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a b s t r a c t

In this paper, a stability test procedure is proposed for linear nonhomogeneous fractional
order systems with a pure time delay. Some basic results from the area of finite time and
practical stability are extended to linear, continuous, fractional order time-delay systems
given in state-space form. Sufficient conditions of this kind of stability are derived for
particular class of fractional time-delay systems. A numerical example is given to illustrate
the validity of the proposed procedure.
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1. Introduction

Stability analysis is one of themost important issues for control systems, although this problem has been investigated for
time-delay systems over many years [1]. Numerous reports have been published on this matter, with particular emphasis
on the application of Lyapunov‘s secondmethod, or on using the idea ofmatrixmeasure, (see [2–5]). Here, another approach
is presented, i.e system stability from the non-Lyapunov point of view (finite and practical stability) is studied [6–9]. Also,
analysis of the linear time-delay systems in the context of finite and practical stability was introduced and considered, [10–
13]. Recently there have been some advances in control theory of fractional (non-integer order) dynamical systems for
stability questions. For example, regarding linear fractional differential systems of finite dimensions in state-space form,
both internal and external stabilities are investigated by Matignon [14,15]. A condition based on the argument principle
has been established to guarantee the asymptotic stability of the fractional order system. Some properties and (robust)
stability results for linear, continuous, (uncertain) fractional order state-space systems are presented and discussed [16,
17]. An analytical approach was suggested by Chen and Moore, [18,19], who considered the analytical stability bound using
Lambert functionW for a class of ordinary/fractional order of delay differential equations. Further, analysis and stabilization
of fractional (exponential) delay systems of retarded/neutral type are considered [20,21], and BIBO stability [22]. Recently,
for the first time, finite-time stability analysis of fractional time-delay systems is presented and reported on paper [23]. The
main contribution of this paper is to propose finite-time stability test procedure linear (non)autonomous time-invariant
delay fractional order systems (LTID FOS). Here, a Bellman–Gronwall‘s approach is proposed, using a recently obtained
generalized Gronwall inequality reported in [24] as a starting point. The problem of sufficient conditions that enable system
trajectories to stay within the a priori given sets for the particular class of linear (non)autonomous fractional order time-
delay systems has been examined.
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2. Preliminaries on integer time-delay systems

A linear, multivariable time-delay system can be represented by the following differential equation:

dx(t)
dt
= A0x(t)+ A1x(t − τ)+ B0u(t), (1)

andwith the associated function of the initial state: x(t) = ψx(t),−τ ≤ t ≤ 0. In Eq. (1), x(t) ∈ Rn is a state vector,u(t) ∈ Rm
is a control vector, A0, A1, B0 are constant systemmatrices of appropriate dimensions, and τ is a pure time delay, τ = const.
(τ > 0). Dynamical behaviour of system (1), with a given initial function is defined over time interval J = [to, to + T ] , J ⊂ R
where quantity T may be either a positive real number or a symbol +∞, so finite-time stability and practical stability can
be treated simultaneously. Time invariant sets, used as bounds of system trajectories, are assumed to be open, connected
and bounded. Let index ‘‘ε’’ stands for the set of all allowable states of the system and index ‘‘δ’’ for the set of all initial states
of the system, such that the set Sδ ⊆ Sε . In general, one may write: Sρ =

{
x : ‖x(t)‖2Q < ρ

}
, ρ ∈ [δ, ε], where Q will be

assumed to be a symmetric, positive definite, real matrix. Sαu denotes the set of all allowable control actions. Let |x|(.) be
any vector norm (e.g., . = 1, 2,∞) and ‖(.)‖ the matrix norm induced by this vector. The initial function can be written in
its general form as: x(to + θ) = ψx(θ), −τ ≤ θ ≤ 0, ψx(θ) ∈ C [−τ , 0], where t0 is the initial time of observation of the
system (1) and C [−τ , 0] is a Banach space of continuous functions over a time interval of length τ , mapping the interval
[t − τ , t] into Rn with the norm defined in the following manner: ‖ψ‖C = max−τ≤θ≤0 ‖ψ(θ)‖. It is assumed that the usual
smoothness condition is present so that there is no difficulty with questions of existence, uniqueness, and continuity of
solutions with respect to initial data.

