G. Adžiev, A. Sedmak, T. Adžiev

ANALIZA OTPORNOSTI KA LOMU ZUT-A U ZAVARENIM SPOJEVIMA MIKROLEGIRANIH ČELIKA POVEĆANE ČVRSTOĆE

ANALYSIS OF THE HAZ FRACTURE RESISTANCE OF HSLA STEEL WELDMENTS

Originalni naučni rad / Original scientific paper

UDK / UDC: 621.791.05:539.42

621.791.05:669.15-194

Rad primljen / Paper received:

April 2008.

Ključne reči: Energija udara, ZUT, prslina, stabilan rast prsline, lom.

Izvod

Ispitivane su karakteristike otpornosti ka lomu u ZUT zavarenog spoja mikrolegiranog čelika povečane čvrstoče koji se koristi za izradu posuda pod pritiskom. S obzirom na namenu zavareni spoi treba da ima veliku otpornost ka pojavi i rastu prslina. Analiza je obuhvatila udarnu žilavost uzoraka simuliranih mikrostruktura koje su tipične za ZUT, žilavost loma nestandardnih uzoraka sa simuliranim mikrostrukturama i konačno standardne zavarene SENB uzorke. Analiza je pokazala da tip prsline (erozimatna i zamorna) na početak stabilnog rasta prsline ima veći uticaj kod duktilnijih mikrostruktura, a manji ili skoro nikakav kod krtijih. Takođe, komparativna analiza simuliranih uzoraka i zavarenih uzoraka pokazala je uticaj odnosa i veličine mikrostrukturnih regiona u ZUT-u na rast prsline t.j. uticaj mismeča na otpornost ka lomu.

* Rad je izlagan na Savetovanju sa međunarodnim učešćem "ZAVARIVANJE 2008" - Subotica

UVOD

Većina opštih postrojenja koje se koriste u transportnoj industriji, elektroprivredi, postrojenja za skladišćenje tećnosti i gasova, naftene platforme itd., u okviru svoje konstrukcije uključuju zavarene konstrukcije t.j. zavarene spojeve, koji su veoma osetljiv deo svake konstrukcije s obzirom da se zavareni spojevi izrađuju i rade u kompleksnim metalurškim i naponskim okolnostima. Početkom stoleća, dizajn konstrukcija je bio baziran na čvrstoći i duktilnosti materijala.

Razvoj mikrolegiranih i niskolegiranih čelika povećane čvrstoće, zatim čelika za poboljšanje, kako i novije tehnologije za izradu, promenili su pristup dizajnera koji su pečeli da projektuju na osnovu granice tečenja i žilavosti, umesto zatezne čvrstoće [1].

U ovom radu je analizirana otpornost ka lomu tipičnih mikrostruktura ZUT-a, i udarna i lomna, kako i ponašanje pri lomu zavarenih spojeva sa prslinom u ZUT, uzimajuči u obzir tip prsline i uticaj susednih mikrostrukturnih regiona na razvoj prsline.

Adresa autora / Author's address:

Gjorgji Adžiev, Todor Adžiev, Mašinski fakultet, Univerzitet "Sv. Kiril i Metodij", Karpoš II bb. Skopje, Makedonija.

Aleksandar Sedmak,

Mašinski fakultet, Univerzitet u Beogradu, Kraljice Marije br. 16, Beograd, Srbija.

Keywords: Impact energy, HAZ, crack, stabile crack growth, fracture.

Abstract

The HAZ fracture behavior of the weldments of HSLA steel for pressure vessels has been investigated. Having in mind the purpose of such structure, the welded joint should poses sufficient resistance towards crack occurrence as well its propagation. The analysis encompassed impact toughness testing of Charpy specimens and fracture touahness determination of SENB specimens of base metal and simulated microstructures of HAZ, and finally fracture toughness testing of welded specimens with crack located in the very narrow HAZ regions. The analysis revealed the effect of the crack tip (electro eroded or fatigued) on the onset of the stabile crack growth for the different microstructures. The comparative analysis between the testings showed the influence of the mismatch towards the fracture behavior of real welded joint in respect of simulated microstructures.

