
XXIII МЕЖДУНАРОДНА НАУЧНА КОНФЕРЕНЦИЯ ВСУ’2023 

XXIII INTERNATIONAL SCIENTIFIC CONFERENCE VSU'2023 

 

 

 

 

 

A NUMERICAL PROBABILISTIC APPROACH FOR POUNDING EFFECTS 

ON THE SEISMIC RESPONSE OF ADJACENT RC STRUCTURES IN DUAL 

SYSTEMS STRENGHENED BY TENSION-TIES 

 

Ang. Liolios 1, Kon. Liolios 2 , Don. Partov 3 and Bor. Folic 4 

 

Hellenic Open University, Patras, Greece, 

Bulgarian Academy of Sciences, Sofia, Bulgaria,  

Lyuben Karavelov University (VSU), Sofia, Bulgaria, 

University of Belgrade, Belgrade, Serbia. 

 

 

Abstract: Dual systems of reinforced concrete (RC) moment frames with concrete shear 

walls have been used as common lateral load resisting systems in earthquake prone 

countries. In order to overcome damages caused by seismic actions in the above systems, 

a strengthening by cable-like members (tension-only tie-elements) can be used.  In the 

present study, a numerical probabilistic treatment for the pounding problem concerning 

the seismic interaction between adjacent structures strengthened by cable-ties in such 

dual RC systems is presented when the input parameters are uncertain. This problem 

concerns the elastoplastic-fracturing unilateral contact between neighbouring structures 

during earthquakes and is considered as an inequality problem of dynamic structural 

contact mechanics. The Monte Carlo method is used for treating the uncertainty 

concerning input parameters. The purpose here is to estimate numerically and to control 

actively the influence of the cable-ties on the seismic response of the adjacent structures. 

Finally, in a practical case of two structures in a dual system, the effectiveness of the 

proposed methodology is shown 
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1. Introduction  

As well-known, see e.g. [1], the so-called “mixed-system” or “dual system” of frames 

and shear walls are often used in reinforced concrete (RC) building structures. In such systems, 

the case of the seismic pounding between adjacent frames and shear walls can become a crucial 
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problem, especially when the adjacent structures have non-equal story heights. It is reminded 

that pounding concerns the seismic interaction between adjacent structures, e.g. neighboring 

buildings in city centers constructed in contact when the so-called “continuous” building system 

is allowed to be applied. On the common contact interface, during an earthquake excitation, 

appear at each time-moment either compressive stresses or relative removal displacements 

(separating gaps) only, see for details [1-9].   

In general, lessons learnt from strong earthquakes have shown that pounding can cause 

significant strength degradation and damages on existing adjacent structures. To overcome 

strength degradation effects, various repairing and strengthening procedures can be used for the 

seismic upgrading of existing buildings [1]. Among them, cable-like members (ties) can be used 

as a first strengthening and repairing procedure [10]. These cable-members can undertake 

tension, but buckle and become slack and structurally ineffective when subjected to a sufficient 

compressive force. So, in the mathematical problem formulation, the constitutive relations for 

cable-members are also inequality conditions. These requirements result to inequality 

conditions in the mathematical problem formulation [10,11] . 

On the other hand, for the numerical analysis of such systems of old existing reinforced 

concrete (RC) structures, many uncertainties for input parameters must be taking into account 

[6,12]. These uncertainties mainly concern the holding properties of the old materials that had 

been used for the building of such structures, e.g. the remaining strength of the concrete and 

steel, as well as the cracking effects etc. Therefore, an appropriate estimation of the input 

parameters and use of probabilistic methods must be performed [12-16]. 

In the present study, the seismic problem of old colliding structures in dual RC systems 

is analyzed in a numerical stochastic way. Emphasis is given to the uncertainty concerning the 

input parameters. For this purpose, the input-parameters are considered as interval parameters 

with known upper and lower bounds, characterized in Civil Structural Engineering as uncertain-

but-bounded parameters [13,14]. The herein numerical stochastic approach is based on Monte 

Carlo simulation methods, see e.g. [17-19]. Finally, an application is presented for a simple 

typical example of pounding concerning a dual RC system of an industrial RC frame adjacent 

to a RC shear wall. 

