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1. Introduction

In the past 50 years, non-metric generalizations of Banach’s fixed point theory and
its applications have played an important role in nonlinear analysis; see [1–5]. There are
many definitions of extended metric spaces (in these spaces, the distance need not satisfy
the triangle inequality or need not be symmetric). Some examples of such spaces are
d-complete L spaces or Kasahara spaces [6] (see also [7]). Hicks [8] first introduced the
notion of d-complete topological spaces and obtained the topological properties of those
spaces. In the paper [9], d-complete topological spaces were extended via the d∗-complete
topological spaces. Fixed point theory for non-commutative mappings was introduced by
Kannan [10] and further developed by Srivastava and Gupta [11], Wong [12] and Ćirić [13].
Classical results have been presented by Wong [12] and Ćirić [13], which were extended by
George et al. [14] on b-metric spaces.

In this paper, we obtain some theorems that draw out significant results in [9], about
the existence and uniqueness of fixed point obtained for d∗-complete topological spaces.
The significance of our improvement is that we obtained results about common fixed points
for two mappings that are not required to have a commutative property. Our results are
shown at complete b-metric spaces CbMS with an (SC) property.

Our results generalize previous results of Wong [12], Ćirić [13], Bianchini [15], Bryant [16],
Caccioppoli [17], Marjanović [18], Reich [19], Tasković [20], Yen [21] and Zamfirescu [22]
on b-metric spaces.

Moreover, we take into consideration some properties of b-spaces, a class of topological
spaces which belong to E-spaces (spaces with regular écart) and include metric spaces.
However, we draw the attention of the reader to the fact that we use CbMS for a complete
b-metric space and bMS for a b-metric space.

2. Preliminary Notes

In this section, we list several well-known definitions, remarks and lemmas.
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Definition 1. Suppose that Ω and Γ are topological spaces. The mapping f : Ω→ Γ is sequentially
continuous if for every sequence (ωn) ⊆ Ω,

lim
n→+∞

ωn = p implies lim
n→+∞

f ωn = f p.

For ω0 ∈ Ω, we affirm that the sequence (ωn) defined by ωn = f nω0 is a sequence of Picard
iterates for f at point ω0 or that (ωn) is the orbit of f at point ω0.

Suppose that Ω is a nonempty set, f : Ω→ Ω is a mapping and x ∈ Ω is a fixed point
for f if f x = x.

The first part of the following statement was developed and proved by Adamović [23].
Its second part was presented in [24].

Lemma 1. Let Ω be a nonempty set and f : Ω → Ω be a mapping. Let l ∈ N, where f l has a
unique fixed point u∗. Then,

(1) u∗ is the unique fixed point for f ;
(2) If Ω is the topological space and a Picard-iterated sequence defined by f l converges to u∗, then

the sequence of Picard iterates defined along f converges to u∗.

Definition 2 ([8,9]). Suppose that Ω is a Hausdorff topological space and d : Ω×Ω→ [0,+∞)
is a mapping. We define the next three valuable properties:

(a) For any ω, θ ∈ Ω, d(ω, θ) = 0 if and only if ω = θ;
(b) For every sequence (ωn) ⊆ Ω,

∞

∑
n=0

d(ωn, ωn+1) < ∞ implies that (ωn) converges in Ω; (1)

(c) For each sequence of (ωn) ⊆ Ω, if there is L > 0 and λ ∈ [0, 1), where

d(ωn, ωn+1) ≤ Lλn, (2)

for n = 0, 1, 2, . . ., then (ωn) converges in Ω.

If (Ω, d) satisfies conditions (a) and (b) ((a) and (c)), then we say that (Ω, d) is a d-complete
topological space (d∗-complete topological space).

Remark 1. Obviously, any d-complete topological space (Ω, d) is d∗-complete; however, the con-
verse is not true (see [9]).

In the article [25], Fréchet established the classes of metric spaces E-spaces. The
historical development of the theory of b-spaces was revisited in the paper by Berinde and
Păcurar [26].

Definition 3. The triplet (B, ρ, s), where B is a nonempty set, ρ : B× B→ [0,+∞) and s > 0, is
a bMS with constant s if the following conditions hold:

(B1) ρ(u, v) = 0 if and only if u = v,
(B2) ρ(u, v) = ρ(v, u),
(B3) ρ(u, v) ≤ s[ρ(u, w) + ρ(w, v)],

for all u, v, w ∈ B.