Ispitivanje je vršeno na čeliku povišene čvrstoće, koji je ojačan preko mehanizma usitnjavanja zrna kao posledica mikrolegiranja, sa sledećim glavnim osobinama:

 R_{eH} =420 MPa, R_m = 604 MPa i A₅=25%. Karakterističan je sadržaj ugljenika i titana, prikazan u tabeli 1, pri čemu je sadržaj ugljenika (0.2%) relativno visok za ovaj tip čelika, što pored titana, doprinosi povečanju čvrstoće, dok za usitnjavanje zrna i postizanje povoljnog odnosa između čvrstoće i plastičnosti glavni doprinos daje titan koji je dodat u količini od 0.12%.

EKSPERIMENT

Za sprovedena ispitivanja izrađeni su sledeći tipovi uzoraka:

 a) standardni Šarpijevi uzorci sa V zarezom, za određivanje energije udara (žilavosti) simuliranih mikrostruktura ZUT-a

- b) nestandardni mali uzorci (8×14.8×70 mm) za određivanje žilavosti loma simuliranih mikrostruktura ZUT-a
- c) standardni SENB uzorci za određivanje žilavosti loma zavarenih spojeva sa prslinom u ZUT.

Simuliranje termičkih ciklusa zavarivanja sa kontrolisanim zagrevanjem i hlađenjem kao kod realnog procesa zavarivanja je sprovedeno na simulatoru tipa SMITWELD (Thermal cycle simulator) TCS 1405.

Urađena je dvojna simulacija nakon prvog ciklusa od 1350°C, na temperaturi od 780 i 960°C čime su pokrivena dva tipična mikrostrukturna regiona ZUT-a

višeslojnog zavarenog spoja gde su bile locirane prsline kod standardnih SENB uzoraka.

Simulirani uzorci su predgrevani na 200°C, zatim zagrevani do predviđene temperature i hlađeni sa $\Delta t_{8/5} \approx 15$ s za finozrnasti 1350/960°C tj. gde je hlađeno sa $\Delta t_{8/5} \approx 60$ s za 1350/780°C ZUT. Zavareni SENB (24×24×110 mm) uzorci su izrađeni prema slici 2, pri čemu su prsline izrađene elektroerozijom i locirane u finozrnasti ZUT i u grubozrnasti ZUT blizu linije stapanja.

Metod ispituvanja žilavosti loma, proračun i tumačenje dobijenih rezultata su u saglasnosti ASTM E 1820/ E 1152/ E 1290/ E 1737, [2-5].

Tabela 1: Hemijski sastav čelika, (mas.%)	
Table 1: Chemical composition of the steel, (mass.%))

C %	Si %	Mn %	Ρ%	S %	Ti %	Cr %	AI %	Cu %	Ni %	V %	Mo %	Nb %	Fe %
0.20	0.44	1.35	0.012	0.01	0.12	0.15	0.06	0.05	0.10	0.008	0.015	0.001	ost.

Slika 1: Oblik i dimenzije male SENB epruvete Figure 1: Shape and dimension of the SENB sample

Slika 2: Standardni zavareni SENB uzorci: a) prslina u grubozrnastom ZUT, b) prslina u finozrnastom ZUT Figure 2: Standardized welded SENB samples a) crack in the coarse grained HAZ, b) crack in the fine grained HAZ

REZULTATI I DISKUSIJA

Ispitivanje energije udara (žilavosti) simuliranih uzoraka

Ispitivanja su urađena na sledećim temperaturama: -40°C (samo OM), -20°C i +20 °C.

Osnovni metal, karakteriše se sa dobrom žilavošču, s obzirom na njegovu feritno-perlitnu strukturu, pri čemu na +20°C obe komponente ukupne energije su približno iste što ukazuje na visoku sposobnost za plastično deformisanje, ali istovremeno i na stabilan rast inicijalne prsline t.j. visoku otpornost ka nestabilnom lomu.

