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Abstract The performance of thermo-insulation rendering mortars with alternations in ratios 

of powdered cordierite and talc was examined. The goal was to confirm that recycled 

kilnware cordierite can be reapplied in the mortar design without significant deterioration in 

performance in comparison with OPC mortar. Differential thermal analysis was employed for 

examining thermally induced reactions. The cavitation erosion, in testing sequences ranging 

from 30 to 120 minutes, was used to assess the compactness of the mortar structure. The 

physico-mechanical properties of experimental mortars were investigated. The morphologies 

of the mortar tablets upon cavitation were studied using a scanning electron microscope. It 

was established that cordierite and talc filler in amounts up to 20% enhance microstructural 

packing and mechanical strengths due to improved cementation and therefore contribute to 

cavitation erosion resistance. Higher amounts of talc cause structural degradation and mass 

loss during cavitation tests. Reducing manufacturing costs, energy consumption, and 

greenhouse gas emissions are the main objectives of the production of this waste-based 

construction composite, as the reuse of waste materials can help achieve a number of 

Sustainable Development Goals. 

Key words: alternative raw materials; sintering; differential thermal analysis; 

microstructure; cavitation testing.  

1. Introduction 

The construction industry is constantly looking for innovative building materials with 

the ability to alleviate energy requirements, boost thermal insulation, and reduce CO2 

emissions. Due to the world's increased living standards and fast population expansion, the 

entire planet is currently facing serious energy crises and problems. One of the main 

industries known to contribute significantly to atmospheric carbon dioxide emissions, which 

in turn cause global warming, is the building industry [1, 2]. With resource scarcity and 

climate change as major concerns, the primary goal is to identify strategies for reducing CO2 

emissions in the construction industry through innovative applications of alternative raw 
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materials [3]. In the construction sector, the main strategy is to invest in materials that 

conform to ‘Net Zero’ and ‘Zero Waste’ principles [4, 5]. 
Thermal mortar is defined as a building material with thermal insulation capabilities. 

Its thermal conductivity should be lower than 0.2 W/mK at 10 °C, according to standard EN 

998-1:2017 [6]. Thermal renders and thermal plasters are terms for thermal mortars used on 

the exterior or inside of structural elements [7–9]. Thermal mortars are frequently created 

according to mix design that include lightweight aggregates [10]. Mortars with aggregates 

made of expanded polystyrene have been the most commonly utilized and researched [11, 

12]. Other research has looked into the thermal benefits of hemp and similar fiber materials 

[13], expanded clay [14], silica aerogel [15, 16], and perlite [17-19]. Some authors have 

compensated for the environmentally friendly aspects of reusing waste in construction 

materials by incorporating olive stones and plastic waste [20, 21] or waste rubber tires [22] 

into energy-efficient mortars. The challenge is to create normal-weight rendering mortars 

based on recycled raw materials that have mechanical and thermal properties similar to 

regular building mortars. 
Cordierite is a magnesium iron aluminium cyclosilicate. Cordierite is almost 

exclusively composed of iron. Between Fe-rich sekaninaite and Mg-rich cordierite, there is a 

solid solution with the following series formula: (Mg,Fe)2Al3(Si5AlO18) to 

(Fe,Mg)2Al3(Si5AlO 18) [23, 24]. Cordierite's superior resistance to thermal shock allows it to 

be employed at temperatures as high as 1200°C. It also has a low thermal conductivity and a 

low thermal expansion coefficient. Cordierite also possesses strong insulating qualities. It has 

a Mohs hardness of roughly 7, and it is highly resistant to creep [25]. Kiln “furniture” is 

commonly made with cordierite due to its remarkable resilience to thermal shock. Compared 

to standard kiln ware, cordierite ware weighs between 60% and 70% less. Such ceramic 

kilnware also allows faster heat transfer [26]. Electric heating elements and insulating 

equipment are frequently made from cordierite. For example, cordierite components are 

utilized in lighting technology, thermostats, and fuses [27]. Due to its ability for rapid heating 

and cooling sequences and its high resistance to thermal shock, cordierite is a preferred 

material for catalyst carriers, which are mostly used for purifying industrial and automobile 

exhaust [28]. Cordierite, which typically takes the shape of ceramic foam or honeycombs, is 

ideal for filtering molten metal. It also shows the ability to decrease the level of contaminants 

and purify liquid metal [29]. 

