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a b s t r a c t

For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod
extension can be represented as a contour integral with a complex kernel. We study
these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes
% > 1 for the Chebyshev weight functions of the first, second and third kind, and
derive representation of their difference. Using this representation and following Kronrod’s
method of obtaining a practical error estimate in numerical integration, we derive new
error estimates for Gaussian quadratures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

TheGaussian quadrature formulawith respect to somepositiveweight functionw on a finite intervalwhichwenormalize
to be [−1, 1] has the form∫ 1

−1
w(t)f (t) dt =

n∑
i=1

λif (τi)+ RGn(f ), (1.1)

where the nodes τi are the zeros of the corresponding orthogonal polynomial πn(t;w) and the weights λi are the so-called
Christoffel numbers. Formula (1.1) has precise degree of exactness 2n− 1, i.e., RGn(f ) = 0 for all f ∈ P2n−1.
Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1] andD its interior. If the integrand

f is an analytic function in D and continuous on D , then, as is well known, the remainder term RGn(f ) admits the contour
integral representation

RGn(f ) =
1
2π i

∮
Γ

KGn (z;w) f (z) dz.

The kernel KGn can be expressed in the form

KGn (z) = K
G
n (z;w) =

1
πn(z;w)

∫ 1

−1

πn(t;w)
z − t

w(t) dt. (1.2)

The previous formulae hold for all interpolatory quadrature rules with mutually different nodes.
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Many authors have used them to estimate the error RGn in (1.1). In [1] Gautschi and Varga have used estimates of the form

|RGn(f )| ≤ C1 ·maxz∈Γ
|f (z)|, C1 = C1(Γ , w) =

l(Γ )
2π

max
z∈Γ
|KGn (z;w)|, (1.3)

where l(Γ ) denotes the length of the contour Γ . In [2] Hunter has used estimates of the form

|RGn(f )| ≤ C2 ·maxz∈Γ
|f (z)|, C2 = C2(Γ , w) =

1
2π

∮
Γ

|KGn (z;w)||dz|. (1.4)

The error estimates (1.4) are sharper because of the inequality C2 ≤ C1, but it is hard to obtain their explicit expressions in
most cases.
A very practical way to estimate the error in numerical integration is to use two quadrature rules: A and B, where the

nodes used by rule B form a subset of those used by rule A. Also, rule A should have a higher degree of exactness than B. The
difference |RAm(f ) − R

B
n(f )| (m > n) is usually a rather good error estimate of rule B. If both rules admit the representation

(1.2), then it follows that∣∣RAm(f )− RBn(f )∣∣ = 1
2π

∣∣∣∣∮
Γ

(
KAm(z)− K

B
n (z)

)
f (z) dz

∣∣∣∣ ,
and further, following the same ideas which led to (1.3) and (1.4),∣∣RAm(f )− RBn(f )∣∣ ≤ Mi ·maxz∈Γ

|f (z)|, i = 1, 2,

where

M1 = M1(Γ , w) =
l(Γ )
2π

max
z∈Γ

∣∣KAm(z;w)− K Bn (z;w)∣∣
and

M2 = M2(Γ , w) =
1
2π

∮
Γ

|KAm(z;w)− K
B
n (z;w)||dz|.

In this paperwe analytically determine the values ofM1 andM2when rule B is the Gaussian quadrature formulawith respect
to one of the three Chebyshev weight functions. The case of Chebyshev weight function of the fourth kind is analogous to
the case of Chebyshev weight function of the third kind.
The degree of exactness of the n-point Gauss formula cannot be improved by inserting fewer than n+ 1 nodes (see [3]).

This leads to Gauss–Kronrod quadrature formula∫ 1

−1
w(t)f (t)dt =

n∑
i=1

σif (τi)+
n+1∑
ν=1

σ ∗ν f (τ
∗

ν )+ R
GK
2n+1(f ), (1.5)

where the new nodes τ ∗ν and all new weights σi, σ
∗
ν are chosen in such a way that formula (1.5) has maximum degree of

exactness at least 3n + 1. The τ ∗ν are the zeros of a polynomial π̂n+1(t;w), called Stieltjes polynomial, which satisfies the
orthogonality conditions∫ 1

−1
π̂n+1(t) tk πn(t) w(t) dt = 0, k = 0, 1, . . . , n.