Sa sniženjem temperature očigledan je pad žilavosti, što je rezultat smanjene plastičnosti, ali još uvek su obe komponente slične veličine. Na -40°C, nestabilni lom se

dešava u istom momentu kad se inicira prslina, što je rezultat značajnijeg sniženja energije rasta prsline u odnosu na energiju za inicijaciju.

Dvociklusna finozrnasta struktura 1350/960°C poseduje zadovoljavajuću udarnu žilavost, što je logično zato što je to struktura kod koje se desila delimična ili potpuna normalizacija. Ipak, već pri -20°C energija za rast prsline je skoro nula i pored toga što je ukupna energija još na zadovoljavajućem nivou iznad 27 J, što znači da još ima sposobnosti da apsorbuje plastičnu deformaciju, no nakon inicijacije prsline nastupa krti lom.

Kod dvociklusne 1350/780°C strukture za koju je karakteristično prisustvo, manje ili više, beinita pa čak i martenzita, udarna žilavost je veoma niska i pri +20°C, i skoro cela energija se troši na deformacioni rad t.j. energija rasta prsline je praktično nula.

Slika 3 : Dijagrami zavisnosti sila – vreme za energiju udara: a) Osnovni metal, b) Dvociklusna finozrnasta simulirana struktura (1350/960°C), c) Dvociklusna finozrnasta simulirana struktura (1350/780°C)

Slika 4: Raspodela energije udara za ispitane materijale Figure 4: Distribution of the absorbed energy for tested materials

Ispitivanje žilavosti loma SENB uzoraka simuliranih mikrostruktura

Ispitani su uzorci osnovnog metala, kako i uzorci simuliranih mikrostruktura. Za svaku mikrostrukturu izrađeni su uzorci sa dva tipa prsline: zamorna prslina i prslina dobijena elektroerozijom, kako bi se dobila slika uticaja tipa prsline, s obzirom da kod zavarenih uzoraka prslina je bila izrađena i precizno locirana u ZUT elektroerozijom, a ipak u realnim zavarenim spojevima prsline su veoma oštre.

Kod svih epruveta od osnovnog metala je nastala inicijacija prsline t.j. njen stabilni rast, pri čemu kod epruveta sa erozimatnom prslinom stabilni rast je

započeo pri relativno večoj vrednosti CTOD t.j. $\delta_{lc} \approx 0.57$ mm, dok kod epruveta sa zamornom prslinom stabilni rast je započeo još pri $\delta_{lc} \approx 0.31$ mm.

Ovo se može objasniti faktom da je veće zaobljenje u vrhu prsline omogućilo da se plastična deformacija proširi na veći volumen i s time da rastereti naponsko stanje u zoni oko vrha, dok je kod zamorne, deformacija bila koncentrisana oko malog volumena zbog čega je plastičnost u materijalu obuhvaćena tom deformacijom bila ranije iscrpljena i ranije je počeo rast prsline. To potvđuje uticaj radijusa u vrhu prsline, i ako se uradi korelacija između zamorne i erozimatne prsline, dobija se $\Delta \delta = \delta_{lc \, zamorna} / \delta_{lc \, erozimatna} = 0.544$.

 Tabela 2: Raspored mikrotvrdoće u zavarenom spoju

 Table 2: Distribution of the micro hardness in welded joint

a) Raspored mernih linija mikrotvrdoće	b) Dobijeni koeficijenti 'mismečinga'						
	materijal	HV1	R _{p0.2} , MPa	R _m , MPa	A ₅ , %	M, mismeč	
	OM	185	420 ¹⁾	604 ¹⁾	25 ¹⁾	-	
	MŠ _{ispuna}	205	478	669	16.9	1.14	
	MŠ _{koren}	212	500	692	16.2	1.19	
	MŠ _{površina}	215	509	702	15.9	1.21	
	GZ ZUT	281	605	1170	8.4	0.79	
	FZ ZUT	221	461	904	11.6	1.04	