When considering all relevant factors, such as the appropriate use of the secondary 

raw material, the end product's economic feasibility, and its environmental impact, the 

application of recycled materials in the building industry can be challenging. Thermal 

insulation rendering mortars have been designed with a wide range of waste raw materials, as 

was previously brought up [13, 20–22]. One topic that has yet to be properly investigated is 

the reapplication of waste cordierite from kilnware as coarse aggregate in the mortar design. 

Typically, three-fourths of the volume of the mortar is composed of natural aggregates, both 

fine and coarse. Often, it may not be cost-effective to prepare artificial aggregates for thermal 

insulation mortars. Therefore, a smart way to solve this issue is to look for substitute 

materials for aggregates, i.e., materials that are typically derived from industrial operations 

and considered waste. Cordierite kilnware, which is usually disposed of in factory landfills, 

can be used in place of coarse aggregate. In combination with fillers, this industrial waste can 

provide the basis for the design of novel thermal insulation materials. In this study, ordinary 

Portland cement was mixed with coarse cordierite aggregate and pulverized cordierite, while 

talc was employed as a mineral additive. Because talc powder is lightweight and has 

moisture-controlling qualities, it is often used in thermal insulation applications. It has the 

capacity to decrease heat transfer, enhance tensile strength, and lessen thermal energy 

conduction. The refractory mortar's adhesion, impermeability, and volume stability are all 



improved by the addition of talc powder. This enhances the resistance to rapid temperature 

changes, thermal fatigue, and water absorption [30–33]. 

The performance of rendering mortars with varying powdered cordierite and talc 

ratios (9:1, 4:1, and 2:1) was examined in this research. Differential thermal analysis was 

employed for examining thermally induced reactions. The cavitation erosion test was used to 

assess the compactness of the mortar structure. The morphology of mortar samples was 

studied using a scanning electron microscope. Reducing manufacturing costs, energy 

consumption, and greenhouse gas emissions are the main objectives of production of this 

innovative waste-based construction composite. The use of waste materials solves the issue 

of natural resource depletion and frees up landfill space for other uses. Also, reusing waste 

materials can help achieve a number of Sustainable Development Goals [34], such as tackling 

climate change (SDG 13), promoting responsible consumption and production (SDG 12), and 

sustaining life on land (SDG 15). 

2. Experimental – materials and methods 

2.1. Raw materials and thermal insulation composites 

Four cement mortars were prepared for the experiment. Ordinary Portland cement 

(OPC) was used as the bonding agent in the design of all four mortars. The CEM I 42.5R 

from Lafarge was employed. The cement's specific surface area was 2250 cm2/g, with 98% of 

the particles being smaller than 50 µm in diameter and an average grain diameter of 15 µm. 

The IM-CQ sample, which contained OPC and quartz aggregate, was used as a reference 

sample. The high-purity quartz sand (SiO2 = 98.8%) showed the following properties: loose 

bulk density 1670 kg/m3, compacted bulk density 1760 kg/m3, and Mohs hardness 7. 

Recycled cordierite aggregate was obtained by crushing used kilnware, i.e., spiral cordierite 

ceramic heaters [35] by means of laboratory jaw crushers. Compacted bulk density of the 

cordierite samples was 2000 kg/m3. Mohs hardness of cordierite is 7 – 7.5. The recycled 

aggregate was then sieved to obtain grain sizes of 2-4 mm, 1-2 mm, 0.5-1 mm, and 0.63-

0.5 mm. The grain-size distribution of aggregate was determined by Tyler's series of sieves 

(Fig. 1.). 

 

Fig. 1. Grain-size distribution of aggregate for thermal insulation composites. 



Recycled cordierite powder and talc were used as fillers in thermal insulation 

composites (i.e., mortar samples IM-CrT10, IM-CrT20, and IM-CrT30). Because of its 

lightweight nature and ability to control moisture, talc powder is used as additive to improve 

thermal insulation properties. Talc also improves adhesion, impermeability, and volume 

stability in high-temperature mortars. Recycled cordierite and talc samples were pulverized 

by an ultra-centrifugal mill (Retsch ZM-1). The obtained BET-specific surface areas for 

cordierite and talc were 2995 cm2/g and 3100 cm2/g, respectively. Mean diameters for 

pulverized cordierite and talc samples were 11.5 µm and 10.2 µm, respectively. Filler was 

used in the amount of 20% of the cement mass. Talc was used in quantities of 10, 20, and 

30% of the filler mass. 