The kernel KGK2n+1 from the integral representation of the remainder term is given by

KGK2n+1(z) =
1

πn(z) π̂n+1(z)

∫ 1

−1

πn(t) π̂n+1(t)
z − t

w(t) dt.

Although positive and real Gauss–Kronrod quadrature formulae do not exist in some cases, there are no such problemswith
Chebyshev weight functions considered in this paper. Moreover, the new nodes τ ∗ν belong to [−1, 1] and interlace with the
Gaussian ones τi.
For contours Γ we take confocal ellipses

E% =

{
z ∈ C : z =

1
2

(
u+ u−1

)
, 0 ≤ θ ≤ 2π

}
, u = %eiθ , % > 1, (1.6)

having foci at ±1 and the sum of semi-axes equal to %. When % → 1, E% shrinks to the interval [−1, 1], and, as we can
conclude fromother papers using this approach, the factors C1(E%, w) and C2(E%, w)usually go to+∞. However, the bounds
(1.3) and (1.4) are extremely sharp for large values of %.
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2. The weight function w1(t) = (1− t2)−1/2

It iswell known thatπn(t;w1) = Tn(t) and π̂n+1(t;w1) = (1−t2)Un−1(t), where Tn andUn are the nth degree Chebyshev
polynomials of the first and second kind, respectively. We use the following representation of KGn derived in [1]

KGn (z;w1) =
4π

un(u− u−1)(un + u−n)
,

where u is given in (1.6). In the same way we can derive the representation of KGK2n+1

KGK2n+1(z;w1) =
−4π

u2n(u− u−1)(u2n − u−2n)
.

Now it is easy to show that

KGK2n+1(z)− K
G
n (z) =

−4π
(u− u−1)(u2n − u−2n)

.

In the rest of this section we derive explicit expressions of the factorsM1(E%, w1) andM2(E%, w1), and compare them with
the factors C1(E%, w1) derived in [1],

C1(E%, w1) =
4(%2 + 1)

(%2 − 1)(%2n + 1)
E
(

2
% + %−1

)
,

and C2(E%, w1) derived in [2],

C2(E%, w1) =
4

(%2n + 1)
K

(
2

%n + %−n

)
,

whereK is the complete elliptic integral of the first kind and E is the complete elliptic integral of the second kind.

Theorem 2.1.

M1(E%, w1) =
4(%2 + 1)

(%2 − 1)(%2n − %−2n)
E
(

2
% + %−1

)
.

Proof. Using equalities |un ± u−n| = [2(a2n ± cos 2nθ)]1/2, where

aj = aj(%) =
1
2

(
%j + %−j

)
, j ∈ N,

we get an explicit representation of |KGK2n+1(z;w1)− K
G
n (z;w1)| in the form

|KGK2n+1(z;w1)− K
G
n (z;w1)| = π

√
2

(a2 − cos 2θ)(a22n − cos2 2nθ)
,

which attains its maximum value when θ = 0, i.e., at intersection points of the ellipse E% with the real axis. Recalling the
well-known fact l(E%) = 2(% + %−1)E(2/(% + %−1)), we complete the proof. �

Theorem 2.2.

M2(E%, w1) =
4

(%2n + %−2n)
K

(
2

%2n + %−2n

)
.

Proof. According to (1.6), there hold |dz| =
√
(a2 − cos 2θ)/2 dθ and∮

E%

∣∣KGK2n+1(z;w1)− KGn (z;w1)∣∣ |dz| = π ∫ 2π

0
(a22n − cos

2 2nθ)−1/2dθ

= 4π
∫ π/2

0
(a22n − cos

2 θ)−1/2dθ =
4π
a2n

K

(
1
a2n

)
. �

The factors Ci andMi have very similar explicit expressions, so it is easy to compare them analytically:

M1(E%, w1)
C1(E%, w1)

=
%2n + 1
%2n − %−2n

,
M2(E%, w1)
C2(E%, w1)

=
(%2n + 1)K

(
2/(%2n + %−2n)

)
(%2n + %−2n)K (2/(%n + %−n))

.