 

 

2. Method of analysis 

The methodology presented recently in [6] for the analysis concerning the seismic 

pounding of existing adjacent RC framed structures is followed herewith. Briefly, the 

probabilistic approach may be obtained through Monte Carlo simulations. As well-known [17-

19], Monte Carlo simulation is simply a repeated process of generating deterministic solutions 

to a given problem. Each solution corresponds to a set of deterministic input values of the 

underlying random variables. A statistical analysis of the so obtained simulated solutions is 

then performed. Thus the computational methodology consists of solving first the deterministic 

problem for each set of the random input variables and finally realizing a statistical analysis. 

 

2.1. Numerical Treatment of the Deterministic Problem 

For the herein pounding problem formulation, a system of two adjacent structures (A) 

and (B) is considered for simplicity. Following the methodology presented in Liolios [4-7], the 

system of the two structures (A) and (B) is discretized by the finite element method. Let jA and 

jB be two associated nodes on the interface (joint) of (A) and (B), where unilateral frictional 

contact can take place during an earthquake. These nodes are considered (see Liolios [4-7]) as 

connected by two fictive unilateral constraints, normal to interface the first and tangential the 

second one. The corresponding force-reactions and retirement relative displacements are 

denoted by  rjN, zjN  and  rjT,  zjT, respectively. They satisfy in general nonconvex and 
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nonmonotone  constitutive relations of the following type (1), expressing mathematically the 

unilateral elastoplastic hardening/softening contact with friction: 

 

(1) r j(d j)     R j(d j).                                                                                                     

 

Here  is the generalized gradient of Clarke, d the deformation and Rj(.) is the 

superpotential function, see Panagiotopoulos [11]. Relation (1) also can simulate environmental 

effects, that  cause a capacity degradation of the interaction interface. 

By piecewise linearizing the above relations as in elastoplasticity [3-6], the following 

linear complementarity conditions are obtained: 

 

(2) w j   0 ,          r jN   0 ,          w j.r jN = 0 .                                                         

 

Taking into account the interaction and the second-order geometric effects (P-Delta 

effects), the incremental dynamic equilibrium conditions under earthquake ground excitation  

ug(t) for the coupled system of the interacting buildings (A) and (B) are [6]: 

 

(3) M A u A+CA u A+(KA+GA) uA  =  -MA u g  +Bp,,                                          

 

(4) M B u B+CB u B+(KB+GB) uB  =  - MB u g  - Bp. ,                                          

 

(5) p =  pN  +  pT ..                                                                                                          

 

Here ML, CL, KL  are the mass, damping and stiffness matrices, respectively, for structure L  

(L=A,B); u(t) is the sought node displacement (relative to ground) vector corresponding to 

given ground earthquake excitation ug(t) and appropriate initial conditions;  dots over symbols 

indicate time derivatives; GA and GB are the geometric stiffness matrices, by which P-Delta 

effects are taken into account; B is a  transformation matrix The pounding stress vector p is 

decomposed to the vectors pN, of the normal, and pT  of the  tangential interaction forces between frames 

(A) and (B),  satisfying in general the nonconvex and nonmonotone  constitutive relations (1).  

To above conditions are adjoined the initial conditions. So the problem consists in finding 

the time-dependent vectors  {uA, uB, p} which satisfy the rels. (1)-(5) for the given earthquake 

excitation  ug(t). 

As mentioned, each solution of the above deterministic problem corresponds to a set of 

deterministic input values of the underlying random variables. The time-history responses  {uA, 

uB}, satisfying (3)-(5) for the system of the adjacent structures (A) and (B), can be also 

numerically evaluated by means of the structural analysis software Ruaumoko [20]. Ruaumoko 

provides results which are related to the following critical parameters: local or global structural 

damage, maximum displacements, interstorey drift ratios, development of plastic hinges and 

response using the incremental dynamic analysis (IDA) method.  