Remark 2. (i) It is clear that (B, ρ, 1) is a metric space.
(ii) If v = w is put into (B3), we obtain ρ(u, v) ≤ s[ρ(u, v) + ρ(v, v)] = sρ(u, v). So, in a b-metric
space (B, ρ, s), we have s ≥ 1.

Here are some results that can be seen in [27,28].
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In every b-metric space (B, ρ, s), one can propose the topology τρ on behalf of defining
the family of closed sets as follows:

A set A ⊆ B is closed if and only if for every u ∈ B, ρ(u, A) = 0 implies that u ∈ A,
where

ρ(u, A) = inf{ρ(u, a) : a ∈ A}.

The convergence of the sequence (un) in the topology τρ is not necessarily implied
ρ(un, u)→ 0, although, the converse is true (see [24]).

Many notions in bMS would be the same as those in metric spaces.

Definition 4. A sequence (un) ⊆ B is said to be a Cauchy sequence if for a given ε > 0, there is
Nε ∈ N such that d(um, un) < ε, for all m, n ≥ Nε. A bMS (B, ρ, s) is said to be complete if every
Cauchy sequence converges to some u ∈ Ω.

Let r > 0 and u ∈ B. By

B(u, r) = {v ∈ Ω : ρ(u, v) < r},

we denote an open ball with a center u and a radius r.
Many properties of bMS would be the same as those in metric spaces (but, it is not all

because there is no triangle inequality). For example, each bMS is a Hausdorff space.
Further, An et al. [29] proved that every bMS is a semi-metrizable space (for a definition

of a semi-metrizable space, see [24]), but there exists bMS in which open balls are not open
sets. Additionally, every bMS satisfies the first axiom of countability, which implies that
continuity and sequential continuity in bMS are equivalent notions.

In [30], Miculescu and Mihail proved the following result. Its simple and short proof
was presented by Mitrović [31].

Lemma 2. Suppose that (B, ρ, s) is a bMS and sequence {un} ⊆ B. If there exists λ ∈ [0, 1)
such that

ρ(un+1, un) ≤ λρ(un, un−1) (3)

for all n ∈ N, then {un} is Cauchy.

Remark 3. From Lemma 2, we have that CbMS is a d∗ complete topological space.

Definition 5. We say that b-metric space (B, ρ, s) has the property (SC) if

lim
n→+∞

ρ(un, u) = 0 implies limn→+∞ρ(un, v) = ρ(u, v), (4)

where (un) ⊂ B, u, v ∈ B.

Remark 4. In [24], it was proved that bMS has the property (SC) if all its open balls are open sets
in topology τρ.

3. Main Results

In the following results, some properties of the finite product of CbMS are given. We
use the notation [n] = {1, . . . , n}, where n ∈ N.

Lemma 3. Let (Bi, ρi, si), i ∈ [n] be bMS, B = B1 × · · · × Bn and ρ : B2 → [0,+∞) be
defined by

ρ((p1, . . . , pn), (q1, . . . , qn)) = max{ρi(pi, qi) : i ∈ [n]}, (5)

where pi, qi ∈ Bi, i ∈ [n]. Let s = max{si : i ∈ [n]}. Then,

(1) (B, ρ, s) is a b-metric space;
(2) (B, ρ, s) is complete if and only if (Bi, ρi, si), i ∈ [n] is complete;
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(3) (B, ρ, s) has the property (SC) if and only if (Bi, ρi, si), i ∈ [n] has the property (SC).

Proof. (1) Conditions (1), (2) and (3) are trivial-satisfied.
(2) Suppose that (B, ρ, s) is CbMS. Suppose that k ∈ [n], (uk

i ) ⊂ Bk is Cauchy sequence
in (Bk, ρk, sk) and pj ∈ Bj such that j ∈ [n]\{k}. Then, sequence (ui) = (u1

i , . . . , un
i ) ∈ B

defined by

uj
i =

{
uk

i , if j = k,
pj, if j 6= k,

is a Cauchy sequence in (B, ρ). So, xi converges. Hence, we have that (uk
i ) converges.

