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Abstract: In this paper, we take the resting T cells into account and interpret the progression and
regression of tumors by a predator-prey like tumor-immune system. First, we construct an appropriate
Lyapunov function to prove the existence and uniqueness of the global positive solution to the system.
Then, by utilizing the stochastic comparison theorem, we prove the moment boundedness of tumor
cells and two types of T cells. Furthermore, we analyze the impact of stochastic perturbations on the
extinction and persistence of tumor cells and obtain the stationary probability density of the tumor cells
in the persistent state. The results indicate that when the noise intensity of tumor perturbation is low,
tumor cells remain in a persistent state. As this intensity gradually increases, the population of tumors
moves towards a lower level, and the stochastic bifurcation phenomena occurs. When it reaches a
certain threshold, instead the number of tumor cells eventually enter into an extinct state, and further
increasing of the noise intensity will accelerate this process.

Keywords: prey-predator like system; tumor-immune model; persistence and extinction; stationary
probability density

1. Introduction

A tumor is a new organism formed by the proliferation of local tissue in the body under the action
of various oncogene factors. In recent years, an increasing interest has been focused on the role of
the immune system in fighting a tumor growth [1–6]. T cells in the immune system are one of the
important components in resisting tumor. There are two population of T cells; one is the helper T cells
expressed by CD4+T proteins, they cannot kill tumor cells directly, but once they are stimulated by the
macrophage or their cognate antigen, they can produce a kind of cytokine such as interleukin -2 (IL-2
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) and send biochemical signals to a special type of effector cell called cytotoxic T lymphocyte CD8+
T cells [7]. Cytotoxic T lymphocyte cells are the other important population in the immune response,
they can eliminate or kill the infected cells by mounting a cytotoxic reaction after they are activated by
the helper T cells [8,9]. Therefore, the roles of the helper T cells and the cytotoxic T cells are distinct,
they perform the complementary functions to eliminate the tumor.

It is a key task to identify the components of the cells to understand how the immune system works
to overcome the tumor. However, due to the complexity of cell dynamics, most work concentrates
on the discussion about the interaction between the tumor cells and the cytotoxic T lymphocytes, but
neglects the role played by the helper T cells in tumor elimination. In recent years, some researchers
have proposed that the helper T cells are a vital and essential component in tumor-immune response
[10–13], and built a system of ODEs to describe the population in a system consist of the helper T
cells, cytotoxic T cells and the tumor cells. The representative work can be found in Refs. [7, 14–17].

Furthermore, according to the biochemical features of the tumor cells and the immune cells, some
models use a prey-predator interaction model. Immune cells are the predators, who attack and destroy
the tumor cells. That is, the helper T cells in a resting state interact with antigens to release cytokines
and stimulate the cytotoxic T cells. As follows, the cytotoxic T cells in a hunting state attack or
destroy the tumor cells. While tumor cells are the prey, which are eliminated or killed by the immune
cells. Predator hunting cells and predator resting cells provide a useful model to learn the dynamical
behaviors such as equilibration, stable solutions, longtime evolution and so on. In fact, a system with
a component of the resting T cells provide insight to learn the tumor growth. For example, Sarkar [18]
in 2005 considered a prey-predator like system with hunting and resting cells, and investigated the
stability of the positive equilibrium from the analytical and numerical perspective, they obtained a
threshold value for the rate of predation of the tumor cells by the hunting cells and discussed the
control of malignant tumor growth in deterministic case. In 2014, Kaur [14] analyzed tumor growth
progression and regression in a prey-predator system, their analysis indicated that the tumor growth
will persist from a recurring state to a dormant state with the increase of the resting cells. In 2018,
Dritschel [7] developed a mathematical model to examine the role of the helper T cells in an anti-
tumor immune response, their work revealed that the immunoediting depends highly on the infiltration
rates of the helper and cytotoxic T cells. In 2023, Dehingia [16] proposed a modified system consisting
of tumor cells, resting helper T cells and hunting cytotoxic T cells, he discussed the stability and Hopf
bifurcation of this system.

The works mentioned above regarding the prey-predator like systems considering two kinds of T
cells and the tumor cells are mainly investigated in the deterministic condition. However, as is widely
recognized, a variety of random factors in the cell environment should be taken into account. That is,
the biochemical proliferation of the cells may undergo stochastic variations influenced by factors such
as nutrient availability, temperature, radiation, oxygen supply, and gene expression [19–25]. Therefore,
an idealized tumor-immune system should be modeled stochastically.

In this paper, the novelty of our efforts will focus on the special tumor-immune system including
hunting and resting T cells, at the same time, stochastic fluctuations on the proliferation parameters
will be explored, in order to understand the impact of the noise on the cells dynamics, as well as give
insight on how to eliminate tumors and how to improve cancer treatment.
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2. Stochastic prey-predator like tumor-immune system