NAUKA*ISTRAŽIVANJE*RAZVOJ

Kod epruvete za dvociklusnom finozrnastom strukturom 1350/960°C mogu da se iskoriste iste konstatacije, s time što su razlike u veličini CTOD pri inicijaciji stabilnog rasta δ_{lc} manje, a manje su i razlike u obliku krive. Kod ovih je za epruvete sa erozimatnom prslinom δ_{lc} ≈0.266 mm, a kod epruvete sa zamornom prsnatinom δ_{lc} ≈0.160 mm, što daje faktor korelacije $\Delta \delta$ =0.6. Kod dvociklusne 1350/780°C grubozrnaste strukture nije konstatovan nikakav stabilan rast prsline,

SCIENCE*RESEARCH*DEVELOPMENT

što znači $\Delta a=0$. Ipak, kod dvociklusne strukture 1350/780°C nestabilni rast se desio pri $\delta_c \approx 0.05$ mm za erozimatnu, t.j. $\delta_c \approx 0.04$ mm za zamornu prslinu i ovde može da se definiše približni faktor korelacije $\Delta \delta=0.8$. Ova razlika ukazuje da ipak, kod ove simulirane grubozrnaste strukture i pored toga što nema stabilnog rasta prsline, desilo se minimalno veće plastificiranje oko vrha erozimatne prsline u odnosu na zamornu pre loma.

Ispitivanje žilavosti loma zavarenih SENB uzoraka sa prslinom u ZUT

Uzorci osnovnog metala su pokazali slično ponašanje, s time što je priraštaj CTOD-a kod zamorne prsline veći u poređenju sa erozimatnom prslinom [6], što se poklapa sa analizom i za simulirane uzorke. Kako i da je, nakon početka stabilnog rasta prsline uticaj vrha prsline nestaje i krive otpornosti za slučaj zamorne i erozimatne prsline dobiju isti naklon [7].

Vrednost CTOD-a na početku stabilnog rasta prsline, za slučaj erozimatne prsline iznosi δ_{lc} =0.544 mm, i za zamornu prslinu δ_{lc} =0.3 mm. To daje vrednost faktora korelacije $\Delta\delta$ =0.552 što je skoro identično sa odnosom kod malih nestandardnih uzoraka što znači da i razlika veličine uzoraka u ovom slučaju ne utiče na lomno ponašanje.

U slučaju zavarenih uzoraka, važno je napomenuti da je propagacija prsline uvek išla prema osnovnom metalu, što znači da je prslina nakon početne inicijacije išla prema duktilnijem metalu, na taj način štiteći zavareni spoj od krtog loma, slika 6.

Vrednost CTOD za početak stabilnog rasta prsline kod zavarenih uzoraka sa prslinom u finozrnasti ZUT iznosi δ_{lc} =0.289 mm, dok odgovarajući CTOD za slučaj sa prslinom u grubozrnasti ZUT iznosi δ_{lc} =0.152 mm.

Ako se uzme u obzir ranije definisan faktor korelacije, $\Delta\delta$ =0.6 za FZ ZUT tj. $\Delta\delta$ =0.80 za GZ ZUT, onda koregirane vrednosti za pocetak stabilnog rasta prsline iznose δ_{lc} =0.173 mm za FZ ZUT tj. δ_{lc} =0.122 mm za GZ ZUT.

a) prslina u FZ ZUT

b) prslina u GZ ZUT

c) skretanje prsline

Slika 6: Skretanje i propagacija prsline ka osnovnom metalu Figure 6: Crack aberration and propagation to base metal

ZAKLJUČAK

Za čelik klase finozrnastog mikrolegiranog čelika ČRN 420 korekcioni faktor ima vrednost 0.55 za osnovni duktilni materijal; 0.60 za dvociklusnu (1350/960°C) normalizovanu finozrnastu strukturu; 0.8 za dvociklusnu (1350/780°C) međukritičnu grubozrnastu strukturu i 1.0 za jednociklusnu (1350°C) grubozrnastu strukturu. To uostalom znači da uticaj tipa prsline je veći što je veća duktilnost tj. žilavost ispitivanog materijala. Dobijena korelacija je veoma značajna za određivanje realne otpornosti loma zavarenog spoja sa prslinom u ZUT, zbog toga što je lociranje vrha prsline zamaranjem u specifičnom područiju ZUT-a, radi njegovih veoma malih dimenzija i volumena, kao i nepravilne geometrije, nepouzdan pristup i neophodna je izrada erozimatne umesto standardne zamorne prsline.