Here the assessment is based on a relevant evaluation of suitable damage indices [10,21]. 

After Park/Ang [21], the local damage index DIL is computed by the following relation: 

(6a) m
L T

u y u

DI E
F d

 
= +


 

where: μm is the maximum ductility attained during the load history, μu the ultimate ductility 

capacity of the section or element, β a strength degrading parameter, Fy the yield generalized 

force of the section or element, ET the dissipated hysteretic energy, and du the ultimate 

generalized deformation. 

The Park/Ang global damage index is given by the following relation: 



XXIII МЕЖДУНАРОДНА НАУЧНА КОНФЕРЕНЦИЯ ВСУ’2023 

XXIII INTERNATIONAL SCIENTIFIC CONFERENCE VSU'2023 

 

(6b) 

n

Li i

i 1
G n

i

i 1

DI E

DI

E

=

=

=



 

where DILi is the local damage index and Ei the energy dissipated at location i ,  and n the 

number of locations at which the local damage is computed 

 

2.2. Numerical Treatment of the Probabilistic Problem 

In order to calculate the random characteristics of the response of the considered RC 

buildings, the Monte Carlo simulation is used [17-19]. As mentioned, the·main element of a 

Monte Carlo simulation procedure is the generation of random numbers from a specified 

distribution. Systematic and efficient methods for generating such random numbers from 

several common probability distributions are available. The random variable simulation is 

implemented herein by using the technique of Latin Hypercube Sampling (LHS) [12].  

In more details, a set of values of the basic design input variables can be generated 

according to their corresponding probability distributions by using statistical sampling 

techniques. As concerns the uncertain-but-bounded input parameters [14,15] for the stochastic 

analysis, these are estimated here by using available upper and lower bounds, denoted as UB 

and LB respectively. So, the mean values are estimated as (UB  + LB)/2. 

 

 

3. Numerical example 

 

3.1. Description of the considered RC structural system. 

 

The system shown in Fig. 1 is investigated. It is an 2-D “mixed” system consisting of the 

two adjacent reinforced concrete (RC) structures, the frame (A) and the shear wall (B).. 

 
 

 

Figure 1. The initial system of the RC structures (A) and (B), without cable-strengthening 

and with two possible unilateral contacts on G1 and G2.  

 

The shear wall (B) has an orthogonal opening of 2mx3m. Both structures are of estimated 

concrete class C20/25, and have been designed according to Greek building codes and to current 

European seismic codes. The frame beams are of rectangular section 30/60 (width/height, in 
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cm), with section inertia moment IB and have a total vertical distributed load 30 KN/m (each 

beam). The frame columns, with section inertia moment IC, have section dimensions, in cm: 

30/30. The thickness of the shear wall (B) is 20cm. The structures are parts of two adjacent 

buildings, which initially were designed and constructed independently in different time 

periods.  Due to connections shown in Fig. 1, pounding is expected to take place on frame 

column FK (point G1) and on shear wall part LN (point G2) of structures (A) and (B), 

respectively. The gaps on G1 and G2 are taken initially as zero. The system of the seismically 

interacting RC structures (A) and (B) has been subjected to various extremal actions (seismic, 

environmental etc.). So, corrosion and cracking have been taken place, which have caused a 

strength and stiffness degradation. The effective stiffness of the concrete members are estimated 

according to [22]. The so resulted reduction for the section inertia moments IC and IB was 

estimated to be 20% for the internal column BH and the shear wall (B), 40% for the external 

columns AG and CK, and 60% for the frame beams. 

As concerns the discretization in space by using finite elements, for the RC frame (A) the 

usual 2-D frame elements are used. For the shear RC wall (B), use is made of the displacement-

compatible plane stress model proposed and applied in [23]. This model is a quadrilateral plane 

stress one with 8 nodes totally. Of them, the 4 nodes are the corner ones and the 4 others on the 

side middles. Each node has three degrees of freedom. So, the displacement vector of each node 

i has two translational components, uix and uiy , and one rotational component θiz. This 

formulation allows the connection of the plane stress elements with the frame elements. 