Based on the deterministic prey-predator like tumor-immune model in [14], we study a modified
model to take the impact of random perturbations on the cell evolution into account, and use standard
Brownian motions to characterize it in the tumor-immune model. The cells’dynamics is possible to be
changed in the case of stochastic perturbation, so it is necessary to have a relevant research from the
point of random variables. On the other hand, there are plenty of valuable results about this model in
the deterministic case, we expect to give some new insights by studying a stochastic one. The model
is given by a set of differential equations in a form of the follow

dT (t) =

(
α1T

(
1 −

T
K1

)
− β1T H

)
dt + ξ1TdB1(t),

dH(t) = (γHR − δ1H − β2HT )dt + ξ2HdB2(t),

dR(t) =

(
α2R

(
1 −

R
K2

)
− γHR − δ2R +

kTR
T + η

)
dt + ξ3RdB3(t),

(2.1)

where T (t),H(t) and R(t) are the population of tumor cells, predator hunting T cells and predator resting
T cells in the given physiologic space, respectively. α1 and α2 represent the inherent growth rates of
tumor cells and resting T cells. K1,K2 indicate the maximum carrying capacity of the environment.
β1 and β2 represent the rate at which hunting T cells kill tumor cells and the rate at which tumor
cells deplete hunting T cells. δ1 and δ2 indicate the apoptosis rates of hunting T cells and resting T
cells. γ represents the activation rate of resting T cells to hunting T cells, k is the proliferation rate of
resting T cells, η is the half-saturation coefficient of proliferation term. B1(t), B2(t), B3(t) are mutually
independent standard Brownian motions, and ξ1, ξ2, ξ3 represent noise intensity of them.

3. Dynamical evolution and properties

3.1. Existence and uniqueness of the positive solution

Since T (t),H(t),R(t) represent the quantities of tumor cells, hunting T cells, and resting T cells
respectively, it is necessary to verify that the solutions of the system (2.1) are non-negative. Therefore,
in this section, we begin with the following theorem on the global existence and non-negativity of
solutions to the system (2.1).

Theorem 3.1. For any given initial values (T (0),H(0),R(0)) ∈ R3
+, there exists a global solution

(T (t),H(t),R(t)) of system (2.1) such that

P
{
(T (t),H(t),R(t)) ∈ R3

+,∀t ≥ 0
}
= 1. (3.1)

Proof. Due to the coefficients of the system (2.1) satisfying the local Lipschitz condition, for a given
initial value (T (0),H(0),R(0)) ∈ R3

+, the system has an unique local positive solution (T (t),H(t),R(t))
for t ∈ [0, τe) a.s., where τe represents the explosion time. In order to confirm the local solutions to be
global ones, it is necessary to prove that τe = ∞.

Let m0 ≥ 1 be sufficiently large such that T (0) ∈ [ 1
m0
,m0],H(0) ∈ [ 1

m0
,m0],R(0) ∈ [ 1

m0
,m0]. For

m > m0, we define

τm = inf
{

t ∈ [0, τe) : T (t) < (
1
m
,m) or H(t) < (

1
m
,m) or R(t) < (

1
m
,m)

}
, (3.2)
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where we set inf ∅ = ∞. By the definition of τm we observe that τm increases with m approaching to
the infinity and τm < τe, therefore

lim
m→∞

τm = τ∞ ≤ τe.

Now, we prove that τ∞ = ∞ is true almost surely first. Moreover, a proof by contradiction is applied,
that is, assume the condition does not hold. If so, There are a constant T1 ≥ 0 and another constant
ε ∈ (0, 1) such that

P {τ∞ ≤ T1} > ε.

Thus, there exists an integer m1 ≥ m0 such that for all m ≥ m1, we have

P {τm ≤ T1} ≥ ε. (3.3)

Let us define a Lyapunov function V : Int(R3
+)→ R+:

V(T,H,R) = (T + 1 − log T ) + (H + 1 − log H) + (R + 1 − log R).

Applying Itô’s formula, we can differentiate the function V

L[V(T,H,R)]

=

(
1 −

1
T

) [
α1T

(
1 −

T
K1

)
− β1T H

]
+

1
2
ξ2

1 +

(
1 −

1
H

) [
γHR − δ1H − β2HT

]
+

1
2
ξ2

2 +

(
1 −

1
R

)[
α2R

(
1 −

R
K2

)
− γHR − δ2R +

kTR
T + η

]
+

1
2
ξ2

3

≤

(
δ1 + δ2 +

1
2
ξ2

1 +
1
2
ξ2

2 +
1
2
ξ2

3

)
+

(
α1 +

α1

K1
+ β2

)
T + (β1 + γ)H +

(
α2 + k +

α2

K2

)
R,

where L[·] is the drift term of the [·] derivative. Denote

A = δ1 + δ2 +
1
2
ξ2

1 +
1
2
ξ2

2 +
1
2
ξ2

3

B = 2 max
{
α1 +

α1

K1
+ β2, β1 + γ, α2 + k +

α2

K2

}
then we can rewrite the above expression as:

L[V(T,H,R)] ≤ A + B[(T + 1 − logT ) + (H + 1 − logH) + (R + 1 − logR)]
= A + BV(T,H,R).