Definition 2.1. The system given by homogeneous state equation (1) (u(t) ≡ 0,∀t), satisfying initial condition x(t) =
ψx(t),−τ ≤ t ≤ 0 is finite stable w.r.t. {δ, ε, to, J, } , δ < ε if and only if

‖ψ‖C < δ (2)

imply:

‖x(t)‖ < ε, ∀t ∈ J (3)

where t0 denotes the initial time of observation of the system and J denotes time interval J = [to, to + T ] , J ⊂ R.

Definition 2.2. System given by (1) satisfying initial condition x(t) = ψx(t),−τ ≤ t ≤ 0 is finite stable w.r.t.
{δ, ε, αu, to, J} , δ < ε if and only if:

‖ψ‖C < δ (4)

and

‖u(t)‖ < αu, ∀t ∈ J (5)

imply:

‖x(t)‖ < ε, ∀t ∈ J. (6)

3. Fundamentals of fractional calculus

The fractional integro-differential operators (fractional calculus–(FC)) is a generalization of integration and derivation to
non-integer order (fractional) operators. The idea of FC has been known since the development of the regular calculus, with
the first reference probably being associatedwith Leibniz andMarquis de l’Hôpital in 1695.With time, greatmathematicians
such as Euler, Fourier, Abel and others did some work on the FC that, surprisingly, remained as a sort of curiosity. Further,
the theory of FC was developed mainly in the 19th century. In fact, in his 700-page-long book on Calculus published in
1819, Lacroix [25] devoted two pages to FC, showing that d1/2 [v] /dv1/2 = 2

√
v/
√
π . Moreover, applications of FC are

very wide nowadays in rheology, viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of dynamical
systems, electrical engineering, bioengineering and so on [26–28].The main reason for the success of applications FC is that
these new fractional order models are more accurate than integer order models, i.e. there are more degrees of freedom
in the fractional order models. Furthermore, fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes due to the existence of a ‘‘memory’’ term in a model.
This memory term ensures the history and its impact on the present and future. Three definitions are generally used for the
fractional differintegral. The first one is the Grunwald definition, given as [26,28]:

Dαa f (t) = limh→0
1
hα

[(t−a)/h]∑
j=0

(−1)j
(
α
j

)
f (t − jh) , (7)

where a, t are the limits of operator and [x]means the integer part of x. The Riemann–Liouville (RL) definition of fractional
derivative and integral are defined as:
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Definition 3.1 ([29]). LetΩ = [a, b] , (−∞ < a < b <∞) be a finite interval on the real axis R and f (t) be a continuous
function defined on [a, b]. The left-sided Riemann–Liouville fractional derivative of order (R (α) ≥ 0), α ∈ C, is:

Dαa+ f (t) =
1

0(n− α)
dn

dtn

∫ t

a

f (τ )

(t − τ)α−n+1
dτ , (n = [R (α)]+ 1, t > a). (8)

Definition 3.2 ([29]). Let f (t) be a continuous function defined on [a, b]. The left-sided Riemann–Liouville fractional integral
of order α ∈ C, (R (α) > 0), is:

Iαa+ f (t) =
1

0(α)

∫ t

a
(t − τ)α−1 f (τ )dτ , (t > a,R (α) > 0). (9)

Without loss of generality we denote Dαa+ f (t) by D
α
a f (t) and I

α
a+ f (t) by I

α
a f (t), respectively. Here, 0(.) is the well-known

Euler’s gamma function which is defined by the so-called Euler integral of the second kind:

0(z) =
∫
∞

0
e−t tz−1dt, z ∈ C. (10)

For this function the reduction formula holds:

0(z + 1) = z0(z),⇒ 0(n+ 1) = n(n− 1)! = n! n ∈ N0. (11)

From previous definitions, it can be seen that fractional derivative represents a global property of the function, (the property
of the function on the finite interval), in contrast to the integer order derivative, which is a local property, (the property of
the function at a single value of the independent variable).

