}\) is a constant. To sum up, the dynamical system (1) is characterized by
fractional derivative and power-form restoring force with weakly
external and/or parametric random excitations.

Suppose that \(x = x_1\) and \(x = x_2\), system (1) can be rewritten as a
set of first-order differential equations, that is

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = -sf(x_1, x_2)D^n x_1(t) - g(x_1) + \epsilon^{1/2} h(x_1, x_2) W_1(t) \]

(4)

Now consider the free vibration of the dynamical system (1) in the
case of \(\epsilon = 0\), then

\[\dot{x}_1 + g(x_1) = 0 \]

(5)

Correspondingly, the Hamiltonian function of this system \(H(t) + H\)
\(\frac{1}{2} x^2 + V(x_1) = H\)

(6)

where \(V(x_1)\) is the potential energy of the system and estimated by

\[V(x_1) = \sum_{\alpha} C_{\alpha} \text{sgn}(x)|x|^{\beta} \]

(7)

According to stochastic differential law [6], the equation governing
Hamiltonian function satisfies

\[\dot{H} = \epsilon \left[-x f(x_1, x_2) D^n x_1(t) + \frac{1}{2} \sigma_1(x_1, x_2) \sigma_1(x_1, x_2) \right] \\
+ \epsilon^{1/2} x_2 \sigma_2(x_1, x_2) W_1(t) \]

(9)

where \(\sigma_1(x_1, x_2) \sigma_1(x_1, x_2) = 2D\sigma_1(x_1, x_2) h_1(x_1, x_2) \quad k = 1, 2, \ldots, m \)

the Hamiltonian function will weakly converge to an averaged Itô
differential equation on the basis of Khasminskii averaging theo-
rem [30] if \(\epsilon \rightarrow 0\), which is governed by

\[dH = mH dt + \sigma(H) dB(t) \]

(11)

where \(B(t)\) is standard Wiener process, \(m(H)\) and \(\sigma(H)\) are drift and
diffusion functions, respectively, they can be calculated by stochas-
tic averaging procedure of quasi-Hamiltonian system [6] as follows:

\[m(H) = \langle f(x_1, x_2) \rangle \]

(12)

\[\sigma^2(H) = \langle \sigma_1(x_1, x_2) \sigma_1(x_1, x_2) \rangle, \quad k = 1, 2, \ldots, m \]

(13)

where

\(F = -x f(x_1, x_2) D^n x_1(t) + \frac{1}{2} \sigma_1(x_1, x_2) \sigma_1(x_1, x_2) \)

(14a)

\(G_\alpha = x_2 \sigma_2(x_1, x_2) \sigma_1(x_1, x_2) \quad k = 1, 2, \ldots, m \)

(14b)

\(\ast \left\{ \frac{1}{H(t)} \right\} \int_0^t dx_1, \quad k = 1, 2, \ldots, m \)

(15)

\(x_2 = \sqrt{2H - 2V(x_1)} \]

(16)

\[\Omega = \{ (x_1, x_2) | H(x_1, 0) \leq H \} \]

(17)

In order to get the detail expressions for averaged drift and
diffusion coefficients, the joint response process \(x_1, x_2\) is needed

Please cite this article as: W. Li et al., First passage of stochastic fractional derivative systems with power-form restoring force,
to be transformed to a pair of slow varying processes denoted by
\((a(t), \theta(t))\). To that end, a generalized Van der Pol transformation is
introduced as follows:

\[X_1(t) = a(t) \cos \phi(t) \]

\[X_2(t) = -a(t) \omega_0(t) \sin \phi(t) \]
(18)

where \(\phi(t) = \int_0^t \omega_0(a(t)) dt + \theta(t) \), and \(a(t) \) is an envelope process and determined
by \(a(t) = V^{-1}(H) \), where \(V \) is a potential function of system
and defined by (8). \(\theta(t) \) is phase process, it is slow varying with
respect to time as same as envelope process. \(\omega_0(t) \) is system’s
averaged frequency, and decided by following equation:

\[\omega_0(t) = \frac{2\pi}{4 \int_0^{\infty} \frac{1}{\sqrt{V(a) - V(a_0)}} \, da} \]
(19)

It is seen that the fractional derivative with Caputo definition is
especially a generalized integral with derivative of delay in it,
usually, it is very difficult to deal with a higher fractional order in
mathematics. Herein only the case \(0 < a \leq 1 \) in this paper is
considered, other values for \(a \) will be discussed further in our future work.