(3.4)

Integrating on both sides from 0 to τm ∧ T1 of the inequality (3.4) and then taking the expectation for
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every terms, we have:

EV(T (τm ∧ T1),H(τm ∧ T1),R(τm ∧ T1))

≤ V
(
T (0),H(0),R(0)

)
+ AT1 + BE

∫ τm∧T1

0
V
(
T (t),H(t),R(t)

)
dt

= V
(
T (0),H(0),R(0)

)
+ AT1 + BE

∫ T1

0
I[0,τm](t)V

(
T (t),H(t),R(t)

)
dt

≤ V
(
T (0),H(0),R(0)

)
+ AT1

+ BE
∫ T1

0
V
(
T (τm ∧ T1),H(τm ∧ T1),R(τm ∧ T1)

)
dt

= V
(
T (0),H(0),R(0)

)
+ AT1

+ B
∫ T1

0
EV

(
T (τm ∧ T1),H(τm ∧ T1),R(τm ∧ T1)

)
dt,

where IA(·) represents the indicator function of set A, τm ∧ T1 = min(τm,T1). Utilizing the Gronwall
inequality [26], we can establish the following result:

EV
(
T (τm ∧ T1),H(τm ∧ T1),R(τm ∧ T1)

)
≤

(
V
(
T (0),H(0),R(0)

)
+ AT1

)
eBT1 . (3.5)

Let Ωm = {ω ∈ Ω:τm = τm(ω) ≤ T1}:(m ≥ m1), based on the Eq (3.3), we have:

P(Ωm) ≥ ε. (3.6)

Observe that for every ω in the set ω ∈ Ωm, it holds that at least one of T (τm, ω),H(τm, ω),R(τm, ω) is

equal to m or
1
m

. Therefore,

V(T (τm, ω),H(τm, ω),R(τm, ω)) ≥ (m − 1 − log m) ∧ (
1
m
− 1 + log m).

Combining Eqs (3.5) and (3.6), we obtain:

ε(m − 1 − log m) ∧ (
1
m
− 1 + log m) ≤ E[V

(
T (τm, ω),H(τm, ω),R(τm, ω))]

≤
(
V
(
T (0),H(0),R(0)

)
+ AT1

)
eBT1 .

On the other hand,

lim
m→∞

(m − 1 − log m) ∧ (
1
m
− 1 + log m) = ∞.

Let m→ ∞, we have∞ ≤ Ke2bT < ∞, which implies that τ∞ must be equal to infinity. Considering
τ∞ ≤ τe, we conclude that τe = ∞ is indeed equal to infinity. □
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3.2. Moment boundedness

Based on the existence of the positive solution for every cell population, this section focuses on the
asymptotic estimation of the moments of T (t),H(t), and R(t).

Definition 1. p-order statistical moments of the solutions to the system (2.1) are bounded. there exists
a function r = r(x0, t0) such that when |x0| ≤ m, if for any m > 0, it holds that

E |x(t; t0, x0)|p ≤ r(x0, t0), t ≥ t0

If the function r(x0, t0) mentioned here is independent of t0, then the solution to the system (2.1) is said
to have uniformly bounded p-order moments.

Theorem 3.2. For any p > 1, we have

lim
t→∞

sup ET p(t) ≤


α1 +

(p − 1)
2

ξ2
1

α1

K1


p

, (3.7)

lim
t→∞

sup ERp(t) ≤


A1 +

(p − 1)
2

ξ2
3

α2

K2


p

. (3.8)

For any p ∈ (0, 1 + 2δ1/ξ
2
2), we can find a positive constant L1 such that

lim
t→∞

sup EHp(t) ≤ L1. (3.9)

Proof. we are going to prove the moment boundedness of T (t) first. Consider the following auxiliary
procedure φ(t) dφ(t) =

[
α1φ

(
1 −

φ

K1

)]
dt + ξ1φdB1(t),

φ(0) = T0 > 0,
(3.10)

where B1(t) is the standard Brownian motions defined in system (2.1). Using the comparison
theorem [27], we can obtain that 0 ≤ T (t) ≤ φ(t) (t ≥ 0). By applying Itô’s formula, the drift
coefficient in the differential formula of φp(t) can be expressed as

L[φ(t)p] = pφp−1
[
α1φ

(
1 −

φ

K1

)]
+

1
2

p(p − 1)φp−2ξ2
1φ

2

= p
(
α1 +

(p − 1)
2

ξ2
1

)
φp − p

α1

K1
φp−1.

(3.11)
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Taking expectations on both sides of Eq (3.11) and applying the Holder’s inequality [26], we have

dEφp(t)
dt

= p
(
α1 +

(p − 1)
2

ξ2
1

)
Eφp − p

α1

K1
Eφp+1

≤ p
(
α1 +

(p − 1)
2

ξ2
1

)
Eφp − p

α1

K1

[
E (φp)

] p + 1
p .

Therefore,

ET p(t) ≤ Eφp(t) ≤

(T p
0 )−

1
p e−

(
α1+

(p−1)
2 ξ2

1

)
t +

α1
K1

α1 +
(p−1)

2 ξ2
1

(
1 − e−

(
α1+

(p−1)
2 ξ2

1

)
t
)−p

.