The chemical compositions of OPC, recycled cordierite, and talc were determined by 

the atomic emission spectroscopy technique on a Perkin Elmer PinAAcle 900 instrument. 

The results are presented in Table I. 

Table I Chemical analysis of component materials for thermal insulation composites. 

Oxide (%) SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SO3 LoI 

OPC 21.93 5.42 3.04 62.95 2.52 0.92 0.1 0.1 2.13 0.89 

Cordierite 51.18 30.14 1.17 3.19 13.21 0.01 - - - 1.08 

Talc 60.79 4.05 0.7 1.05 31.3 0.01 - - - 2.1 
* LoI = loss on ignition at 1000 °C 

The mix design of the experimental mortars is given in Table II. 

Table II Mix-design of the experimental mortar samples. 

Sample OPC (%) Quartz agg. (%) Cordierite agg. (%) Cordierite filler (%) Talc filler (%) 

IM-CQ 40 60 - - - 

IM-CrT10 32 - 60 7.2 0.8 

IM-CrT20 32 - 60 6.4 1.6 

IM-CrT30 32 - 60 5.6 2.4 

2.2. Preparation of the thermal insulation composites and physico-mechanical testing 

The procedure given in [36] was used to prepare mortar samples. Cement, aggregate, 

and filler were initially dry-homogenized in a laboratory mixer. Later during the mixing 

procedure, water was added. Water-to-cement ratio was kept 0.5 for all experimental mortar 

mixes. Fresh mortar was placed in steel molds (4040160 mm) and stored for one day in a 

climate chamber (95±5% relative humidity and 20°C (+3°C/-2°C) temperature. After being 

removed from the molds, the samples were kept in the climate room for 7 days under the 

same conditions. The samples were then cured for 21 days at 65±5% relative humidity.  

 Additionally, hardened mortar samples were fired in a Carbolite laboratory chamber 

furnace. The temperature range was 20–1000°C. The following regime was employed: 

constant heating rate of 10°C/min up to 800°C; constant heating rate of 5°C/min from 800°C 

to 1000°C; and 1 hour delay at maximal temperature.  

The cavitation samples were cylinders with a diameter of 10 mm and a height of 

10 mm. These samples underwent previously described thermal treatment.  

A slump test with a flow table was used to determine the rheology of the fresh mortar 

[37]. Standard methods were used to calculate the bulk density of fresh mortar and the dry 

bulk density of hardened mortar [38, 39], the capillary water absorption coefficient [40], and 

the compressive and flexural strengths [41, 42]. The compressive strengths of sintered mortar 

samples were also determined. 

2.3. Cavitation erosion resistance testing 

Standard test method for cavitation erosion according to ASTM G32-16 [43] was 

employed on the experimentally prepared mortar samples IM-CQ, IM-CrT10, IM-CrT20, and 



IM-CrT30. Since the tested material was brittle, the ultrasonic vibratory cavitation method 

with a stationary sample was chosen [44, 45]. The sample holder was fixed to the water bath's 

bottom. The mechanical vibratory concentrator was immersed in a water bath. The water 

temperature was kept constant at 25 ±1 °C. A 0.5 mm gap separated the sample from the front 

surface of the vibratory concentrator. Mechanical vibrations were utilized at a frequency of 

20 kHz and an amplitude of 50 μm. A strong cavitation zone was formed underneath the front 

surface of the concentrator and the stationary-tested sample. The water from the water bath 

was cooling the sample to keep it at a consistent temperature. A continuous water flow 

generated a pressure field, which stimulated the implosion of cavitation bubbles on the 

surface of the mortar sample. The cavitation periods employed were 0, 30, 60, 90, and 120 

min. Upon each testing the samples were dried and the mass loss was measured with an 

analytic accuracy of ±0.1 mg. The test output represents an average of minimum three testing 

per sample.  

2.4. Instrumental methods 

Differential thermal analysis was conducted on the pulverized hardened mortar 

samples (loose powder) using a SETSYS TG/DTA/DSC apparatus (SETARAM 

Instrumentation). Samples were placed in an alumina pan and heated from 20 °C up to 

1000 °C. The heating rate was 10 °C/min. The analysis was conducted in the static airflow.  

Scanning electron microscopy (SEM) analysis was conducted on the mortar samples 

(pelettes) upon cavitation. The testing samples were coated with carbon in 20 nm layer 

(density 2.25 g/cm3). The textural analysis was conducted on a SEM instrument, the JEOL 

JSM-6610LV. The magnification of the device is 5 to 300,000 times. The electron source is W 

wire, LaB 6. The voltage is 0.3–30 kV. The instrument works with a vacuum system: a rotary 

pump and turbomolecular pump, an ion pump (used for LaB6), and a rotary pump for 

working in low vacuum (10–270 Pa). Detectors are: SE, BSE and CL. 