Lemma 3.1 ([29]). If (R (α) > 0) and f (t) ∈ Lp (a, b) (1 ≤ p ≤ ∞), (where Lp (a, b) are set of those Lebesgue complex-valued
measurable functions f onΩ = [a, b] , (−∞ < a < b <∞) for which ‖f ‖p <∞) then the following equality:

Dαa+
(
Iαa+ f (t)

)
= f (t), (12)

holds almost everywhere on [a, b]. There is also another definition of fractional differintegral introduced by Caputo [30]. Namely,
left-sided Caputo fractional derivative of order α ∈ C, (R (α) ≥ 0) on [a, b] are defined via the above Riemann–Liouville
fractional derivative by

CDαa+ f (t) = D
α
a+

([
f (s)−

n−1∑
k=0

f (k)(a)
k!

(s− a)k
])

(t), (13)

where

n =
{
[R (α)+ 1] for α 6∈ N0 = {0, 1, 2 . . .}
α, for α ∈ N0.

(14)

If α 6∈ N0 and for function f (t) there exist Caputo and RL fractional derivatives then the following relation between the
two fractional derivatives holds:

CDαa+ f (t) = D
α
a+ f (t)−

n−1∑
k=0

f (k)(a)
0 (k− α + 1)!

(t − a)k−α , n = [R (α)+ 1] . (15)

The Caputo and Riemann–Liouville formulation coincide when the initial conditions are zero. In particular, Caputo
fractional derivative is defined for function f (t) which belongs to the space ACn [a, b] =

{
f : dn−1f (t)/dtn−1 ∈ AC [a, b]

and [a, b]→ C}, n ∈ N := {1, 2, 3, . . .} of absolutely continuous functions, [31]. Thus the following statement holds.

Theorem 3.1 ([31]). Let (R (α) ≥ 0) and let n be given by (14). If f (t) ∈ ACn [a, b] then the Caputo fractional derivative
CDαa+ f (t) exists almost everywhere on [a, b].

(a) If α 6∈ N0, then

CDαa+ f (t) =
1

0 (n− α)

∫ t

a

f (n)(s)

(t − s)α−n+1
ds. (16)

(b) If α = n ∈ N0, then

CDαa+ f (t) = f
(n)(t) =

dnf (t)
dtn

. (17)
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Theorem 3.2 ([24] Generalized Gronwall Inequality). Suppose x (t) , a(t) are nonnegative and local integrable on 0 ≤ t <
T , some T ≤ +∞, and g (t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t < T , g(t) ≤ M = const.,
α > 0 with

x(t) ≤ a(t)+ g(t)
∫ t

0
(t − s)α−1 x(s)ds (18)

on this interval. Then

x(t) ≤ a(t)+
∫ t

0

[
∞∑
n=1

(g(t)0 (α))n

0 (nα)
(t − s)nα−1 a(s)

]
ds, 0 ≤ t < T . (19)

Corollary 3.1 (Of Theorem 3.2 [24]). Under the hypothesis of Theorem 3.2, let a (t) be a nondecreasing function on [0, T ). Then
holds:

x (t) ≤ a(t)Eα (g(t)0 (α) tα) (20)

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑
∞

k=0 z
k/0 (kα + 1).

4. Main results

Recently, in [32] the authors considered a variable prehistory of x(t) in t < 0, and its effects were taken into account in
defining the fractional derivative in terms of the initialization function. Moreover, using short memory principle [26] and
taking into account initial function one can obtain the correct initial function where it is assumed that there is no difficulty
with questions of continuity of solutions with respect to initial data (function). Also, a new theory of electroviscoelasticity
describes the behaviour of electrified liquid–liquid interfaces in fine dispersed systems, and is based on a new constitutive
model of liquids [33]. Taking into account small transport time delay τ , electromagnetic oscillation of the ‘‘continuum’’
particle can be obtained by the linear time delay fractional order of differential equation, [34]. Here, it is considered a class
of fractional linear autonomous system with time delay described by the state-space equation:

dαx(t)
dtα

= A0x(t)+ A1x(t − τ) (21)

and nonautonomous

dαx(t)
dtα

= A0x(t)+ A1x(t − τ)+ B0u(t), (22)

with associated function of initial state: x(t) = ψx(t),−τ ≤ t ≤ 0. In this paper, we discuss the case n = 1, 0 < α < 1.
Here, we examine the problem of sufficient conditions that enable system trajectories to stay within the a priori given sets
for the particular class of linear (non)autonomous fractional order time-delay systems.