According to formula (18) and suppose that \(\tau \) is small, we have

\[X_2(t - \tau) \approx -a(t) \omega_0(t) \sin (\phi(t) - \phi(t - \tau)) \]

\[\approx X_2(t) \omega_0 \cos \omega_0 \tau + X_1(t) \omega_0 \sin \omega_0 \tau \]
(20)

Then the main integral part in Caputo fractional derivative
definition can be rewritten as

\[\int_{t - \tau}^{t} \omega_0 \cos \omega_0 \tau \, d\tau + \int_{t - \tau}^{t} X_1(t) \omega_0 \sin \omega_0 \tau \, d\tau \]
(21)

It turns out that how to calculate or approximate the integrals
appeared in (21) is an important task to replace the complicated
Caputo-type fractional derivative in terms of envelope and frequency.
Fortunately, the following two generalized integrals can play a role to solve this problem, they are, respectively

\[\int_{t - \tau}^{t} \omega_0 \cos \omega_0 \tau \, d\tau = \omega_0^{-1}(a) \left[\Gamma(1 - a) \cos \frac{\mu_0(a)}{2} - \frac{\sin \mu_0(a)}{\sin \mu_0(a)} + o(\omega_0) - a \right] \]
(22)

\[\int_{t - \tau}^{t} \omega_0 \cos \omega_0 \tau \, d\tau = \omega_0^{-1}(a) \left[\Gamma(1 - a) \sin \frac{\mu_0(a)}{2} + \frac{\cos \mu_0(a)}{\cos \mu_0(a)} + o(\omega_0) - a \right] \]
(23)

On the basis of integrals of (22) and (23), then Caputo-type
fractional derivative can be approximated as

\[D^aX_1(t) = \omega_0^{-1}(a) \left[X_2(t) \sin \frac{\mu_0(a)}{2} + X_1(t) \cos \frac{\mu_0(a)}{2} \right] \]

\[+ \frac{\omega_0^{-1}(a)}{\Gamma(1 - a)} \left[X_1(t) \cos \omega_0 \sin \omega_0 \right] + o(\omega_0) - a \]
(24)

After that, the drift function and diffusion function in differential
equation (11) can be computed out completely by means of
stoachastic averaging method mentioned ahead.

3. First-passage failure

Suppose that a safety domain of Hamiltonian function \(H(t) \) is an
open interval \(D = [0, dD] \), where \(dD \) is a smooth boundary of \(D \). As
defined in the part of introduction, reliability of a structure depends
on the probability of reaching boundary within the system lifetime.
Furthermore, the system or the structure will be destroyed once the
system response crosses beyond the boundary of safety domain.
Therefore, conditional reliability function should be defined as follows:

\[R(t | H_0) = p(H(s) \in D, s \in [0, t) | H(0) = H_0 \in D) \]
(25)

which satisfies a BK equation in the form of partial differential
equation

\[\frac{dR}{dt} = m(H_0) \frac{\partial R}{\partial H_0} + \frac{1}{2} \frac{\partial^2 R}{\partial H_0^2} \]
(26)

In which \(m(H_0) \) is governed by Eq. (12) and \(\sigma^2(H_0) \) is governed by Eq. (13). Except that, boundary condition and initial condition are
required in order to solve BK equation successfully. The initial condition is

\[R(t | H_0) = 1, \quad H_0 \in D \]
(27)

and two boundary conditions are, respectively

\[R(t | H_0) = 0, \quad H_0 \in dD \]
(28)

On the other hand, mean first-passage time \(E(T) \) is another
important variable to measure the reliability of a stochastic
dynamical system. First-passage time refers to the special time
that the responses of system exceed the boundary of the safe
domain at the first time on some certain conditions. It has been
proved that the statistical moments of first-passage time fulfill
the following GP equation, which has a form of differential equation.
Denote \(\mu_N(H_0) = E(T^N) \), then they are governed by

\[m(H_0)\frac{\partial \mu_N}{\partial H_0} + \frac{1}{2} \frac{\partial^2 \mu_N}{\partial H_0^2} = -(N + 1) \mu_N \]
(29)