3. Results and discussion 

The thermally induced behaviour of experimental mortars IM-CQ, IM-CrT10, IM-

CrT20, and IM-CrT30 was assessed by means of differential thermal analysis (Fig. 2). 

Samples were recorded in a thermal interval from 20°C to 1000°C. Various effects were 

observed during recording. The main peaks of the endothermic or exothermic processes are 

listed in Table III. 

The DTA early effects (Fig. 2) are set at around 100°C. Aside from the initial water 

loss that occurs below 100°C, the earliest impacts are mainly related to the dehydration of 

AH3H2O gel, which takes place around 120°C. Ettringite and colloidal C-S-H gel form at 

temperatures ranging from 100°C to 150°C [46]. 

In the standard IM-CQ mortar, the first endothermic effect (peak 1) takes place at 

99.2°C. It is followed by a very small and barely detectable effect (peak 2) at 149.5°C. For 

the sample IM-CrT10, peak 1 is set at a lower temperature (Table III). This indicates a faster 

reaction, i.e., a faster release of the free water from the treated mortar sample. The samples 

IM-CrT20 and IM-CrT30 showed similar behavior, with their initial endothermic peaks being 

set at 70.2°C and 65.2°C, respectively. This indicates that the loss of water and the entire 

hydration reaction in composite mortars (mortars with the addition of cordierite and talc) take 

place at lower temperatures than in OPC-based mortar. Also, the peak 2 in each of the 

composite mortars is significantly more pronounced than that of the IM-CQ sample. This 

occurrence indicates the higher intensity of the energy released during the initial reactions of 

early hydration.  
The addition of talc filler brought about certain changes in the behavior of the 

experimental thermal insulation mortars. Talc possesses both adsorption water and hydroxyl 



groups in its structure, which constitute the space lattice elements. Water is generally lost 

throughout the three phases of dehydration (115°–200°C, 350°–500°C, and 600°–1050°C). 

As a result, the reactions are followed by three endothermic peaks observed on the DTA 

curve [47]. Thereby, the occurrence of exothermic peak 7 in all composite mortars (IM-

CrT10, IM-CrT20, and IM-CrT30) can be related to the loss of water from the talc structural 

lattice. Corundum exhibits no phase changes at low temperatures; however, it is possible that 

a share of amorphous alumino-silicates from its composition participate as additional 

pozzolana in early reactions (formation of ettringite and colloidal C-S-H gel) and influence 

the increase in hydration rate. The early reactions are also less energy-demanding in 

comparison with the reactions that took place in standard OPC mortar (IM-CQ). 

 

 

 

Fig. 2. DTA curves of mortar samples IM-CQ, IM-CrT10, IM-CrT20, and IM-CrT30. 

Table III Positions of peaks in DTA curves (Fig.2) 

Peak No. 1 2 3 4 5 6 7 8 9 10 

IM-CQ  99.2°C 149.5°C 408.9°C 450.5°C 487.9°C 691.2°C - - - - 

IM-CrT10 68.7°C 150.1°C 392.5°C 420.9°C - - 103.9°C 590.2°C 895.4°C - 

IM-CrT20 70.2°C 149.3°C 395.1°C 425.3°C - - 108.7°C 593.4°C 901.5°C 805.2°C 

IM-CrT30 65.2°C 148.1°C 385.6°C 410.5°C - - 105.4°C 580.1°C 891.7°C - 

 

The next stage of thermally induced reactions occurs in the 400–500°C range. 

Dehydration of calcium aluminate and alumina hydrates takes place around 500°C, 

depending on mineral additions, which is commonly coincident with an endothermic effect 



on a DTA curve [48, 49]. This can be correlated with peaks 3, 4, and 5. The endothermic 

maximum for IM-CQ is identified at 487.9°C (peak 5). This peak is absent from the rest of 

the samples. Peaks 3 and 4 of the composite mortars are all shifted towards lower 

temperatures in comparison to those of IM-CQ, indicating that hydration processes in the IM-

CrT10, IM-CrT20, and IM-CrT30 samples are more rapid. 