U slučaju zavarenog spoja, mali 'overmeč' metala šava odigrao je zaštitnu ulogu na taj način što je sprečio rast prsline prema krtijim strukturama. GZ ZUT ili metal šava. U oba slučaja je prslina skrenula prema više duktilnijem osnovnom metalu i na taj način se brzina njenog rasta smanjila. Ono što je takođe važno spomenuti je razlika inicijacije stabilnog rasta prsline u slučaju kad je prslina locirana u dovoljno velikom volumenu jedne mikrostrukture i u slučaju kad je locirana u veoma uskom regionu kad dolazi do uticaja 'mismečinga'. U slučaju prsline u FZ ZUT, dolazi do pogoršanja žilavosti loma kad se radi o realnom zavarenom spoju u odnosu kad je prslina locirana u jednakoj simuliranoj mikrostrukturi. Ovo se može objasniti činjenicom da u zavarenom spoju, s jedne strane vrha prsline je osnovni duktilni metal, a s druge su jači GZ ZUT i metal šava sa smanjenom duktilnošču [8]. Ovi drugi sprečavaju slobodan razvoj deformacije i na taj način se oko vrha prsline povećava nivo napona koji dovede do ranije inicijacije prsline u poređenju sa

slučajem kad taj uticaj ne postoji tj. nema GZ ZUT-a niti metala šava. U slučaju prsline u GZ ZUT, dolazi do povećanja žilavosti loma kad se radi o realnom zavarenom spoju u odnosu na slučaj kad je prslina locirana u jednakoj simuliranoj mikrostrukturi. Ovo se može objasniti činjenicom da je sad prslina locirana u jačoj i manje duktilnijoj GZ ZUT, međutim ona je okružena slabijim i duktilnijim regionom metala šava, FZ ZUT-a i osnovnog metala, koji prihvataju deformaciju koja bi se razvila oko vrha prsline i na taj način resterećuju naponsko stanje oko vrha prsline. Ovo je povoljnije nego kad taj uticaj ne postoji tj. nema okolnih regiona, a to je kod simuliranih uzoraka.

LITERATURA

- [1] S. Ravi, V. Balasubramanian, S. N. Nasser, Effect of mis-match ratio (MMR) on fatigue crack growth behavior of HSLA steel welds, Engineering Failure Analysis, Vol. 11, pp. 413-428, 2004.
- [2] ASTM E 1290-93: Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement, American Society for testing and Materials, Philadelphia, 1993.
- [3] ASTM E 1152-87: Standard test method for determining J-R curves, Philadelphia, 1987.
- [4] ASTM E 1820-99a: Standard test method for measurement of fracture toughness, Philadelphia, 1999.
- [5] ASTM E 1737-96: Standard test method for J-Integral characterization of fracture toughness, Philadelphia, 1996.
- [6] G. Adžiev, Uticaj mismečinga na integritet zavarene konstrukcije sa prslinom, doktorska disertacija, Mašinski fakultet u Skoplju, 2003.
- [7] G. Adžiev, A. Sedmak, V. Gliha, T. Vuherer: "Uticaj tipa prsline na lomnu žilavost ZUT mikrolegiranog čelika", Zavarivanje i zavarene konstrukcije, 2003, No. 4, pp. 191-196, Beograd.
- [8] G. Adziev, A. Sedmak, T. Adziev: "Numerical analysis of tensile specimen fracture with crack in HAZ", ECF16 "Structural Integrity Assessment in Theory and Practice", 2006, Alexandroupolis, Greece.