Similarly, boundary conditions are needed to solve the GP equation.
The left boundary condition is

\[\mu_{N+1}(H_0) = \text{finite}, \quad H_0 = 0 \]
(30)

And the right boundary condition is

\[\mu_N(H_0) = \text{finite}, \quad H_0 = dD \]
(31)

Specifically, the mean first-passage time \(E(T) \) is exactly equivalent
to \(\mu_1 \) if the initial value is \(\mu_0 = 1 \).

4. Examples and numerical results

4.1. Example 1

Consider

\[f(x, \dot{x}) = 1 - x^2, \quad h_1(x, \dot{x}) = 1, \quad h_2(x, \dot{x}) = x^2 \]

Then the dynamical system (1) is subjected to external and
parametric Gaussian white-noise excitations, the system can be
written as

\[\ddot{x} + e \left(1 - x^2 \right) \dot{x}^2 + \mu^2 \sin(x) \dot{x} \]

\[= x^2 \left(W_1^2(t) + x^2 \dot{W}_2(t) \right) \]
(32)

According to formula (12) and (13), in this example

\[\langle F(\dot{x}_1, x_1) \rangle = \frac{1}{T_1(H_0)} \int_{x_1} \left\{ \left(-x_1^2 x_2 \omega_0^{-1}(a) \right) \right\} \, dx_1 \]

\[\langle G(\dot{x}_1, x_1) \rangle = \frac{1}{T_1(H_0)} \int_{x_1} \left\{ 2\dot{x}_1 x_2^2 + 2\mathcal{D}_2 x_1^2 \right\} \, dx_1 \]
(33)

where

\[T_1(H_0) = \frac{1}{\mu_1 (\dot{x}^2 + \dot{w}^2)} \int_{x_1} \left\{ \left(-x_1^2 \right) \omega_0^{-1}(a) \right\} \, dx_1 \]

\[= \frac{1}{\mu_1 (\dot{x}^2 + \dot{w}^2)} \int_{x_1} \left\{ 2\dot{x}_1 x_2^2 + 2\mathcal{D}_2 x_1^2 \right\} \, dx_1 \]
(34)

in which \(a = ((\beta + 1)H/\mathcal{C})^{-1/2}(1/2) \).
The corresponding BK equation governing the conditional reliability function and the GP equation governing the mean first-passage time are the same as Eqs. (26) and (29), respectively, and they are solved numerically together with suitable boundary and initial conditions.

In Figs. 1–3, some numerical results for the conditional reliability function and mean of the first-passage time have been obtained and shown. It is seen from Fig. 1 that the reliability probability is a decreasing function with respect to time. α is the order of fractional derivative, as a matter of fact, different values of α have small influence on reliability functions in the case of external and parametric excitations on system in Example 4.1. In Fig. 1, the solid lines represent analytical results obtained from solving BK equation (26) with energy boundary values $aD = 5$, but hollow triangles denote the numerical results obtained from Monte-Carlo Simulation by performing on original dynamical system (1). Fig. 2 displayed the mean first-passage time by solving GP equation (29) when $N = 1$ with the same parametric values as in Fig. 1. Note that energy function $H(t)$ stay longer in the safe domain if initial energy is smaller. It is worthy to say that numerical results in Figs. 1 and 2 are all in excellent agreement for parameter values $\alpha = 1, \beta = 3.5, D_{11} = 0.05, D_{22} = 0.05, c_0 = 1, H_0 = 0.0$.

In addition, we also examined the change caused by power-form restoring force on reliability in Fig. 3, the rest parametric values are same as in Fig. 1 except for $\alpha = 0.1$. It is seen that the strong non-linearity plays a good role in improving system reliability. Restoring force usually depicts the ability that structures restore to the original shape after external loads such as noises are removed. Therefore, the small fractional power of non-linear restoring force in Fig. 3 may lead the system to more unstable evolution. That means the first passage is correspondingly easy to happen.