A small exothermic hump rising above 500°C can be seen in the DTA diagram of the 

IM-CQ sample. The effects at this temperature are usually associated with the α- to β-quartz 

polymorphic transition (573 °C, precisely, in a pure quartz sample) [50]. All investigated 

mortar samples have significant amounts of SiO2 in their composition. The samples IM-

CrT10, IM-CrT20, and IM-CrT30, besides exothermic hump, exhibit a needle-like peak at 

approximately 590°C (peak 8), which can be correlated to the supplementary amount of 

crystalline quartz from pulverized cordierite kilnware addition. The peak 6 appearing in the 

sample IM-CQ probably corresponds to the decomposition of Ca(OH)2, which started above 

450°C. This peak is absent from the IM-CrT10, IM-CrT20, and IM-CrT30 samples due to the 

lower amount of calcium in their compositions. Calcination of calcite (CaCO3) is usually 

completed at 890°C [51, 52]. IM-CQ mortar exhibits an exothermic hump at approximately 

800°C without a well-defined peak. The DTA curves of the IM-CrT10, IM-CrT20, and IM-

CrT30 samples display a constant rise, with several small peaks appearing on the recorded 

curve. Peak 10 visible on the DTA curve of the IM-CrT20 sample can be correlated with talc 

decomposing into magnesium oxide and silica due to the liberation of its structural-bonded 

water [53, 54]. Exothermic peaks (peak 9) appearing above 880°C in IM-CrT10, IM-CrT20, 

and IM-CrT30 samples can be described as the initiation of a solid-state reaction that leads to 

the cordierite phase transformation [55]. The sample IM-CrT20 exhibited the most rapid 

thermally induced reactions and thereby the quickest hydration route, probably due to the 

amorphous alumino-silicate (i.e., additional pozzolana) from cordierite filler [56]. 

A cavitation test was conducted on the IM-CQ, IM-CrT10, IM-CrT20, and IM-CrT30 

samples. Figure 3 depicts the surfaces of IM-CrT20 (1), IM-CrT30 (2), IM-CQ (3), and IM-

CQ (4) after cavitation erosion with water for 0, 30, 60, 90, and 120 minutes.  

 

Fig 3. Surface of the samples IM-CrT10 (1), IM-CrT20 (2), IM-CrT30 (3), and IM-CQ (4) upon 0 (I), 

30 (II), 60 (III), 90 (IV), and 120 (V) minutes long cavitation erosion. 

As it can be seen, all tested samples predominantly maintained their structural 

integrity. The mechanical strengths of the IM-CQ, IM-CrT10, IM-CrT20, and IM-CrT30 



samples were high enough to sustain the water pressure, and therefore no breaking of the 

samples was recorded during the projected testing intervals. The visual examination of each 

sample exhibited in Fig. 2 leads to the conclusion that certain visible major cracks are 

present. 

After 30 minutes of erosion, a massive superficial crack emerged on the sample IM-

CrT10 (1). During the subsequent 30 minutes of erosion (i.e. testing II = 60 minutes), the 

fracture did not change significantly in shape or depth. After 90 minutes, the sample 2 

developed superficial delamination, first in the top left corner. After 120 minutes, the 

delamination had spread to the whole upper portion of the tablet. The fracture begins to 

emerge around it, but it does not appear to become significantly deeper.  

The initial 30 minutes of cavitation erosion produced no damage to the surface of the 

sample IM-CrT20 (2). After 60 minutes of exposure, a thin, superficial fracture emerged. 

During the subsequent erosion interval (90 minutes), the crack remained unchanged. After 

120 minutes of erosion, delamination surrounding the fracture appeared. 

After 30 minutes of erosion sequences, a notable superficial delamination appeared in 

the middle of the IM-CrT30 (3) tablet. This delamination retains its shape and size during the 

60-minute erosion sequence. After 90 minutes, a crack started opening on the sample’s 

surface. The water erosion treatment smoothed the surface after 120 minutes. A deep crack 

appeared near the edge of the tablet while the corners started to chip off, indicating that the 

sample will shatter with more prolonged treatments. 

The sample IM-CQ (4) showed different behaviour due to its different mix design. 

The sample remained unchanged for up to 90 minutes of cavitation erosion. During this 

sequence, the first cracks started to appear. 120-minute cavitation sequence led to more 

significant damage, which was visually similar to that of samples IM-CrT10 and IM-CrT20 

after equally long treatments. 