Now, assume that (Bk, ρk, sk) is a CbMS for each k ∈ [n], and that sequence (ui) ⊆ B
defined by ui = (u1

i , . . . , un
i ) is a Cauchy sequence in (B, ρ, s). We can see that then, (uk

i ) ⊂
Bk is a Cauchy sequence in (Bk, ρk). Let limi→+∞ xk

i = pk, k ∈ [n]. Then, for each ε > 0 and
every k ∈ [n], there exists mk

0 ∈ N, where i ≥ mk
0 implies ρ(uk

i , pk) < ε. Let p = (p1, . . . , pn).
So, i ≥ m0 = max{m1

0, . . . , mn
0} implies ρ(ui, p) ≤ ε. Hence, limi→+∞ xi = p.

(3) Let Ui ⊂ Bi, i ∈ [n] be open balls and U = U1 × · · · ×Un. Then, U is an open set
in topology τρ if each Ui, i ∈ [n] is an open set in topology τρi . So, if U is open, then all Ui
are open.

Further, if B(p, r) ⊆ B, where p = (p1, . . . , pn) is an open set, then B(pi, r) ⊆ Bi is an
open set as a projection of B(p, r) to Bi.

Next a common fixed point theorem extends previous fixed point results presented by
Mitrović et al. [9] and Tasković [20].

Theorem 1. Let (Bi, ρi, si), i ∈ [n] be a CbMS with the (SC) property. Let B = B1 × · · · × Bn
and ρ : B2 → [0,+∞) be a mapping defined as

ρ((ω1, . . . , ωn), (v1, . . . , vn)) = max{ρi(ωi, yi) : i ∈ [n]}. (6)

Let s = max{si : i ∈ [n]}, fi, gi : B → Bi, i ∈ [n] and F, G : B → B be defined by
F = ( f1, . . . , fn) and G = (g1, . . . , gn). Suppose that

ρ(Fω, Gθ) ≤ λρ(ω, θ) (7)

for all ω, θ ∈ Ω and some λ ∈ [0, 1). Then, F and G have a unique common fixed point Θ ∈ Ω.
Also, Θ is a unique limit of all Picard sequences defined by F and a unique limit of all Picard
sequences defined by G.

Proof. Suppose that Θ0 = (ω0
1, . . . , ω0

n) ∈ B and (Θi) is a sequence defined by Θ2i+1 =
FΘ2i and Θ2i+2 = GΘ2i+1. We have that

ρ(Θi+1, Θi+2) ≤ λρ(Θi, Θi+1) (8)

for i = 0, 1, 2, . . .. Now, from (8), Lemmas 2 and 3, we conclude that there exists Θ ∈ B
where Θ = limi→+∞ Θi. Also, we have

Θ = lim
i→+∞

Θi = lim
i→+∞

Θ2i+1 = lim
i→+∞

FΘ2i

and
Θ = lim

i→+∞
Θi = lim

i→+∞
Θ2i+2 = lim

i→+∞
GΘ2i+1.

From
ρ(FΘ, Θ2i+2) ≤ λρ(Θ, Θ2i+1),
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using the (SC) property, we obtain

limi→+∞ρ(FΘ, Θ2i+2) ≤ λlimi→+∞ρ(Θ, Θ2i+1) = 0.

Therefore, FΘ = limi→+∞ Θ2i+2 = Θ. Further, from

ρ(GΘ, Θ2i+1) ≤ λρ(Θ, Θ2i),

again, using the (SC) property, we have

limi→+∞ρ(GΘ, Θ2i+1) ≤ λlimi→+∞ρ(Θ, Θ2i) = 0.

So, GΘ = limi→+∞ Θ2i+1 = Θ. Let ω ∈ B, where Fω = ω and ω 6= Θ. Then, we
deduce that

ρ(ω, Θ) = ρ(Fω, GΘ) ≤ λρ(ϑ, Θ).

This is a contradiction.
Similarly, let ω ∈ B where Gω = ω and ω 6= Θ. Thereafter, we have

ρ(ω, Θ) = ρ(Gω, FΘ) ≤ λρ(ω, Θ).