Concerning the shear wall (B), 6 square elements with dimensions 1.5mx1.5m and one 

orthogonal element with dimensions 2.0mx1.5m are used.  

To overcome the above degradation and rehabilitate seismically the system, various 

strengthening schemes by cable-elements can be investigated. These schemes are here denoted 

as SJ, where J is the number of the bracing-cables which are taken into account. So, the frame 

system of Fig. 1 is denoted as S0 and no strengthening by cable-bracings is considered. In order 

to upgrade seismically the damaged system S0, here indicatively only one strengthening by 

cable-bracings is considered. So, the cable-bracing scheme of Fig. 2 is used, denoted as S6R, 

having the two cable-elements C5 and C6 connect node G1 with the frame node  B and the shear 

wall node P1, respectively. 

The cable elements have a cross-sectional area Fc = 18 cm2 and they are of steel class 

S220with yield strain  εy = 0.2 %, fracture strain  εf = 2 %  and elasticity modulus  Ec = 200 

GPa. The cable constitutive law, relevant to the piece-wise linearized form of eq. (2.1), is 

depicted in Fig. 3. The general unilateral (slackness), hysteretic, fracturing, unloading-reloading 

etc.  behavior of cable-elements is shown. So, segments UO and OA concern the slack-linear 

elastic behavior, according to which the cables can not undertake compressive stresses (branch 

UO).  Segments AB and DC concern the plastic and fracture behavior, respectively. The cable 

yield resistance is Sy = 438.3kN.  The yield deformation is dy = 11.7mm for cables C1- C4 in 

frame (A), and dy = 13.5mm for cables C5- C6 in Fig. 4. Denoting the ultimate cable elongation 

by du, the cables ultimate ductility appeared in fig. 3 is du/dy =10. Paths FQF or FPRPF concern 

unloading-reloading cases.   

The estimated concrete class is C20/25 and the steel class is S220. According to JCSS 

(Joint Committee Structural Safety), see [13], concrete strength and elasticity modulus follow 

Normal distribution and the steel strength follows the Lognormal distribution. So the statistical 

characteristics of the input random variables concerning the building materials are estimated to 

be as shown in Table 1. The mean/median values of the random variables correspond to the 

best estimates employed in the deterministic model according to Greek Building Concrete Code 

EKOS2000.  By COV is denoted the coefficient of variation. The mean/median values of the 

random variables correspond to the best estimates employed in the deterministic model 

according to Greek codes. On the contrary, the input variables concerning the steel of the 
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bracing ties (new material) are considered as deterministic ones. 

 

 

 

 
Figure 2. The S6R system with 4 diagonal cables and 2 cable-elements C5 and C6 

connecting node G1 with the shear wall node P1 and the frame node  B. 
 

 

 

Figure 3. The constitutive law of cable-elements. 

 

 

3.2. Earthquakes Sequence  Input  

 

The systems S0 and S6R of Fig. 1 and  Fig. 2 are considered to be subjected to the multiple 

ground seismic excitation Coalinga, shown in Table 1 and presented and discussed in the paper 

[10]. The complete list of three multiple earthquakes are shown in Table 1 and was downloaded 

from the strong motion database of the Pacific Earthquake Engineering Research (PEER) 

Centre.  
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Table 1. Statistical data for the building materials treated as random variables 

 

 Disribution mean COV 

Compressive 

strength of concrete 
Normal 20.0  MPa 15% 

Yield strength of 

steel 
Lognormal 191.3 MPa 10% 

Initial elasticity 

modulus,  concrete 
Normal 29.0 GPA 8% 

Initial elasticity 

modulus,  steel 
Normal 200  GPA 4% 

 

 

Table 2. Multiple earthquakes data 

 

No 
Seismic 

sequence 
Date (Time) 

Magnitude 

(ML) 

