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ABSTRACT 
 
The seismic upgrading of environmentally degraded existing reinforced concrete (RC) 
structures by using ties (cable) elements is numerically investigated. Emphasis is given to 
select the optimal strengthening version of ties system for the response of such RC 
structures under multiple earthquakes effects. Damage indices are computed in order to 
compare these responses before and after the retrofit by cable element strengthening, and so 
to select the optimum strengthening version. For a typical example problem, the 
effectiveness of the proposed computational approach is presented. 
 
KEY WORDS. Seismic Upgrading of RC Structures, Environmental Degradation, 

Strengthening by Cable-braced Systems, Damage Indices, Multiple 
Earthquakes. 

 
 
  
 

UDK: 624.012.45.059 

 Izvorni naučni članak



444 
 

INTRODUCTION  
 

As well-known, for the seismic upgrading of existing reinforced concrete (RC) structures 
many repairing and strengthening techniques can be used, see e.g. [1-3, 6, 9, 10, 29]. One 
of the simple, low cost and efficient method for strengthening of existing RC frames against 
lateral induced earthquake loading is the use of steel cross X-bracings [3, 19, 20, 31]. 
Application of this technique is reported, among others, also in Greece to improve seismic 
performance of existing old pilotis type multi-story RC buildings by strengthening only the 
ground story [1].  
 
The use of cable-like members (tension-ties) instead of traditional RC mantles can be 
considered as an alternative strengthening method for inadequate RC frame structures under 
lateral seismic actions [19, 31]. As concerns the global behaviour for such RC structures, it 
often arises the need for seismic strengthening, which must be realized by using materials 
and methods in the context of the Sustainable Construction [2, 24]. Cable restrainers are 
also used for concrete and steel superstructure movement joints in bridges [30].  
 
These cable-members (ties) can undertake tension but buckle and become slack and 
structurally ineffective when subjected to a sufficiently large compressive force. Thus the 
governing conditions take both, equality as well as an inequality form, and so the problem 
becomes a highly nonlinear one [17, 18, 21, 25]. 
 
The present study deals with a numerical approach for the choice of the optimum cable-
bracing strengthening version concerning the seismic upgrading of existing beam-column 
RC frames. The approach is based on an incremental formulation and uses the Ruaumoko 
structural engineering software [4]. Damage indices [13, 22, 26] are computed, first for the 
seismic assessment of the existent RC structures and next for the choice of the optimum 
cable-bracing strengthening version. In an application is presented the case of a two-bay 
two-story RC frame strengthened by bracing ties under multiple earthquakes. 
 
 
 THE COMPUTATIONAL APPROACH FOR THE OPTIMAL TIES-SYSTEM 
 
Details of the developed numerical approach are given in [12, 17, 18], whereas the adopted 
incremental approach is briefly summarized herein. A double discretization, in space and 
time, is applied. The structural system is discretized in space by using frame finite elements 
[5]. Pin-jointed bar elements are used for the cable-elements. 
 
The unilateral behaviour of the cable (ties) elements can in general include loosening, 
elastoplastic or/and elastoplastic-softening-fracturing and unloading - reloading effects. A 
piecewise linearized constitutive diagramme (backbone), concerning the constitutive law 
connecting a generalized force with a  generalized displacement, is shown in Fig. 1. All the 
above behaviour characteristics, concerning the cable full constitutive law, as well as other 
general non-linearities of the RC structure, can be expressed mathematically by using 
concepts of convex and non-convex analysis [17, 18, 21, 25].  
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The dynamic equilibrium for the assembled structural system with cables is expressed by 
the incremental  matrix relation:  
 

M ∆ u +C ∆ u +KT ∆u  =  -M ∆ u g + A ∆s +∆p                     (1) 
 
where u(t) and p(t) are the displacement and the load time dependent vectors, respectively, 
and C( u ) and KT (u), are the damping and the tangent stiffness matrix, respectively. Dots 
over symbols denote derivatives with respect to time. By s(t) is denoted the cable stress 
vector. A is a transformation matrix and ug the ground seismic excitation.  

 

 
Fig. 1. A piecewise linearized constitutive diagramme (backbone) concerning the constitutive law 

connecting a generalized force with a  generalized displacement [23 ]. 
 