Thus, for any p > 1, we have

lim
t→∞

sup ET p(t) ≤


α1 +

(p − 1)
2

ξ2
1

α1

K1


p

. (3.12)

Next, we will demonstrate the moment boundedness of R(t). Similarly, consider the following auxiliary
process ψ(t) dψ(t) =

(
α2ψ(t)

(
1 −

ψ

K2

)
− δ2ψ + kψ

)
dt + ξ3ψdB3(t),

ψ(0) = R0 > 0,
(3.13)

where B3(t) is the standard Brownian motions defined in system (2.1). Then, we get 0 ≤ R(t) ≤ ψ(t)
for t ≥ 0. Notice that ψ(t) follows the similar structure as φ(t), so we can obtain:

ERp(t) ≤ Eψp(t) ≤

(Rp
0)−

1
p e−

(
A1+

(p−1)
2 ξ2

3

)
t +

α2
K2

A1 +
(p−1)

2 ξ2
3

(
1 − e−

(
A1+

(p−1)
2 ξ2

3

)
t
)−p

,

where A1 = α2 + k − δ2. Therefore, for any p > 1, we have

lim
t→∞

sup ERp(t) ≤


A1 +

(p − 1)
2

ξ2
3

α2

K2


p

. (3.14)

Finally, we will establish the moment boundedness of H(t). Consider the following two auxiliary
processes, y(t) and z(t)

dy(t) = (γy(t)z(t) − δ1y(t)) dt + ξ2y(t)dB2(t),

dz(t) =

(
α2z(t)

(
1 −

z(t)
K2

)
− γy(t)z(t) − δ2z(t) + kz(t)

)
dt + ξ3z(t)dB3(t),

y(0) = y0 > 0,
z(0) = z0 > 0,

(3.15)
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where B2(t), B3(t) are mutually independent standard Brownian motions defined in system (2.1).
Consider the function V1(t) defined as V1(t) = (y(t) + z(t))q. According to the Itô’s formula, we get

L[(y + z)q] = q(y + z)q−1[γyz − δ1y] +
q(q − 1)

2
(y + z)q−2ξ2

2y2

+ q(y + z)q−1
[
α2z

(
1 −

z
K2

)
− γyz − δ2z + kz

]
+

q(q − 1)
2

(y + z)q−2ξ2
3z2

≤ q(y + z)q−2
[
−

(
δ1 −

q − 1
2

ξ2
2

)
y2 + yz

(
α2 + k −

α2

K2
z
)

+z2
(
α2 + k +

q − 1
2

ξ2
3 −

α2

K2
z
)]
.

The condition q ∈ (0, 1 + 2δ1/ξ
2
2) implies δ1 −

q − 1
2

ξ2
2 > 0, then we can find a positive constant κ

sufficiently small such that

δ1 −
q − 1

2
ξ2

2 −
κ

q
> 0. (3.16)

Define U(t) = eκt(y(t) + z(t))q, we get

L[eκt(y + z)q] = κeκt(y(t) + z(t))q

+ eκt
{

q(y + z)q−1[γyz − δ1y] +
q(q − 1)

2
(y + z)q−2ξ2

2y2

+q(y + z)q−1
[
α2z

(
1 −

z
K2

)
− γyz − δ2z + kz

]
+

q(q − 1)
2

(y + z)q−2ξ2
3z2

}
≤ qeκt(y + z)q−2W(y, z),

where

W(y, z) = −
(
δ1 −

q − 1
2

ξ2
2 −

κ

q

)
y2 + yz

(
2κ
q
+ α2 + k −

α2

K2
z
)

+ z2
(
κ

q
+ α2 + k +

q − 1
2

ξ2
3 −

α2

K2
z
)
.

As δ1 −
q − 1

2
ξ2

2 −
κ

q
> 0 and

α2

K2
> 0, it implies that

lim
y2+z2→+∞

W(y, z) = −∞.

Combining the continuity of q(y + z)(q−2)W(y, z), we can find a positive constant L satisfies:

L = sup
y,z∈R+
{q(y + z)q−2W(y, z)} < +∞.

Therefore,

L[eκt(y + z)q] ≤ eκtL. (3.17)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2813–2834.



2821

By integrating both sides of the inequality (3.17) from 0 to t and taking the expectation, we have

lim
t→∞

sup E(y + z)q ≤
L
κ
.

By applying the comparison theorem [27], we have H(t) ≤ y(t) and R(t) ≤ z(t). Let L1 =
L
κ

such that

lim
t→∞

sup EHq(t) ≤ lim
t→∞

sup E(y + z)q ≤ L1.

□

4. Extinction and persistence

4.1. Extinction

In this section, we will analyze the extinction of the resting T cells R(t) and tumor cells T (t) in
system (2.1), and provide numerical examples for verification.

Theorem 4.1. When δ +
ξ2

4
− α2 − k > 0, the resting T cells will eventually become extinct, i.e.,

lim
t→∞

R(t) = 0 a.s.

Here, δ = min {δ1, δ2} , ξ
2 = min

{
ξ2

2, ξ
2
3

}
.

Proof. We denote Ψ(t) = H(t) + R(t). Taking the logarithm of Ψ(t) and applying Itô’s formula yields

d logΨ(t) =
{

1
Ψ

[
γHR − δ1H − β2HT + α2R

(
1 −

R
K2

)
− γHR

−δ2R +
kTR

T + η

]
−
ξ2

2H2 + ξ2
3R2

2Ψ2

}
dt +

ξ2H
Ψ

dB2(t) +
ξ3R
Ψ

dB3(t)

≤

{
1
Ψ

(α2R + kR − δ1H − δ2R) −
ξ2

2H2 + ξ2
3R2

2Ψ2

}
dt

+
ξ2H
Ψ

dB2(t) +
ξ3R(t)
Ψ(t)

dB3(t)

≤

(
α2 + k − δ −

ξ2

4

)
dt +

ξ2H
Ψ

dB2(t) +
ξ3R
Ψ

dB3(t).