Theorem 4.1. The linear nonautonomous system given by (22) satisfying initial condition x(t) = ψx(t),−τ ≤ t ≤ 0 is finite-
time stable w.r.t. {δ, ε, αu, J0, } , δ < ε, if the following condition is satisfied:(

1+
σmax 01tα

0 (α + 1)

)
Eα (σmax 01tα)+

γ •u0t
α

0 (α + 1)
≤ ε/δ, ∀t ∈ J0 = {0, T } , (23)

where γ •u0 = αub0/δ, and σ
(.)
max being the largest singular value of matrix (.), where:

σmax 01 = σmax (A0)+ σmax (A1) .

Proof of Theorem 4.1. In accordance with the property of the fractional order 0 < α < 1, one can obtain a solution in the
form of the equivalent Volterra integral equation:

x (t) = x (0)+
1

0 (α)

∫ t

0
(t − s)α−1 (A0x(s)+ A1x(s− τ)+ B0u(s)) ds. (24)

Applying the norm ‖(.)‖ on Eq. (24) and using appropriate property of the norm, it follows that:

‖x (t)‖ ≤ ‖x (0)‖ +
1

0 (α)

∫ t

0

∣∣(t − s)α−1∣∣ ‖A0x(s)+ A1x(s− τ)+ B0u(s)‖ ds. (25)
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Also, applying the norm ‖(.)‖ on Eq. (22), one can obtain:∥∥∥∥dαx(t)dtα

∥∥∥∥ ≤ ‖A0‖ ‖x(t)‖ + ‖A1‖ ‖x(t − τ)‖ + ‖B0‖ ‖u(t)‖
≤ (σmax (A0)) ‖x(t)‖ + (σmax (A1)) ‖x(t − τ)‖ + ‖B0‖ ‖u(t)‖ , (26)

where ‖A‖ denotes the induced norm of a matrix A, as well as,

‖x (t − τ)‖ ≤ supt−τ≤t•≤ t ‖x(t
•)‖ . (27)

Applying this inequality, Eq. (26) can be presented in the following manner:∥∥∥∥dαx(t)dtα

∥∥∥∥ ≤ σAo ‖x(t)‖ + σA1 sup
t−τ≤t•≤t

‖x(t•)‖ + b0 ‖u(t)‖

≤ σmax 01 sup
t−τ≤t•≤t

‖x(t•)‖ + bo ‖u(t)‖ , t > t0 + τ , (28)

or

‖A0x(t)+ A1x(t − τ)+ B0u(t)‖ ≤ σmax 01

(
sup

t−τ≤t•≤t
‖x(t•)‖ + ‖ψx‖C

)
++b0 ‖u(t)‖ , t > t0+ . (29)

Taking into account (29) and (25), it yields:

‖x (t)‖ ≤ ‖x (0)‖ +
1

0 (α)

∫ t

0
|(t − s)|α−1

{
σmax 01

(
sup

t−τ≤t•≤t
‖x(t•)‖ + ‖ψx‖C

)
+ b0 ‖u(t)‖

}
ds, (30)

or

‖x (t)‖ ≤ ‖ψx‖C

[
1+

σmax 01tα

0 (α + 1)

]
+
σmax 01

0 (α)

∫ t

0

∣∣(t − s)α−1∣∣ sup
t−τ≤t•≤t

‖x(t•)‖ ds+
1

0 (α + 1)
(αub0)tα. (31)

Obviously, one can introduce nondecreasing function a (t) such as:

a (t) = ‖ψx‖C

(
1+

σmax 01tα

0 (α + 1)

)
. (32)

Now, one may apply generalized Gronwall inequality, [24], here, Corollary 3.1 of (Theorem 3.2) (20). Obviously, it is easy
to show:

‖x (t)‖ ≤ sup
t−τ≤t•≤t

‖x(t•)‖ ≤ a (t) Eα

(
σmax 01

0 (α)
0 (α) tα

)
= a (t) Eα (σmax 01tα) , (33)

and

‖x (t)‖ ≤ δ
(
1+

σmax 01tα

0 (α + 1)