The cavitation erosion of the mortar samples IM-CQ, IM-CrT10, IM-CrT20, and IM-

CrT30 was expressed numerically as mass loss recorded after 30, 60, 60, and 120 minutes of 

testing. Table IV shows the numerical results for mass loss and cavitation velocities. For each 

series of tests, three samples were used, and the results show the mean value of these 

measures for each test interval. Figure 4 depicts a histogram of mass loss per testing sample 

as a function of cavitation duration. The cavitation velocity is determined using the ASTM 

G32-16 standard as the total mass loss divided by the testing period. Figure 5 depicts the 

cavitation velocities for each testing mortar type. 

Table IV. Cavitation erosion measurements performed on the mortar samples.  

Sample IM-CQ IM-CrT10 IM-CrT20 IM-CrT30 

Initial mass (mg) 2270 2280 2275 2260 

Time (min)                       Mass loss (mg)  /  Cavitation velocity (mg/min) 

0 0 / 0 0 / 0 0 / 0 0 / 0 

30 11.35 / 0.36 12.87 / 0.34 12.34 / 0.35 15.12 / 0.41 

60 24.51 / 0.40 25.79 / 0.38 24.87/ 0.39 28.61 / 0.45 

90 36.54 / 0.39 38.53 / 0.37 37.68 / 0.38 40.98 / 0.48 

120 48.20 / 0.38 49.25 / 0.36 48.71 / 0.37 52.45 / 0.51 

Avg. velocity (mg/min)  0.3825 0.3625 0.3725 0.4625 

 

As expected, the mass loss per sample increased as cavitation erosion duration 

increased. If sample IM-CQ is a representative standard mortar sample, it can be concluded 

that mortars designed with recycled raw materials showed a very small deviation in behavior 

in comparison to 'standard'. Namely, 'recycled' mortars IM-CrT10 and IM-CrT20 showed 

13% and 12%, respectively, higher mass loss than IM-CQ. The mass loss of the IM-CrT30 

sample in compression with that of IM-CQ was notably higher, amounting to 33%. 

Differences for 60- and 90-minute treatment were similar: 5%, 1.4%, 16%, and 5%, 3%, and 



12% for samples IM-CrT10, IM-CrT20, and IM-CrT30, respectively. Final cavitation erosion 

treatment produced differences in mass loss as follows: 2%, 1%, and 8% in IM-CrT10, IM-

CrT20, and IM-CrT30, respectively. The sample IM-CrT20 showed minimal mass loss in 

comparison with standard cement mortar. 

 

Fig. 4. Mass loss per testing sample as a function of cavitation duration. 

 

Fig. 5. Comparison of cavitation velocities for each tested mortar type. 

As it can be seen in Fig. 5, cavitation velocity (i.e., mass loss during the indicated 

time period) was highest for the IM-CrT30 sample. This means that a 30% addition of talc 

filler made the structure of the materials more loose and therefore more susceptible to 

cavitation erosion. For the rest of the samples, including standard OPC mortar (IM-CQ), 

cavitation velocities ranged in a tight interval from 0.35 mg/min to 0.41 mg/min. This means 

that the application of recycled cordierite filler, cordierite aggregate, and talc filler in amounts 

of 10% and 20% did not significantly influence the deterioration of the mortar structure. 
Thereby, cordierite filler and talc filler in amounts up to 20% improve microstructural 



packing and probably mechanical strengths due to more effective cementation, and thereby 

contribute to cavitation erosion resistance. Application of talc in higher percentages (e.g., 

30 %) leads to notable structural degradation during cavitation testing and significant mass 

loss. 

Histograms representing tested physico-mechanical properties (workability, bulk 

density of fresh mortar, bulk density of hardened mortar, and water absorption coefficient) of 

mortar samples (IM-CQ, IM-CrT10, IM-CrT20, and IM-CrT30) are given in Figure 6.  

In comparison to standard cement mortar (IM-CQ), the workability of fresh mortar 

samples decreased with the amount of added talc filler. The workability of the IM-CQ sample 

was 190 mm. The workability decreased by 3% with the addition of 10% of talc filler (IM-

CrT10). The values of workability for samples IM-CrT20 and IM-CrT30 were 4% and 6% 

smaller than those of IM-CQ. The filler made the consistency of the fresh mortar stiffer and 

more water-demanding. Bulk density, measured both in fresh and hardened states, also 

showed a decreasing trend. IM-CrT10, IM-CrT20, and IM-CrT30 samples had somewhat 

lower bulk density values than IM-CQ, which were 2300 kg/m3 and 2240 kg/m3 in fresh and 

hardened states, respectively. The values decreased by 2%, 3%, and 5% for the IM-CrT10, 

IM-CrT20, and IM-CrT30 samples, respectively, in their fresh condition. Hardened samples 

showed similar interrelationships: 3%, 4%, and 7%. The values of the water absorption 

coefficient are decreasing with the increasing content of filler. The addition of filler aided in 

better 'packing' of the microstructure, leaving fewer voids and pores behind and lowering the 

examined material's water absorption capability. Besides that, talc is lightweight and has 

moisture-controlling qualities. It has the capacity to improve mortar's impermeability, volume 

stability, and resistance to water absorption. [30–33]. 