This is a contradiction.
So, Θ is a unique common fixed point for both F and G.
We obtain the convergence of Picard sequences defined by F and Picard sequences

defined by G from

ρ(Fn+1ω, GΘ) ≤ λρ(Fnω, Θ) ≤ . . . ≤ λn+1ρ(ϑ, Θ),

and
ρ(Gn+1ω, FΘ) ≤ λρ(Gnω, Θ) ≤ . . . ≤ λn+1ρ(ω, Θ).

Remark 5. In [32], the authors used additive metrics instead of max and obtained similar results.

From Theorem 1, we obtain the next corollary which generalizes the well-known
results initiated by Bryant [16].

Corollary 1. Let (B, ρ, s) be a CbMS, λ ∈ [0, 1), f , g : B→ B and n ∈ N, where

ρ( f nω, gnθ) ≤ λρ(ω, θ), (9)

for all u, v ∈ B. Then, both f and g have a unique common fixed point q ∈ B. Also, q is a unique
limit of all Picard sequences defined along f and a unique limit of all Picard sequences defined
along g.

By Corollary 1, we arrive at the following common fixed point result that provides the
theorem for Yen [21].

Corollary 2. Let (B, ρ, s) be a CbMS, λ ∈ [0, 1), f , g : B→ B and m, n ∈ N, where

ρ( f mω, gnω) ≤ λρ(ω, θ), (10)

for all ω, θ ∈ Ω. Then, f and g have a unique common fixed point q ∈ B. Also, q is a unique limit
of all Picard sequences defined by f and a unique limit of all Picard sequences defined by g.

Proof. Put ω = f nµ and θ = gmν, where µ, ν ∈ B. We have that f m+n and gm+n hold all
conditions of Corollary 1.
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By Corollary 1, we obtain the next common fixed point, which expands upon the
well-known theorem of R. Caccioppoli [17].

Corollary 3. Let (B, ρ, s) be a CbMS, λ ∈ [0, 1), f , g : B → B, (cn) be a sequence such that
∑+∞

n=1 cn < +∞, cn ≥ 0, n ∈ N and

ρ( f nω, gnθ) ≤ cnρ(ω, θ) (11)

for all ω, θ ∈ B, n ∈ N. Then, f and g have a unique common fixed point q ∈ B. Also, q is a unique
limit for all Picard sequences defined along f and a unique limit for all Picard sequences defined
along g.

Proof. For some positive integer n, we have cn < 1. Now, the statement follows from
Corollary 1.

Lemma 4. Let (B, ρ, s) be a CbMS with an (SC) property, λ ∈ [0, 1), f , g : B → B and
ρ∗ : B2 → [0,+∞) be defined by ρ∗(ω, θ) = 0 for ω = θ and

ρ∗(ω, θ) = max{ρ(ω, θ), ρ( f ω, gθ), . . . , ρ( f nω, gnθ)} (12)

for ω 6= θ. Then, space (B, ρ∗, s) is a CbMS with an (SC) property.

Proof. The space (B, ρ∗, s) is bMS because conditions (B1), (B2) and (B3) are trivial-satisfied.
Also, we have ρ(ω, θ) ≤ ρ∗(ω, θ) for any ω, θ ∈ X. Further, if (θj) ⊆ B is an arbi-
trary Cauchy sequence in (B, ρ∗), (θj) is a Cauchy sequence in (B, ρ), which implies
that (B, ρ∗) is CbMS because (B, ρ, s) is complete. Further, for every k ∈ [n], we have
limi→+∞ρ( f kω, gkθi) ≤ ρ( f kω, gkθ), which implies that limρ∗(ω, θn) ≤ ρ∗(ω, θ). Hence,
(B, ρ, s) has the property (SC).

The following theorem extends the previous results presented by M. Marjanović [18],
from CMS to CbMS.

Theorem 2. Suppose that (B, ρ, s) is a CbMS that satisfies the (SC) property, and λ ∈ [0, 1) and
f , g : B→ B are two mappings such that

ρ( f n+1ω, gn+1θ) ≤ λ max
0≤i≤n

{ρ( f iω, giθ)}, (13)

for all ω, θ ∈ Ω. Then, f and g have a unique common fixed point z ∈ B, which is a unique limit
for all Picard sequences defined along f and a unique limit for all Picard sequences defined along g.

Proof. By Lemma 4, space (B, ρ∗, s) is a CbMS that has the (SC) property. Further, we
have that

ρ∗( f n+1ω, gn+1θ) ≤ λρ∗(ω, θ).