Recorded 

PGA(g) 

Normalized 

PGA(g) 

1 Coalinga 

1983/07/22 

(02:39) 
6.0 0.605 0.165 

1983/07/25 

(22:31) 
5.3 0.733 0.200 

2 
Imperial 

Valley 

1979/10/15 

(23:16) 
6.6 0.221 0.200 

1979/10/15 

(23:19) 
5.2 0.211 0.191 

3 
Whittier 

Narrows 

1987/10/01 

(14:42) 
5.9 0.204 0.192 

1987/10/04 

(10:59) 
5.3 0.212 0.200 

 

 

 

3.3. Representative probabilistic results 

After application of the herein proposed computational probabilistic approach by using 

250 Monte Carlo samples, some representative results are shown in Table 3.  These results 

concern the Coalinga case of the seismic sequence of Table 2. 

In column (2) of the Table 4, the Event E1 corresponds to Coalinga seismic event of 

0.605g PGA, and Event E2 to 0.733g PGA, (g=9.81m/sec2). The sequence of events E1 and E2 

is denoted as Event (E1+ E2). The coefficient of variation COV concerns the Event (E1+ E2.).  

In table columns (3)-(7) the mean values of the shown quantities and the COV concerning the 

Event (E1+ E2) are given. So, in table column (3) the Global Damage Indices DIG and in table 

column (4) the Local Damage Index DIL for the bending behavior of the element FK in frame 

(A) are given. Next, the maximum compressive impact-contact forces on the pounding regions 

G1 and G2 are given in the table columns (5) and (6), respectively. Finally, in the table column 

(7), the maximum horizontal top displacement utop = u2
(A) of the second frame floor is given. 
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As the table values show, multiple earthquakes generally increase, in an accumulative 

way, the response quantities, e.g. critical displacements and damage indices. On the other hand, 

the strengthening of the frame (A) by tie bracings (system S6R of Fig. 2) improves the response 

behaviour against seismic sequences. So, the mean values of the maximum horizontal top 

displacement utop = u2
(A) of the second frame floor in S6R are smaller in comparison to ones of 

S0. These values can be further reduced by a parametric investigation of the cable-ties 

characteristics, e.g. by increasing their cross-sectional area Fr or investigating alternate cable-

strengthening schemes. 

 
 

Table 3. Mean values of representative response quantities for the systems S0 and S6R 

 

SYSTEM EVENTS DIG DIL 
IMPACT-

G1 [kN] 

IMPACT-

G2 [kN] 
utop [mm] 

(1) (2) (3) (4) (5) (6) (7) 

S0 

E1 0.208 0.235 -118.8 -42.4 -37.4 

E2 0.290 0.268 -265.4 -58.2 -50.3 

E1+E2 0.398 0.374 -369.3 -82.4 -74.2 

COV 27.2% 30.4% 28.8% 27.7% 32.8% 

S6R 

E1 0.012 0.084 -285.0 -316.3 -12.7 

E2 0.045 0.088 -296.0 -333.1 -16.7 

E1+E2 0.053 0.091 -307.0 -336.3 -17.9 

COV 20.4% 25.8% 23.7% 26.7% 28.8% 

 

 

 

4. Concluding remarks 

 

A probabilistic numerical approach for the inelastic seismic behaviour of adjacent 

existing RC structures in dual systems, strengthened by cable elements, has been presented. 

Imput parameters uncertainty is taking into account in the herein presented numerical approach. 

The pounding effects and the unilateral behaviour of cable-elements are strictly taken into 

account. In a numerical example, concerning two adjacent RC structures in a dual system, one 

frame and one shear wall, under multiple earthquakes, the applicability of the methodology has 

been proven. As the results show, the optimal strengthening version of the cable-bracings can 

be decided by computing necessary damage indices. Generally it is concluded that pounding 

has significant effects on the earthquake response of adjacent structure. Hence, cable 

strengthening can be effectively used for the seismic upgrading of existing adjacent RC 

structures. 
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