 

 

Fig. 6. Physico-mechanical properties of mortar samples: a) workability, b) bulk density of fresh 

mortar, c) bulk density of hardened mortar, d) water absorption coefficient. 



A histogram representing the mechanical strengths of tested mortars is provided in 

Fig. 7. CS is compressive strength measured after 2, 7, and 28 days of hardening; FS is 

flexural strength measured after 2, 7, and 28 days of hardening; and CS-1000 is compressive 

strength measured after thermal treatment at 1000°C. 

 

Fig. 7. Mechanical strengths of mortar samples.  

As shown in Fig. 9, differences in compressive strengths were not significantly 

pronounced during the early stages of mortar hardening. After two days of hardening, the 

compressive strength of the IM-CrT10 sample was 4% lower than adequate mechanical 

strength of IM-CQ mortar. There is a 15% difference in CS-2 between IM-CrT30 and IM-

CQ. The initial compressive strength of IM-CrT30 is the lowest of all measured values, 

counting up to 8.75 MPa. The CS-2 value for IM-CrT20 is the highest (12.75 MPa) and 24% 

higher than the CS-2 strength of OPC-based mortar. Thereby, the combination of cordierite 

filler and talc filler in the amount of 20% influenced the increase in early compressive 

strengths. The interrelationships between initial flexural strengths are slightly different. 

Namely, the FS-2 flexural strengths of IM-CrT10 and IM-CrT20 were 7% and 10% higher 

than those of IM-CQ mortar. A higher increase in initial strengths can be explained by the 

pozzolanic effect of cordierite filler and its influence on the early hydration mechanism. 

The IM-CrT20 sample exhibited the highest final compressive strength (CS-28 = 

47.05 MPa), indicating that the talc filler contributed the most in its quantity of 20%. 

Thereby, quantities over 20% of talc have no beneficial effect on mechanical strengths. 

Namely, the final compressive strength (CS-28) for the IM-CrT30 sample was 22% lower 

than the CS-28 of standard OPC mortar. Similarly, IM-CrT20 showed the highest value of 

FS-28 (8.3 MPa). The difference between the values of the final flexural strengths of IM-CQ 

and IM-CrT30 was 10%. 

Cordierite and talc filler improved the compressive strengths of mortars fired at 

1000°C. The values of CS-1000 were 32%, 52%, and 51% higher for IM-CrT10, IM-CrT20, 

and IM-CrT30 mortars, respectively, in comparison to CS-1000 of the IM-CQ sample. This 

occurrence can be explained by the advanced refractory properties and behaviour of both 

cordierite and talc. 

The morphology and textural characteristics of the mortar samples prior to cavitation 

erosion and upon cavitation erosion were investigated via SEM microstructural analysis. The 

SEM microphotographs are given in Fig. 8. 

SEM microphotographs revealed that the structural integrity of the IM-CrT10, IM-

CrT20, and IM-CrT30 samples was mostly preserved. There are no huge voids, microcracks, 

or extremely disrupted superficial parts of the examined samples. The microstructure of the 



initial samples (Fig. 8 a, d, and g) looks similar. Cordierite gains (originating from aggregate) 

are immersed in cement matrix combined with filler particles. The IM-CrT20 sample has a 

denser structure than the rest of the samples, which can be endorsed by the highest value of 

mechanical strength after firing at 1000°C (Fig. 7). The structure of IM-CrT30 seems to be 

more vitrified. Cavitation erosion lasting 60 minutes (Fig. 8 b, e, and h) caused the formation 

of small pits due to the loss of superficially positioned grains. Namely, the water stream and 

air bubbles created around mortar tablets induced a decrease in the bond strength of 

superficial cordierite grains and cement matrix, which led to grains’ falling out and eventually 

to a certain mass loss of a sample. Pits are clearly visible on the middle-left side of Fig. 8b 

(sample IM-CrT10). Sample IM-CrT20 (Fig. 8e) exhibited comparatively smaller pits 

because the water stream managed to remove only small superficial particles due to the more 

vitreous nature of the sample. In the microphotograph of the sample IM-CrT30, the 

appearance of certain delamination can be assumed, which is in accordance with the highest 

mass loss for this sample (values provided in Fig. 4). 120 minutes of cavitation erosion led to 

further superficial material loss in all of the presented samples (Fig. 8 c, f, and i), but no 

critical structural damage was identified. 