The above relations combined with the initial conditions consist the problem formulation, 
where, for given p and/or u g, the vectors u and s have to be computed. Regarding the strict 
mathematical point of view, we can formulate the problem as a hemi-variational inequality 
one by following [14, 21, 25] and investigate it. 
 
For the numerical treatment of the problem, the structural analysis software Ruaumoko [4] 
is used. Here, for the time-discretization, the Newmark scheme is chosen. Ruaumoko uses 
the finite element method [5] and provides results which concern, among others, the 
following critical parameters: local or global structural damage, maximum displacements, 
inter-storey drift ratios, development of plastic hinges and various response quantities, 
which allow the using of the incremental dynamic analysis (IDA) method [23]. In [15,16] a 
calibration of this code has been realized by using experimental results of [20]. Further, 
Ruaumoko has been applied successfully for earthquakes sequences concerning the cases of 
concrete planar frames [11] and RC frames strengthened by cables [18]. It is reminded that 
multiple earthquakes consist of real seismic sequences, which have been recorded during a 
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short period of time (up to some days), by the same station, in the same direction, and 
almost at the same fault distance [11, 28].  
 
After the seismic assessment of the existing RC structure [9], the choice of the best 
strengthening cable system can be realized by using damage indices [7, 13, 22, 26]. In this 
study the overall structural damage index (OSDI) is used. This parameter summarizes all 
the existing damages on columns and beams of reinforced concrete frames in a single value, 
which is useful for comparison reasons.  
 
In the OSDI model after Park/Ang [26] the global damage is obtained as a weighted 
average of the local damage at the section ends of each frame element or at each cable 
element. The local damage index is given by the following relation: 

m
L T

u y u

DI E
F d

µ β
= +
µ

       (2) 

where: DIL is the local damage index, μm the maximum ductility attained during the load 
history, μu the ultimate ductility capacity of the section or element, β a strength degrading 
parameter, Fy the yield generalized force of the section or element, ET the dissipated 
hysteretic energy, du the ultimate generalized displacement. 
 
For the global damage index, which is a weighted average of the local damage indices, the 
dissipated energy is chosen as the weighting function. So, the global damage index is given 
by the following relation: 
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where DIG is the global damage index, DILi the local damage index, Ei the energy dissipated 
at location i and n the number of locations at which the local damage is computed. 
 

NUMERICAL EXAMPLE 
 
The reinforced concrete frame F0 of  Fig. 2.A. is of concrete class C40/45, has dimensions 
L = 7 m and h = 3.5 m and was designed according to Greek building codes and to current 
European seismic codes [8-10]. The beams are of rectangular section 30/60 (width/height, 
in cm) and have a total vertical distributed load 30 KN/m (each beam). The columns have 
section dimensions, in cm: 40/40. 
 
The frame was initially constructed without cable-bracings. Due to various extremal actions 
(environmental etc.), corrosion and cracking has been taken place, which has caused a 
strength and stiffness degradation. The so resulted reduction for the section inertia moments 
was estimated  [15, 27] to be 20% for the internal columns, 40% for the external columns 
and 60% for the beams, providing the effective stiffness.  Three cable-bracing systems, 
shown in Figs. 2.B,C,D, have been proposed and investigated in order the optimal one to be 
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chosen. The first system, denoted as F1, has two descending diagonal cable-elements. The 
second, denoted as F2, has X-bracing  diagonal cable-elements. The third, denoted as F3, 
has inverted V bracing  diagonal cable-elements. 
The cable elements have a cross-sectional area Fc = 18 cm2 and they are of steel class S220 
with yield strain  εy = 0.11 %, fracture strain  εf = 2 %  and elasticity modulus  Ec = 200 
GPa. The cable constitutive law, concerning the unilateral (slackness), hysteretic, 
fracturing, unloading-reloading etc.  behavior, is depicted in Fig. 3. 

 

 
A) 

 
B) 

 
C) D) 

Fig. 2. Numerical example: A) The two-bays two-storey RC frame F0, B)  The F1 two-ties-system, C) 
The F2 four-ties-system X, D) The F3 four-ties-system inverted V. 