(4.1)

By integrating both sides of the inequality (4.1) from 0 to t and dividing by t, we obtain

logΨ(t) − logΨ(0)
t

≤

(
α2 + k − δ −

ξ2

4

)
+

1
t

∫ t

0

ξ2H(s)
Ψ(s)

dB2(t) +
1
t

∫ t

0

ξ3R(s)
Ψ(s)

dB3(t).

Combining the strong law of large numbers [26], we have

lim
t→∞

1
t

∫ t

0

ξ2H(s)
Ψ(s)

dB2(t) ≤ lim
t→∞

ξ2
B2(t)

t
= 0 a.s.
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lim
t→∞

1
t

∫ t

0

ξ3R(s)
Ψ(s)

dB3(t) ≤ lim
t→∞

ξ3
B3(t)

t
= 0 a.s.

Therefore, if δ + ξ2

4 − α2 − k > 0, we can derive

lim
t→∞

sup
logΨ(t)

t
≤ α2 + k − δ −

ξ2

4
< 0 a.s. (4.2)

As a result, we conclude that limt→∞Ψ(t) = 0 a.s.. Combining with the positivity of R(t) and H(t), we
have limt→∞ R(t) = 0 a.s.. □

Theorem 4.2. If α1 −
1
2ξ

2
1 < 0, tumor cells will eventually go extinct, such that

lim
t→∞

T (t) = 0 a.s.

Proof. By combining the Itô’ formula, we have

d log T (t) =
[
α1

(
1 −

T
K1

)
− β1H −

1
2
ξ2

1

]
dt + ξ1dB1(t)

≤

(
α1 −

1
2
ξ2

1

)
dt + ξ1dB1(t).

(4.3)

Integrating the inequality (4.3) from 0 to t and dividing by t, results in

1
t

log T (t) ≤
1
t

log T (0) + α1 −
1
2
ξ2

1 +
ξ1B1(t)

t
.

As t approaches∞, by combining the strong law of large numbers [26], we obtain that

lim
t→∞

ξ1B1(t)
t
= 0 a.s. (4.4)

Therefore, if α1 −
1
2ξ

2
1 < 0, we can derive

lim sup
t→∞

1
t

log T (t) ≤ α1 −
1
2
ξ2

1 < 0 a.s.

This implies that

lim
t→∞

T (t) = 0 a.s. (4.5)

In other words, as t approaches∞, the tumor cell population T (t) tends to 0.
□
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Next, we will use the Milstein method [28] to illustrate our main theoretical results. The discretized
equations for the system (2.1) are given as follows:

Tk+1 = Tk +

(
α1Tk

(
1 −

Tk

K1

)
− β1T H

)
Tk∆t + ξ1Tk

√
∆tW1,k +

1
2
ξ2

1Tk

(
W2

1,k − 1
)
∆t,

Hk+1 = Hk + (γHR − δ1H − β2HT )Hk∆t + ξ2Hk

√
∆tW2,k +

1
2
ξ2

2Hk
(
W2

2,k − 1
)
∆t,

Rk+1 = Rk +

(
α2R

(
1 −

R
K2

)
− γHR − δ2R +

kTR
T + η

)
Rk∆t + ξ3Rk

√
∆tW3,k +

1
2
ξ2

3Rk(W2
3,k − 1)∆t.

(4.6)

Here, ∆t > 0 represents the time increment, ξi(i = 1, 2, 3) denotes the noise intensity, and Wi,k(i =
1, 2, 3. k = 1, 2, ...) follows a standard normal distribution. The parameter values are shown in Table 1.

Table 1. Biological significance and values of parameters.

Parameter Biological significance Value Source

α1 The intrinsic growth rate of tumor cells 0.18/day [29]

α2 The intrinsic growth rate of resting T cells 0.0245/day [30]

β1 The ratio of hunting T cells killing tumor cells 1.101 × 10−7/cells/day [30]

β2 The ratio of tumor cells consume hunting T cells 3.422 × 10−10/cells/day [30]

δ1 The rate of apoptosis of hunting T cells 0.0412/day [30]

δ2 The rate of apoptosis in resting T cells 0.002/day estimate

1/K1 The environmental carrying capacity of tumor cells 2 × 10−9/cells [29]

1/K2 The environmental carrying capacity of resting T cells 1 × 10−9/cells [30]

γ The activation rate of resting T cells on hunting T cells 4.2 × 10−9/cells/day [30]

k The proliferation rate of resting T cells 0.1245/day [29]

η The half-saturation coefficient of proliferation factor 2.019 × 107cells [29]

The initial values for tumor cells, hunting T cells, and resting T cells are given as T (0) = 5 ×
109(cells),H(0) = 4 × 106(cells),R(0) = 3 × 108(cells), respectively. First, verify the extinction of
resting T cells R(t) with ξ1 = 2, ξ2 = 2, ξ3 = 1. Calculate δ + ξ2

4 − α2 − k = 0.103 > 0. According to
Theorem 4.1, resting T cells will eventually go extinct, which is consistent with the results shown in
Figure 1. When ξ1 = 0.8, ξ2 = 2, ξ3 = 2, the calculation yields α1 −

1
2ξ

2
1 = −0.14 < 0. According to
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Theorem 4.2, tumor cells T (t) will go extinct. As shown in Figure 2, tumor cells eventually converge
to zero.
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Figure 1. Simulation of extinction of resting T cells R(t) with values of ξ1 = 2, ξ2 = 2, ξ3 = 1.
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Figure 2. Simulation of extinction of tumor cells T (t) with values of ξ1 = 0.8, ξ2 = 2, ξ3 = 2.