Based on the one-dimensional case of Theorem 1, it follows that f n+1 and gn+1 have a
unique common fixed point, say q, which is a unique limit for all Picard sequences defined
by f n+1 and a unique common fixed point that is a unique limit for all Picard sequences
defined by f n+1. By Lemma 1 we obtain that q is a unique fixed point for f and a unique
limit for all Picard sequences defined along f , and q is a unique fixed point for g and a
unique limit for all Picard sequences defined along g. Hence, q is a unique common fixed
point for f and g.

Next, the common fixed point theorem extends the results from George et al. [14].
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Theorem 3. Suppose that (B, ρ, s) is a CbMS, f , g : B→ B and α, β ∈ [0, 1), where α + 2β < 1
and

ρ( f x, gy) ≤ max
{

ρ(u, v), ρ(u, f u), ρ(v, gv),
ρ(u, gv) + ρ( f u, v)

2s

}
(14)

+
β[ρ(u, gv) + ρ( f u, v)]

s
,

for all u, v ∈ B. If one of the next conditions are satisfied,

(1) f and g are sequentially continuous or ρ is sequentially continuous;
(2) (B, ρ, s) has the (SC) property and s(α + β) < 1,

then f and g have a unique common fixed point z ∈ B. Also, a sequence (un) defined by u2n+1 =
f x2n, u2n+2 = gu2n+1, n = 0, 1, 2, . . ., where u0 ∈ B, converges to w.

Proof. Let u0 ∈ B be arbitrary and a (un) sequence defined by u2n+1 = f u2n and u2n+2 =
gu2n+1. Then, there exists w ∈ Ω such that w = lim un; the proof is the same as that in [14]
(Theorem 13).

Case (1): If f and g are sequentially continuous or ρ is sequentially continuous, then
by Theorem 13 in [14], we obtain that f and g have a unique common fixed point w ∈ Ω.
The rest of the proof is like that in Case (2).

Case (2): Let (B, ρ, s) satisfy the (SC). From (14), we have

ρ( f w, gu2n+1) ≤ α max{ρ(w, u2n+1), ρ(w, f w), ρ(u2n+1, gu2n+1),

ρ(u2n+1, f w) + ρ(gu2n+1, w)

2s
}+ β[ρ(u2n+1, f w) + ρ(gu2n+1, w)]

s
,

which implies

limρ( f w, gu2n+1) ≤ lim[α max{ρ(w, u2n+1), ρ(w, f w), ρ(u2n+1, u2n+2),
ρ(u2n+1, f w) + ρ(gu2n+1, w)

2s
}+ β

ρ(u2n+1, f w)

s
+ β

ρ(gu2n+1, w)

s
].

So, we have that

limρ(gu2n+1, f w) ≤ α max{ρ(w, w), ρ(w, f w), ρ(w, w),
ρ(w, f w) + ρ(w, w)

2s
}+ β

ρ(w, f w)

s
+ β

ρ(w, w)

s
].

Therefore,

limρ(gu2n+1, f w) ≤ (α + β)ρ(w, f w).

Now, we have

ρ(w, f w) ≤ s[limρ(gu2n+1, f w) + limρ(gu2n+1, w)] ≤ s(α + β)ρ(w, f w). (15)

Since s(α + β) ∈ [0, 1) from (15), we have w = f (w). Further, we have

ρ( f u2n, gw) ≤ α max{ρ(u2n, w), ), ρ(u2n, f u2n), ρ(w, gw)

ρ(u2n, gw) + ρ( f u2n, w)

2s
}+ β

ρ(u2n, gw
s

+ β
ρ( f u2n, w)

s
,

which implies

limρ( f u2n, gw) ≤ lim[α max{ρ(u2n, w), ρ(u2n, u2n+1), ρ(w, gw),
ρ((u2n, gz) + ρ(u2n+1, w))

2s
}+ β

ρ(u2n, gw)

s
+ β

ρ( f u2n, w)

s
].
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So, we have that

limρ( f u2n, gw) ≤ α max{ρ(w, w), ρ(w, f w), ρ(w, w),
ρ(w, f w) + ρ(w, w)

2s
}+ β

ρ(w, f w)

s
+ β

ρ(w, w)

s
].