 

 

Fig. 8. SEM microphotographs of: IM-CrT10 (a) initial sample; b) 60 min cavitation; c) 120 min 

cavitation), IM-CrT20 (d) initial sample; e) 60 min cavitation; f) 120 min cavitation), and IM-CrT30 

(g) initial sample; h) 60 min cavitation; i) 120 min cavitation) mortars. 

 

 



4. Conclusions 

This study confirmed that recycled cordierite from kilnware can be reapplied in the 

mortar design without significant deterioration of the properties in comparison with standard 

OPC-based mortar. The main conclusions are summed up below: 

- Differential thermal analysis highlighted that the sample which included 20% of talc 

in its mix design (IM-CrT20), exhibited the most rapid thermally induced reactions 

and thereby the quickest hydration route due to the amorphous alumino-silicate (i.e., 

additional pozzolana) from cordierite filler. All recycled mortars (IM-CrT10, IM-

CrT20, and IM-CrT30) were characterized by quicker hydration mechanisms than 

standard OPC-based mortar (IM-CQ). 

- All experimental samples predominantly maintained their structural integrity during 

cavitation erosion testing in comparison to the IM-CQ sample. The mechanical 

strengths of the IM-CrT10, IM-CrT20, and IM-CrT30 mortars were high enough to 

sustain the water pressure, and therefore no breaking of the samples was recorded 

during the projected testing intervals (up to 120 min). 

- The sample IM-CrT20 showed minimal mass loss (only 1%) in comparison with 

standard cement mortar after the final cavitation sequence. 

- The measured cavitation velocities ranged from 0.35 mg/min to 0.41 mg/min. As a 

result, the use of recycled cordierite filler, cordierite aggregate, and talc filler in 

amounts of 10% and 20% had no effect on the deterioration of the mortar structure. 

Cordierite and talc fillers in amounts up to 20% enhance microstructural packing and 

mechanical strengths due to improved cementation and therefore contribute to 

cavitation erosion resistance. Higher amounts of talc (e.g., 30%) cause more 

significant structural degradation and mass loss during cavitation tests. 

- The study demonstrated that ceramic kilnware waste can be repurposed and reused. In 

terms of circular economy principles, this waste raw material offers a high re-

utilization potential, so it is critical to thoroughly investigate it and subsequently 

optimize manufacturing process of commercial products. 
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Апстракт У овом истраживању испитивана су својства термоизолационих малтера за 

екстеријер са различитим односом микронизираног кордиерита и талка. Циљ истраживања је 

био да се утврди да ли се рециклирани кордиерит може поново применити у дизајну малтера 

без значајног погоршања његових перформанси. За испитивање термичких реакција коришћена 

је диференцијална термичка анализа. Кавитациона ерозија, у секвенцама испитивања у 

распону од 30 до 120 минута, коришћена је за процену компактности структуре малтера. 

Физичко-механичка својства (укључујући чврстоћу на притисак и савијање и чврстоћу на 

притисак након печења на 1000°С) експерименталних малтера су испитана и упоређена са 

стандардним малтером. Морфологије пелета малтера након кавитације проучаване су помоћу 

скенирајућег електронског микроскопа. Утврђено је да кордиерит и талк као филер у количини 

до 20% побољшавају микроструктурно паковање и механичку чврстоћу због побољшане 

цементације и тиме доприносе отпорности на кавитациону ерозију. Веће количине талка 

изазивају значајнију деградацију структуре и губитак масе током кавитационих тестова. 

Смањење трошкова производње, потрошње енергије и емисије гасова стаклене баште главни 

су циљеви производње овог иновативног грађевинског композита базираног на отпадом 

ресурсу, јер поновна употреба отпадних материјала може помоћи у постизању низа циљева 

одрживог развоја. 

Кључне речи: алтернативне сировине; синтеровање; диференцијална термичка анализа; 

микроструктура; испитивање на кавитацију. 