Next, let’s discuss the effect of stochastic perturbation on tumor cell proliferation by fixing ξ2 =

2, ξ3 = 2, and varying the noise intensity ξ1 while ensuring the extinction condition for T (t). We take
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ξ1 = 0.8, 1.5, 2 as examples, and the result are shown in Figure 3. From Figure 3, it can be observed that
increasing the noise intensity ξ1 accelerates the extinction of tumor cells. This implies that stochastic
environmental perturbations suppress the growth of tumor cells.

Figure 3. Simulation of extinction of tumor cells T (t) under fixed ξ2 = 2 and ξ3 = 2, with
different values of ξ1 : 0.8, 1.5 and 2.

4.2. Persistence

Lemma 1 ( [31]). Assuming Z ∈ [Ω × [0,+∞) ,R+], if there exist positive constants η, t0 and η0 such
that

logZ(t) ≤ or ≥ ηt − η0

∫ t

0
Z(s)ds +

n∑
i=0

σiBi (∀t ≥ t0) (4.7)

then we have

lim sup
t→∞
⟨Z⟩t ≤

η

η0
or lim sup

t→∞
⟨Z⟩t ≥

η

η0
a.s. (4.8)

Lemma 2 ( [32]). Let T (t),H(t),R(t) be the solution of stochastic system (2.1) initial conditions
(T (0),H(0),R(0))

1) if α1 −
1
2
ξ2

1 > 0, then

lim
t→∞

sup
1
t

log T (t) ≤ 0 a.s. (4.9)

2) if δ2 +
1
2ξ

2
3 − α2 − k > 0, then

lim
t→∞

sup
1
t

log H(t) ≤ 0 a.s. (4.10)
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3) if α2 − δ2 + k − 1
2ξ

2
3 > 0, then

lim
t→∞

sup
1
t

log R(t) ≤ 0 a.s. (4.11)

Proof. Construct the following auxiliary procedures:
dT1(t) =

(
α1T1

(
1 −

T1

K1

))
dt + ξ1T1dB1(t),

dH1(t) = (γH1R1 − δ1H1) dt + ξ2H1dB2(t),

dR1(t) =

(
α2R1

(
1 −

R1

K2

)
− δ2R1 + kR1

)
dt + ξ3R1dB3(t),

(4.12)

where B1(t), B2(t), B3(t) are mutually independent standard Brownian motions defined in system (2.1).
The comparison theorem [27] leads to 0 ≤ T (t) ≤ T1(t), 0 ≤ H(t) ≤ H1(t), 0 ≤ R(t) ≤ R1(t). Using the
Itô’s formula to log T1(t), log H1(t), and log R1(t), then integrating both sides from 0 to t, we get

log T1(t) − log T1(0) =
(
α1 −

1
2
ξ2

1

)
t −

α1

K1

∫ t

0
T1(s)ds + ξ1B1(t),

log H1(t) − log H1(0) =
(
−δ1 −

1
2
ξ2

2

)
t + γ

∫ t

0
R1(s)ds + ξ2B2(t),

log R1(t) − log R1(0) =
(
α2 − δ2 + k −

1
2
ξ2

3

)
t −

α2

K2

∫ t

0
R1(s)ds + ξ3B3(t).

For convenience to write, we define the notation ⟨x(t)⟩ =
1
t

∫ t

0
x(s)ds. Then, we can obtain

log T1(t) − log T1(0)
t

=

(
α1 −

1
2
ξ2

1

)
−
α1

K1
⟨T1(t)⟩ +

ξ1B1(t)
t

,

log H1(t) − log H1(0)
t

=

(
−δ1 −

1
2
ξ2

2

)
+ γ⟨R1(t)⟩ +

ξ2B2(t)
t

,

log R1(t) − log R1(0)
t

=

(
α2 − δ2 + k −

1
2
ξ2

3

)
−
α2

K2
⟨R1(t)⟩ +

ξ3B3(t)
t

.

(4.13)

According to the strong law of large numbers [26], we get

lim
t→∞

ξ1B1(t)
t
= 0 a.s. lim

t→∞

ξ2B2(t)
t
= 0 a.s. lim

t→∞

ξ3B3(t)
t
= 0 a.s. (4.14)

For sufficiently small ε > 0, when α1 −
1
2ξ

2
1 > 0 , according to Lemma 1, it can be deduced that(

α1 −
1
2
ξ2

1

)
− ε

α1

K1

≤ ⟨T1(t)⟩ ≤

(
α1 −

1
2
ξ2

1

)
+ ε

α1

K1

,

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2813–2834.