When % is fixed and n increases, the complete elliptic integrals of the first and second kind rapidly approach their
asymptotic value π/2. In this way, we get the following asymptotic estimate

M2(E%, w1) =
2π

(%2n + %−2n)

(
1+ O(%−4n)

)
.
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3. The weight function w2(t) = (1− t2)1/2

It is well known that πn(t;w2) = Un(t) and π̂n+1(t;w2) = Tn+1. We use the following representation of KGn derived
in [1]

KGn (z;w2) =
π(u− u−1)

un+1(un+1 − u−(n+1))
,

where u is defined in (1.6). In the same way we obtain the representation of KGK2n+1

KGK2n+1(z;w2) =
π(u− u−1)

u2(n+1)(un+1 − u−(n+1))(un+1 + u−(n+1))
.

Now it is easy to show that

KGK2n+1(z;w2)− K
G
n (z;w2) =

−π(u− u−1)
(un+1 − u−(n+1))(un+1 + u−(n+1))

.

Theorem 3.1.

M1(E%, w2) =
(% + %−1)2

(%2n+2 − %−(2n+2))
E
(

2
% + %−1

)
.

Proof. Similarly as in the proof of Theorem 2.1, we get an explicit representation of |KGK2n+1(z;w2)− K
G
n (z;w2)| in the form

|KGK2n+1(z;w2)− K
G
n (z;w2)| = π

√
a2 − cos 2θ

2(a22n+2 − cos2(2n+ 2)θ)

which attains its maximum value when θ = π/2. �

Theorem 3.2.

M2(E%, w2) =
%2 + %−2

(%2n+2 + %−(2n+2))
K

(
2

%2n+2 + %−(2n+2)

)
.

Proof. Since
∫ π
0 cos 2θ [1− k

2 cos2mθ ]−1/2dθ = 0, for all integersm ≥ 2 (see [2, p. 78]), there holds∮
E%

∣∣KGK2n+1(z;w2)− KGn (z;w2)∣∣ |dz| = π

2

∫ 2π

0

a2 − cos 2θ
(a22n+2 − cos2(2n+ 2)θ)1/2

dθ

= 2π a2

∫ π/2

0
(a22n+2 − cos

2 θ)−1/2dθ = 2π
a2
a2n+2

K

(
1
a2n+2

)
. �

We are able to compare analytically the factors Ci (from [1,4,2]) andMi, and obtain

M1(E%, w2)
C1(E%, w2)

=
%2n+2 + 1

%2n+2 − %−(2n+2)
,

M2(E%, w2)
C2(E%, w2)

=
(%2n+2 + 1)K

(
2/(%2n+2 + %−(2n+2))

)
(%2n+2 + %−(2n+2))K

(
2/(%n+1 + %−(n+1))

) .
It should be pointed out that it is difficult to determine the factor C1(E%, w2) when n is even and % is less than some %n
(see [1,4]), because the maximum of |KGn | on E% is attained slightly off the imaginary axis and depends on n.
When % is fixed and n increases,M2(E%, w2) can be written in the form

M2(E%, w2) =
π(%2 + %−2)

2(%2n+2 + %−(2n+2))

(
1+ O(%−4n−4)

)
.

4. The weight function w3(t) = (1− t)−1/2(1+ t)1/2

It is well known that πn(t;w3) = Vn(t) and π̂n+1(t;w3) = (1 − t)Wn(t), where Vn and Wn denote the nth degree
Chebyshev polynomials of the third and fourth kind, respectively. We use the following representation of KGn derived in [1]

KGn (z;w3) =
2π(u+ 1)

un(u− 1)(un+1 + u−n)
,
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where u is defined in (1.6). In the same way we derive the representation of KGK2n+1

KGK2n+1(z;w3) =
−2π(u+ 1)

u2n(u− 1)(un+1 − u−n)(un+1 + u−n)
.

Now it is easy to show that

KGK2n+1(z;w3)− K
G
n (z;w3) =

−2π(u+ 1)
(u− 1)(u2n+1 − u−(2n+1))

.

Theorem 4.1.

M1(E%, w3) =
2(% + 1)(% + %−1)

(% − 1)(%2n+1 − %−(2n+1))
E
(

2
% + %−1

)
.

Proof. Similarly as in the proof of Theorem 2.1, we get an explicit representation of |KGK2n+1(z;w3)− K
G
n (z;w3)| in the form

|KGK2n+1(z;w3)− K
G
n (z;w3)| = π

√
a1 + cos θ

(a1 − cos θ)(a22n+1 − cos2(2n+ 1)θ)

which attains its maximum value when θ = 0. �

Theorem 4.2.