 

 
Fig. 3. The constitutive law for the unilateral behavior of the cable-elements. 
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The systems F0, F1, F2 and F3 of Fig. 2 are considered to be subjected to a multiple ground 
seismic excitation, presented and discussed in the papers [11,18]. The complete list of these 
earthquakes was downloaded from the strong motion database of the Pacific Earthquake 
Engineering Research (PEER) Center [28], and appears in Table 1. The strong ground 
motion database consists of five real seismic sequences, which have been recorded during a 
short period of time (up to three days), by the same station, in the same direction, and 
almost at the same fault distance. E.g for Coalinga, July 1983, they are two events, E1 with 
PGA=0.605 g and E2 with PGA=0.733 g). By PGA is denoted the peak ground acceleration 
in gravity acceleration units (g=9.81 m/sec2). 

 
 

Table 1. Sequential earthquakes data 

N 
Seismic 
sequence 

Station Comp Date (Time) 
Magn. 
(ML) 

Record. 

PGA(g) 

Norm. 

PGA 

1 
Mammoth 
Lakes 

54099 
Convict Creek 

N-S 

1980/05/25 (16:34) 6.1 0.442 0.200 

1980/05/25 (16:49) 6.0 0.178 0.081 

1980/05/25 (19:44) 6.1 0.208 0.094 

1980/05/25 (20:35) 5.7 0.432 0.195 

1980/05/27 (14:51) 6.2 0.316 0.143 

2 
Chalfant 
Valley 

54428 Zack 
Brothers 
Ranch 

E-W 
1986/07/20 (14:29) 5.9 0.285 0.128 

1986/07/21 (14:42) 6.3 0.447 0.200 

3 Coalinga 46T04 CHP N-S 
1983/07/22 (02:39) 6.0 0.605 0.165 

1983/07/25 (22:31) 5.3 0.733 0.200 

4 
Imperial 
Valley 

5055 Holtville 
P.O. 

HPV 

315 

1979/10/15 (23:16) 6.6 0.221 0.200 

1979/10/15 (23:19) 5.2 0.211 0.191 

5 
Whittier 
Narrows 

24401 San 
Marino 

N-S 
1987/10/01 (14:42) 5.9 0.204 0.192 

1987/10/04 (10:59) 5.3 0.212 0.200 

 
 

Representative results of the numerical investigation are presented in Table 2. In column 
(1), Event E1 corresponds to Coalinga seismic event of 0.165 normalized PGA of Table 1 
and Event E2 to 0.200 normalized PGA. The sequence of events E1 and E2 is denoted as 
Event (E1+ E2). In column (2) the Global Damage Indices and in column (3) the Local 
Damage Index DIL for the bending moment at the left fixed support of the frames are given. 
Finally, in the column (4), the maximum horizontal top displacement utop (absolute value) is 
given.  
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As the table values show, multiple earthquakes generally increase, in an accumulative way, 
the response quantities. Based on the values of the horizontal top displacement utop = u2

(A), 
and of the Global Damage Indices, it can be concluded that the optimal global 
strengthening version is that one F3 of Fig. 2.D. 
 
 

Table 2. Representative response quantities for the frames F0, F1, F2 and F3. 
 

FRAMES EVENTS DIG DIL utop [102cm] 

(0) (1) (2) (3) (4) 

F0 

Event E1 0.134 0.179 2.227 

Event E2 0.301 0.474 3.398 

Event (E1+ E2) 0.334 0.481 3.410 

F1 

Event E1 0.133 0.185 1.715 

Event E2 0.256 0.354 3.149 

Event (E1+ E2) 0.317 0.385 3.813 

F2 

Event E1 0.068 0.007 1.126 

Event E2 0.097 0.136 1.447 

Event (E1+ E2) 0.108 0.154 1.471 

F3 

Event E1 0.054 0.009 1.069 

Event E2 0.082 0.128 1.313 

Event (E1+ E2) 0.085 0.137 1.314 
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CONCLUDING REMARKS 
 
The choice of the optimal ties-strengthening system for an existing RC structure can be 
obtained by the herein presented numerical approach. This approach can be used also for 
the parametric investigation of the inelastic seismic behaviour under multiple earthquakes 
sequences of existing RC systems, environmentally degraded and strengthened by cable 
elements. The unilateral behaviour of cable-elements and other non-linearities of the RC 
elements are strictly taken into account. As the results of a numerical example have shown, 
the optimal strengthening version of cable-bracings can be decided by computing necessary 
damage indices. 
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