Therefore,
limρ( f u2n, gw) ≤ (α + β)ρ(w, gw).

Now,
ρ(w, gw) ≤ s[limρ( f u2n, gw) + limρ( f u2n, w)] ≤ s(α + β)ρ(w, gw),

so w = g(w).
Further, we prove that the fixed point is unique. Suppose that there are two common

fixed points w and w′, i.e. gw = f w = w and gw′ = f w′ = w′. Then, we obtain

d(w, w′) = d( f w, gw′) ≤ α{d(w, w′), d(w, w)d(w′, w′),
d(w, w′) + d(w, w′)

2s
}

+ β
d(w, w′)

2s
+ βd(w, w′) ≤ (α + 2β)d(w, w′),

which implies that w = w′.
Finally, we prove the convergence of sequences of a corresponding Picard iteration:

ρ( f n+1u, gw) ≤ λρ( f nu, w)) ≤ . . . ≤ λn+1ρ(u, w),

and
ρ(gn+1v, f w) ≤ λρ(gnv, w)) ≤ . . . ≤ λn+1ρ(v, w).

The next Corollary extends the known results presented by Reich [19], Bianchini [15],
Singh [33], Srivastava, and Gupta [11] and Ray [34] to b-metric spaces.

Corollary 4. Suppose that (B, ρ, s) is a CbMS, λ ∈ [0, 1) and f , g : B→ B. Suppose that

d( f ω, gθ) ≤ λ max{ρ(ω, θ), ρ(ω, f ω), ρ(θ, gθ)}, (16)

for all ω, θ ∈ B and one of the following conditions is satisfied:

(1) f and g are sequentially continuous or ρ is sequentially continuous;
(2) (B, ρ, s) satisfies the (SC) property and sλ < 1.

Then, f and g have a unique common fixed point w ∈ Ω. Also, w is a unique limit of all Picard
sequences defined by f and a unique limit of all Picard sequences defined by g.

Finally, we prove the following statement, which extends earlier results presented by
Marjanović [18] and Zamfirescu [22].

Corollary 5. Let (B, ρ, s) be a CbMS with the (SC) property, λ ∈ [0, 1) and f , g : Ω → Ω. If
there exist positive integers i, j and k such that m = max{i, j, k}

ρ( f m+1ω, gm+1θ) ≤ λ max{max
0≤n≤i

{ρ( f nω, gnθ)},

max
0≤n≤j−1

{ρ( f nω, gn+1θ}+ max
0≤n≤k−1

{ρ(gnω, f n+1θ)}

2
},

for all ω, θ ∈ Ω, then f and g have a unique common fixed point w ∈ X. Also, w is a unique limit
of all Picard sequences defined by f and a unique limit of all Picard sequences defined by g.
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Proof. By Lemma 4, the space (B, ρ∗, s) is a CbMS with the (SC) property. Further, we
have that

ρ∗( f m+1ω, gm+1θ) ≤ λ max{ρ∗(ω, θ), ρ∗(ω, f θ), ρ∗(gω, θ))}.

By Theorem 3, we obtain that f m+1 and gm+1 have a unique common fixed point q, and q
is a unique limit of all Picard sequences defined by f n+1 and a unique limit of all Picard
sequences defined by f n+1. By Lemma 1, we obtain that q is a unique fixed point for f and
a unique limit of all Picard sequences defined by f , and q is a unique fixed point for g and a
unique limit of all Picard sequences defined by g. Hence, q is a unique common fixed point
for f and g.

Remark 6. Note that Theorem 3 generalizes the classical results presented by Ćirić [13] and
Wong [12] obtained in complete metric spaces.

4. Some Examples

Example 1. The space lp = {{un} ⊂ R :
+∞
∑

n=1
|un|p < +∞, p ∈ (0, 1)}, together with the

function dp : lp × lp → R defined by

dp(u, v) =

(
+∞

∑
n=1
|un − vn|p

) 1
p

where u = {un}, v = {vn} ∈ lp is not a metric space (the function dp does not satisfy the triangle

inequality), but (lp, dp, s) is a b-metric space with s = 2
1
p−1 [35,36]. Let f , g : lp → lp, i = 1, 2 be

defined by

f (u) =
{

(0, u1
4 , u2

4 , u3
4 , . . .), if x 6= (1, 0, 0, 0, . . .),

( 1
4 , 0, 0, 0, . . .), if u = (1, 0, 0, 0, . . .),

g(v) = (0,
v1

4
,

v2

4
,

v3

4
, . . .).