M2(E%, w3) =
2(% + %−1)

(%2n+1 + %−(2n+1))
K

(
2

%2n+1 + %−(2n+1)

)
.

Proof. Since |dz| =
√
(a1 − cos θ)(a1 + cos θ) dθ and

∫ π
0 cos θ [1 − k

2 cos2mθ ]−1/2dθ = 0, for all integers m ≥ 2, there
holds ∮

E%

∣∣KGK2n+1(z;w3)− KGn (z;w3)∣∣ |dz| = π ∫ 2π

0

a1 + cos θ
(a22n+1 − cos2(2n+ 1)θ)1/2

dθ

= 4π a1

∫ π/2

0
(a22n+1 − cos

2 θ)−1/2dθ = 4π
a1
a2n+1

K

(
1
a2n+1

)
. �

As in the two previous sections we obtain
M1(E%, w3)
C1(E%, w3)

=
%2n+1 + 1

%2n+1 − %−(2n+1)
,

M2(E%, w3)
C2(E%, w3)

=
(%2n+1 + 1)K

(
2/(%2n+1 + %−(2n+1))

)
(%2n+1 + %−(2n+1))K

(
2/(%n+1/2 + %−(n+1/2))

) .
When % is fixed and n increases,M2(E%, w3) can be written in the form

M2(E%, w3) =
π(% + %−1)

%2n+1 + %−(2n+1)

(
1+ O(%−4n−2)

)
.

5. Examples

This section contains numerical examples illustrating the quality of the bounds∣∣RGK2n+1(f )− RGn(f )∣∣ ≤ M2(E%, wi) ·maxz∈E%
|f (z)|, i = 1, 2. (5.1)

All computations were performed in machine precision of approximately 16 decimal digits, using MATLAB routines for
the Gauss and Gauss–Kronrod quadrature rules from [5] to evaluate |RGK2n+1(f ) − R

G
n(f )| and the polynomial approximation

to evaluateK . We have optimized these bounds as functions of %.

Example 5.1.∫ 1

−1

cos(at)
√
1− t2

dt.

The function f (z) = cos(az) is entire and it is easy to see that

|f (z)| ≤ cosh(a(% − %−1)/2), z ∈ E%.

Our numerical results are summarized in Table 5.1. Numbers in parentheses indicate decimal exponents.
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Table 5.1
Optimal bounds (5.1) for Example 5.1.

a n %opt |RGK2n+1(f )− R
G
n (f )| Bound

1 4 15.9373 5.9202(−7) 2.1132(−6)
5 19.9499 1.6529(−9) 6.5906(−9)
7 27.9642 6.2172(−15) 2.0384(−14)

3 5 6.5131 8.1231(−5) 3.1780(−4)
7 9.2249 1.8097(−8) 8.4441(−8)
10 13.2579 4.9960(−15) 4.3179(−14)

8 5 2.0000 0.3818 1.2377
10 4.7913 1.3073(−6) 7.0608(−6)
15 7.3642 1.1213(−14) 1.9326(−13)

16 5 1.0560 1.2956 5.2747
10 2.0000 0.1089 0.4876
15 3.4611 3.4590(−6) 2.1978(−5)

Table 5.2
Optimal bounds (5.1) for Example 5.2.

a n %opt |RGK2n+1(f )− R
G
n (f )| Bound

1 4 16.0624 1.5560(−7) 1.1248(−6)
5 20.0499 4.3080(−10) 3.4643(−9)
7 28.0357 1.3323(−15) 1.0563(−14)

3 5 6.8147 2.9570(−5) 2.4936(−4)
7 9.4396 5.9949(−9) 5.8235(−8)
9 12.0829 4.0412(−13) 4.3881(−12)

8 5 2.8638 1.4544 1.6392(1)
10 5.1939 1.4054(−6) 1.7540(−5)
14 7.1404 1.4495(−12) 8.6994(−12)

Example 5.2.∫ 1

−1
eat
√
1− t2 dt.

The function f (z) = eaz is entire and |f (z)| for z ∈ E% attains its maximum value when z = (%+%−1)/2. The corresponding
numerical results are summarized in Table 5.2.
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