2827

which implies that

⟨T1(t)⟩ =

(
α1 −

1
2
ξ2

1

)
α1

K1

. (4.15)

substituting Eq (4.15) into Eq (4.13) and combining with the Eq (4.14), it yields

lim
t→∞

1
t

log T1(t) ≤ 0 a.s. (4.16)

Similarly, when δ + 1
4ξ

2 − α2 − k > 0, Lemma 1 allows us to deduce(
α2 − δ2 + k −

1
2
ξ2

3

)
− ε

α2

K2

≤ ⟨R1(t)⟩ ≤

(
α2 − δ2 + k −

1
2
ξ2

3

)
+ ε

α2

K2

,

⟨R1(t)⟩ =

(
α2 − δ2 + k −

1
2
ξ2

3

)
α2
K2

. (4.17)

substituting Eq (4.17) into Eq (4.13) and combining with Eq (4.14), it yields

lim
t→∞

1
t

log R1(t) ≤ 0 a.s. (4.18)

Using the same method as in Theorem 4.2, the condition δ2+
1
2ξ

2
3−α2−k > 0 leads to limt→∞ R1(t) = 0,

then we get

lim
t→∞
⟨R1(t)⟩ = 0 a.s. (4.19)

substituting Eq (4.19) into Eq (4.13) and combining with Eq (4.14), it yields

lim
t→∞

1
t

log H1(t) ≤ 0 a.s. (4.20)

According to formula Eqs (4.16), (4.18), (4.20) and using the comparison theorem [26], we get

lim
t→∞

1
t

log T (t) ≤ 0 a.s. lim
t→∞

1
t

log H(t) ≤ 0 a.s. lim
t→∞

1
t

log R(t) ≤ 0 a.s. (4.21)

□

Theorem 4.3. When α1 −
1
2
ξ2

1 > 0 and δ −
ξ2

4
− α2 − k > 0, the tumor cell population T (t) is weakly

persistently bounded, with lim supt→∞ ⟨T (t)⟩ > 0. Moreover, it can be deduced that supt→∞⟨T (t)⟩ ≤
K1(α1−

1
2 ξ

2
1)

α1
.
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Proof. According to the Itô’s differential rule, we have

d log T (t) =
[
α1

(
1 −

T
K1

)
− β1H −

1
2
ξ2

1

]
dt + ξ1dB1(t). (4.22)

By integrating both sides from 0 to t and dividing by t, and taking the upper limit, we obtain

lim sup
t→∞

1
t

log
T (t)
T (0)

=

(
α1 −

1
2
ξ2

1

)
−
α1

K1
lim sup

t→∞
⟨T (t)⟩ − β1 lim sup

t→∞
⟨H(t)⟩ + lim

t→∞

1
t

∫ t

0
ξ1dB1(t).

Applying Lemma 2, we have

α1

K1
lim sup

t→∞
⟨T (t)⟩ ≥

(
α1 −

1
2
ξ2

1

)
− β1 lim sup

t→∞
⟨H(t)⟩ + lim

t→∞

1
t

∫ t

0
ξ1dB1(t). (4.23)

By using the strong law of large numbers [26], we get limt→∞
1
t

∫ t

0
ξ1dB1(t) = 0 a.s., and when δ −

ξ2

4
− α2 − k > 0, we have limt→∞ H(t) = 0. Thus, lim supt→∞⟨H(t)⟩ = 0 a.s.. Substituting it into Eq

(4.23), we obtain

α1

K1
lim sup

t→∞
⟨T (t)⟩ ≥

(
α1 −

1
2
ξ2

1

)
> 0 a.s. (4.24)

Therefore, lim supt→∞⟨T (t)⟩ > 0, which further indicates that the tumor cell population T is weakly
persistent. In addition,

log T (t) − log T (0)
t

≤

(
α1 −

1
2
ξ2

1

)
−

1
t

∫ t

0

α1T (s)
K1

ds +
1
t

∫ t

0
ξ1dB1(t).

Applying Lemma 1, when α1 −
1
2ξ

2
1 > 0, we have

lim sup
t→∞
⟨T (t)⟩ ≤

K1

(
α1 −

1
2ξ

2
1

)
α1

a.s. (4.25)

□

We verify the weak persistence of the tumor cell population below. With noise intensities set to
ξ1 = 0.3, ξ2 = 2, ξ3 = 2, we calculate that

α1 −
1
2
ξ2

1 = 0.135 > 0 and δ +
ξ2

4
− α2 − k = 0.853 > 0 (4.26)

In accordance with Theorem 4.3, we conclude that T (t) is weakly persistently average. As illustrated
in Figure 4, the tumor cell population persists at a low level.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2813–2834.



2829

0 100 200 300 400 500 600 700 800 900 1000

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
u

m
o

r 
ce

ll
s

10
9

Figure 4. Simulation of the persistence of tumor cells T (t) with values of ξ1 = 0.3, ξ2 = 2,
ξ3 = 2.

In order to further investigate the dynamical behavior of tumor cells in the persistent state, we
control ξ1 by selecting ξ1 = 0.1, 0.3, 0.5 respectively to indicate the persistent state of tumor cells
under different environmental noise.
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Figure 5. Simulation of the persistence of tumor cells T (t) with values of ξ1 =

0.1, 0.3, 0.5, ξ2 = 2, ξ3 = 2.