Then, we have

(1) If u, v ∈ lp\{(1, 0, 0, 0, . . .)}, then it is dp( f u, gv) ≤ 1
4 dp(u, v);

(2) If u = (1, 0, 0, 0, . . .), v ∈ lp\{(1, 0, 0, 0, . . .)}, then it is

dp( f u, gv) = dp((
1
4

, 0, 0, 0, . . .), (0,
v1

4
,

v2

4
,

v3

4
, . . .))

=
1
4
(1 +

+∞

∑
i=1
|y1|p)

1
p

=
1
4

dp(u, gv);

(3) If u ∈ lp\{(1, 0, 0, 0, . . .)}, v = (1, 0, 0, 0, . . .), then we obtain

dp( f u, gv) = dp((0,
u1

4
,

u2

4
,

u3

4
, . . .), (0,

1
4

, 0, 0, . . .))

=

(∣∣∣∣u1 − 1
4

∣∣∣∣p + ∣∣∣u2

4

∣∣∣p + ∣∣∣u3

4

∣∣∣p + ∣∣∣u3

4

∣∣∣p + · · ·) 1
p

=
1
4

dp(u, v);

(4) If u = v = (1, 0, 0, 0, . . .), we obtain
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dp( f u, gv) = (
1
4

, 0, 0, 0, . . .), (0,
1
4

, 0, 0, . . .))

=

(
1
4p +

1
4p

) 1
p

=
2

1
p

4
.

On the other hand,

dp(u, f u) = dp((1, 0, 0, 0, . . .), (
1
4

, 0, 0, 0, . . .))

=
3
4

.

So, we conclude that the conditions of Corollary 4 are satisfied for λ = 2
1
p

3 < 1 and p ∈ (log3 2, 1).

Example 2. Let B = [0, 1] and ρ(a, b) = (a− b)2 for any a, b ∈ B. Then, (B, ρ, 2) is CbMS and
ρ is sequentially continuous. Let

f (u) =

{
u
2 , if u ∈ [0, 1);
9

10 , if u = 1,

and g(v) = v
2 for every v ∈ [0, 1]. We have that ρ(u, v) = 1

4 (u− v)2 for u, v ∈ [0, 1). Further,
we have

ρ( f 1, g0) =
81

100
< 1 = ρ(1, 0)

and
ρ( f 1, g1) =

16
100

<
25
100

= ρ(1, g0).

Since the conditions of Corollary 4 are satisfied for λ = 9
10 , we conclude that f and g have a unique

common fixed point w ∈ Ω, which is a unique limit of all Picard sequences defined by f and a
unique limit of all Picard sequences defined by g.

5. Conclusions

We present some theorems that extended some results on the existence and uniqueness
of a fixed point obtained for d∗-complete topological spaces in [9]. The significance of our
improvement is that we obtained results about common fixed points for two mappings that
do not possess the property of commutativity. Our results are given on CbMS with the (SC)
property. Our results generalize previous results in the literature. Also, we considered some
properties of b-spaces, a class of topological spaces that belong to E-spaces and includes
metric spaces.
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of Science, Technological Development and Innovations according to Contract 451-03-47/2023-
01/200105, dated on 3 February 2023. The authors A. ALoqaily and N.Mlaiki thank Prince Sultan
University for paying the APC and for the support from the TAS research lab.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shatanawi, W.; Shatnawi, T.A.M. New fixed point results in controlled metric type spaces based on new contractive conditions.

AIMS Math. 2023, 8, 9314–9330. [CrossRef]
2. Rezazgui, A.-Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aν-α-contractions with a pair and two pairs of

self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [CrossRef]
3. Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric

spaces. AIMS Math. 2023, 8, 4407–4441. [CrossRef]
4. Ahmad, A.; Sagheer, D.-e.-S.; Urooj, I.; Batul, S.; Mlaiki, N. Solving Integral Equations via Hybrid Interpolative RI-Type Contractions

in b-Metric Spaces. Symmetry 2023, 15, 465. [CrossRef]
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