4.2. Example 2

Let

$$s_f(x, x) = \beta_0(1 - x^2), \quad h(x, x) = 1$$

$$g(x) = a_0^2x + c_0 \text{sgn}(x)|x|^\beta$$

and rewrite the original system (1) as

$$\ddot{x} + \beta_0(1 - x^2)D^\alpha x(t) + a_0^2x + c_0 \text{sgn}(x)|x|^\beta = W(t)$$

In this example, the system is subjected to external excitation absolutely. We change the expression of restoring force, where $g(x)$ is composed by a linear function and a non-linear power-form function. In this case, the mathematical procedure to obtain averaged differential equation is more complicated since frequency of the system will be difficult to obtain and it should be derived numerically.

According to (7), we have

$$V(x_1) = \frac{1}{2}a_0^2x_1^2 + \frac{c_0}{\beta+1}|x_1|^\beta.$$

Then by solving from Eq. (6), the generalized velocity will be of form

$$x_2 = \sqrt{2H - a_0^2x_1^2 - 2c_0x_1^\beta/(\beta+1)}.$$

Substituting this expression into formula (14a) and (14b) and finishing stochastic averaging procedure (12) and (13), then drift function and diffusion function will be followed. After that, the conditional reliability function and mean of the first-passage time associated with the averaged equation can be also harvested by solving the BK equation and GP equation, respectively.

Fig. 4 shows the reliability function with respect to time in Example 4.2, where parameters are $\beta_0 = 0.05, \beta = 3.5, \omega_0 = 1, D_{11} = 0.05, c_0 = 1, \text{and } aD = 5$ respectively.

It is founded that, different from Example 4.1, the order of fractional derivative play an obvious role in changing reliability of system. Generally, fractional derivative is used to represent constitutive relation for special viscoelastic material in structure engineering, and the order of fractional derivative is helpful to distinguish the physical feature of viscoelastic material. If α value is bigger, then the material in physical feature tends to viscous,
Similarly, the larger where the parameters are $\beta_0 = 0.05$, $\beta = 3.5$, $\epsilon_{g} = 1$, $D_{11} = 0.05$, $c_0 = 1$ and $H_0 = 0.0$.

![Fig. 4](image)
Fig. 4. Reliability functions with respect to time. The parameters are $\beta_0 = 0.05$, $\beta = 3.5$, $\epsilon_{g} = 1$, $D_{11} = 0.05$, $c_0 = 1$ and $H_0 = 0.0$.

![Fig. 5](image)
Fig. 5. Mean first-passage times with respect to initial energy in the case of same parameters in Fig.4.

![Fig. 6](image)
Fig. 6. Reliability functions with respect to time corresponding to different boundary values in safety domain.

Correspondingly, we can choose a suitable value to design restoring force according to this result.

5. Conclusions

To sum up, in this paper, we have investigated the first-passage failure in a fractional derivative system with power-form restoring force. Stochastic averaging method is used to convert the original system into an Itô differential equation. According to the definition of first-passage failure, BK equation and GP equation are derived and solved, respectively. The numerical results tell us that the reliability probabilities are decreased monotonously with respect to the time. Higher order of fractional derivative can lead to higher reliability of the system. Boundary value of safe domain can affect the reliability probability greatly. The larger boundary value it is, the higher probability is. Exponent value of β in power-form function has also influence on reliability. Larger exponent may yield to enhanced reliability.

Acknowledgment

The work reported in this paper is supported by the National Natural Science Foundation of China (Nos. 11302157, 11202155), National Natural Science Foundation of Fujian Province (No. 2014J01014), “the Fundamental Research Funds for the Central Universities” (No. K5051370008), “Chinese–Serbian Science and Technology Cooperation for the years 2013–2014” (No. 2–14) and the Program for New Century Excellent Talents in University (NCET-10–0665).

References

Please cite this article as: W. Li, et al., First passage of stochastic fractional derivative systems with power-form restoring force, International Journal of Non-Linear Mechanics (2015), http://dx.doi.org/10.1016/j.ijnonlinmec.2015.02.002.
Please cite this article as: W. Li, et al., First passage of stochastic fractional derivative systems with power-form restoring force, International Journal of Non-Linear Mechanics (2015), http://dx.doi.org/10.1016/j.ijnonlinmec.2015.02.002.