)
Eα (σmax 01tα)+

1
0 (α + 1)

(αub0)tα. (34)

Hence, using the basic condition of Theorem 4.1, relation (23) yields:

‖x(t)‖ < ε, ∀t ∈ J0. (35)

This is a proof of the theorem. �

Remark 4.1. If α = 1, see (22), one can obtain same conditions which related to integer order time-delay systems (3) as
follows [13]:[

1+
σ Amax (t − t0)

1

1

]
· e

σAmax(t−t0)
1

1 + γ ·
(t − t0)1

1
≤ ε/δ, ∀t ∈ J,0(2) = 1,

Eα=1(z) = ez .
(36)

Theorem 4.2. The linear autonomous system given by Eq. (21) satisfying initial condition x(t) = ψx(t),−τ ≤ t ≤ 0 is finite-
time stable w.r.t. {δ, ε, J0, } , δ < ε, if the following condition is satisfied:(

1+
σmax 01tα

0 (α + 1)

)
Eα (σmax 01tα) ≤ ε/δ, ∀t ∈ J0. (37)
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Proof of Theorem 4.2. The proof immediately follows from the proof of Theorem 4.1 applying the same procedure taking
into account Eqs. (20) and (37).

Remark 4.2. If α = 1, see (21), one can obtain same conditions which relate to integer order time-delay systems

dx(t)
dt
= A0x(t)+ A1x(t − τ), (38)

as follows (see [12]):[
1+

σmax 01t1

1

]
· e

σmax 01t
1

1 ≤ ε/δ, ∀t ∈ J0 = [0, T ] . (39)

5. An illustrative example

Using a time-delay PDα compensator on a linear system of equations with respect to the small perturbation
e(t) = y(t)− yd(t),one can obtain:

ė(t)+ ωe(t) = KPe(t − τ)+ KDde(α)(t − τ)/dtα + u(t), (40)

where α = 1/2, ω = 2, Kp = 3, KD = 4, u (t)-feedforward control
Also, all initial values are zeros. Introducing:

x1(t) = e(t), x2(t) = d1/2e(t)/dt1/2, (41)

one can write (39) in state-space form:

Dαt x1(t) = D
1/2
t e(t) = x2(t),

Dαt x2(t) = D
1/2
t

(
D1/2t e(t)

)
= ė(t) = −2x1(t)+ 3x1(t − τ)++4x2(t − τ)+ u(t)

(42)

or, in condensed form, where x(t) = (x1, x2)T, one can obtain this as:

D1/2t x(t) =
[
0 1
−2 0

] [
x1(t)
x2(t)

]
+

[
0 0
3 4

] [
x1(t − τ)
x2(t − τ)

]
+

[
0
1

]
u(t), (43)

or

D1/2t x(t) = A0x(t)+ A1x(t − τ)+ B0u(t), (44)

with an associated function of the initial state:

x(t) = ψx(t) = 0, −τ ≤ t ≤ 0. (45)

Also, there is the task of checking the finite-time stability w.r.t.
{t0 = 0, J = {0, 2} , δ = 0.1, ε = 100, τ = 0.1, αu = 1}, where ψx(t) = 0, ∀t ∈ [−0.1, 0].
From the initial data and Eqs. (43) and (22) one can obtain:

‖ψx(t)‖C < 0.1,
σmax (A0) = 2, σmax (A1) =

√
32 + 42 = 5,⇒ σmax 0,1 = 7.

(46)

Applying the condition of Theorem 4.2 (22) one can get:[
1+

7T 0.5e
0.886

]
· E0.5

(
7T 0.5e

)
+
10 · T 0.5e
0.886

≤ 100/0.1⇒ Te ≈ 0.1 s. (47)

Te being ‘‘estimated time’’ of finite time stability.

6. Conclusion

In this paper, finite-time stability analysis for a class of linear fractional order systems with time invariant delay was
considered. New stability criteria for this class of fractional order systems were derived by applying generalized Gronwall
inequality. In that way, one can check system stability over a finite time. Finally, an illustrative example for this class of
system was presented.
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