From Figure 5, it can be observed that as the intensity of noise increases, the fluctuation in the
number of tumor cells becomes more pronounced, and the center of oscillation gradually shifts
downwards. When ξ1 = 0.1, the number of tumor cells fluctuates around 4.8 × 108, mainly within the
range of [3 × 108, 7 × 108]. For ξ1 = 0.3, the number of tumor cells is concentrated within the range of
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[1 × 108, 1 × 109] with the increase of fluctuation range and the decrease in the probability peak value.
When ξ1 is further increases to 0.5, the number of tumor cells start to fluctuate around zero, which
indicating weaker persistence.

Figure 6. Stationary probability distributions of tumor cells and two types of T cells (a)
Simulation of stationary probability distributions of tumor cells and two types of T cells with
values of ξ1 = 0.1, ξ2 = 2, ξ3 = 2. (b)Simulation of stationary probability distributions of
tumor cells and two types of T cells with values of ξ1 = 0.3, ξ2 = 2, ξ3 = 2. (c)Simulation
of stationary probability distributions of tumor cells and two types of T cells with values of
ξ1 = 0.5, ξ2 = 2, ξ3 = 2.

Figure 6(a)–(c) depicts the distribution of persistent states of tumor cells under different noise
intensity. We combine the populations of hunting T cells and resting T cells to obtain the
two-dimensional stationary probability distribution of tumor cells and two types of T cells. It can be
observed that the number of two types of T cells is primarily concentrated at position 0. In order to
obtain the probability distribution function of tumor cells, we simplify system (2.1) by assuming
H(t) = R(t) = 0. Thus, system (2.1) degenerates into system (4.27).

dT̃ (t) =
α1T̃

1 − T̃
K1

 dt + ξ1T̃ dB1(t). (4.27)

By solving the Fokker-Planck equation of Eq (4.27), we obtain an analytical expression for the
stationary probability density.

p(T̃ ) = NT̃
2α
ξ21
−2

e
− 2α

K1ξ
2
1

T̃
. (4.28)

Here, N is the normalization coefficient. Then we validate the accuracy of the analytical expression
for the probability density by utilizing the Milstein simulation method [28] to sample. By taking
ξ1 = 0.1, 0.3, 0.5 and using a time step of ∆t = 0.01, we sample N = 1×107 sample points, respectively,
and obtain the quantities of tumor cells under different noise intensity.
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Figure 7. Steady-state probability density of tumor cells (a) Simulation with values of ξ1 =

0.1, ξ2 = 2, ξ3 = 2. (b) Simulation with values of ξ1 = 0.3, ξ2 = 2, ξ3 = 2. (c) Simulation with
values of ξ1 = 0.5, ξ2 = 2, ξ3 = 2.
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Figure 8. Stationary probability density function of tumor cells with values of ξ1 =

0.1, 0.3, 0.5, ξ2 = 2, ξ3 = 2.

The histogram in Figure 7(a)–(c) represents the distribution of the number of sample points under
different noise intensity, and the curve fitted on the histogram edges represents the probability
distribution function based on Eq (4.28). It can be observed from Figure 7 that the function fits the
distribution of sample points perfectly. By approximating the frequencies of tumor cells at different
quantities in Figure 7 as probabilities, an accurate expression for p(x) is obtained by substituting it
into Eq (4.28). Figure 8 illustrates the steady-state probability distributions of tumor cells under
different noise intensities. It can be observed that when the noise intensity is low, the probability
density distribution exhibits a unimodal shape, indicating that the tumor maintains stable growth
within a certain quantity range. As the noise intensity increases, the tumor cell population moves
towards lower levels, and the peak value of the probability decreases, indicating that the increased
noise intensity effectively suppresses the expansion of the tumor population. When ξ1 continues to
increase beyond a certain threshold, the probability density function transitions from a unimodal
shape to a decreasing shape, and the tumor population concentrates around zero, indicating that tumor
growth is significantly restricted, with lower invasiveness and metastatic potential.
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5. Conclusions

We investigate the dynamic behavior and stationary response of tumor cells in a predator-prey like
system with resting T cells. First, we prove the existence and uniqueness of global positive solutions
for the stochastic system which guarantees the biological significance of the system model. Second,
we establish the boundedness of moments for T (t),H(t) and R(t) by constructing appropriate auxiliary
equations. Finally, we provide sufficient conditions for the extinction of resting T cells, as well as
the threshold for persistence and extinction of tumor cells and validate the results through numerical
simulations. When ξ1 is small, the tumor remains in a persistent state. From Figure 6, it can be
seen that in the persistent state, the quantities of two types of T cells tend to cluster around zero. By
simplifying the system (2.1) through the assumption H(t) + R(t) = 0, we obtain the system (4.27)
and derive an analytical expression for the stationary probability density of the tumor. The stochastic
perturbations in the environment play a crucial role in eliminating tumor cells, increasing the noise
intensity in the persistent state leads to stochastic bifurcation, and the stationary probability density of
tumors transitions from unimodal to decreasing. When the noise intensity reaches a certain threshold,
tumor cells eventually transition from a persistent state to an extinct state, and further increasing the
noise intensity accelerates tumor extinction.

In fact, due to the influence of factors such as radiation and viruses, parameters in the tumor
immune system may undergo mutations. Therefore, it is crucial to investigate the parameter changes
and corresponding responses of the tumor immune system in different environments. The further
efforts can be made to study the dynamic behavior of tumor immune system under stochastic
switching.
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