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ABSTRACT  
The unilateral contact problem of dynamic soil-pipeline interaction under uncertainty 
concerning input parameters  is treated numerically by a computational stochastic approach. 
Unilateral contact effects due to tensionless soil capacity, soil elastoplastic-fracturing 
behaviour and gapping are strictly taken into account, as well as environmental effects 
decreasing the soil resistance. The proposed methodology concerns the treatment of both, 
the deterministic and the probabilistic problem. The numerical approach concerning the 
deterministic problem is based on a double discretization, in space by the Finite Element 
Method combined with Boundary Element Method, and in time, and on nonconvex 
optimization. Uncertainties concerning the input parameter values are treated as bounded by 
upper and lower bound estimates using the Monte Carlo method in the probabilistic 
problem section. Finally, the proposed methodology is applied for a practical case of 
seismic soil-pipeline interaction. 
 
KEY WORDS: Dynamic soil-pipeline interaction, unilateral contact, uncertain-but-bounded 
input parameters, numerical and stochastic geotechnical engineering. 

 
 

INTRODUCTION  
 
As well-known, dynamic soil-structure interaction is a high non-linear problem, mainly due 
to unilateral contact conditions on the interface and due to non-linear soil constitutive laws 
[1-4]. Indeed, for the case of the general dynamic soil-structure interaction, see e.g. [1], the 
interaction stresses in the transmitting interface between the structure and the soil are of 
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compressive type only. Moreover, due to in general nonlinear, elastoplastic, tensionless, 
fracturing etc. soil behavior, gaps can be created between the soil and the structure. Thus, 
during strong earthquakes, separation and uplift phenomena are often appeared, as the 
praxis has shown. 

 
So, the mathematical formulation of the dynamic soil- pipeline problem involves equalities 
as well as inequalities. Due to above inequality conditions, the pipeline-soil interaction can 
be considered as one of the so-called inequality problems of structural and geotechnical 
engineering [5-7]. The mathematical treatment of the so-formulated inequality problems 
can be obtained by the variational or hemivariational inequality approach [5-9]. Numerical 
approaches for some inequality problems of structural elastoplasticity and earthquake 
engineering have been also presented, see e.g. [2, 5-11].  
 
Moreover, uncertainty concerning input parameters in seismic soil-structure interaction is a 
crucial problem in geotechnical engineering. A stochastic numerical approach treating these 
aspects has been recently reported [12] concerning the dynamic pile-soil interaction 
problem. 
 
In the present paper,  a stochastic numerical approach for the inequality dynamic problem 
of pipeline-soil interaction under uncertain input parameters is presented. Environmental 
degradation for the soil  are taken into account. The proposed numerical approach consists 
of solving first the deterministic problem and next the probabilistic problem. The numerical 
method for the treatment of the deterministic problem is based on a double discretization 
and on methods of nonlinear programming. So, in space the finite element method (FEM) 
coupled with the boundary element method (BEM), and in time a step-by-step method for 
the treatment of convolutional conditions are used. In each time-step a non-convex linear 
complementarity problem is solved with reduced number of unknowns. The probabilistic 
numerical approach uses the Monte Carlo simulation [13-16] for the treatment of uncertain 
input parameters. Finally, the presented procedure is applied to an example problem of 
dynamic pipeline -soil interaction. 

 
THE STOCHASTIC COMPUTATIONAL APPROACH 

 
As reported, the probabilistic approach for the dynamic soil- pipeline interaction can be 
obtained through Monte Carlo simulations. As well-known, see e.g. [13-18], Monte Carlo 
simulation is simply a repeated process of generating deterministic solutions to a given 
problem. Each solution corresponds to a set of deterministic input values of the underlying 
random variables. A statistical analysis of the so obtained simulated solutions is then 
performed. Thus the computational methodology consists of solving first the deterministic 
problem for each set of the random input variables and finally realizing a statistical 
analysis.  

 
Details of the methodology concerning the deterministic problem and the probabilistic 
aspects for soil-pile dynamic interaction have been reported in [12]. As similar 
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methodology aspects hold herein for the soil-pipeline dynamic interaction, a relevant brief 
summary is given in the next sections for the completeness of the present paper. 
 

Numerical Treatment of the Deterministic Problem 
 

First, a discretization in space by combining the finite element method (FEM) with the 
boundary element one (BEM) is used for the soil-pipeline system, see [2,10-12]. The 
pipeline is discretized into frame-beam finite elements. Each pipeline node is considered as 
connected to the associate soil nodes on both sides through two unilateral (interface) 
elements. Every such u-element consists of an elastoplastic softening spring and a dashpot, 
connected in parallel (see e.g. the Figure 1a), and appears a compressive force r(t) only at 
the time-moments t when the pipeline node comes in contact with the corresponding soil 
node. Let v(t) denote the relative retirement displacement between the soil-node and the 
pipe-node, g(t) the existing gap and wg(t) the soil displacement induced by moving sources 
of the type described in the Introduction. Then the piece-wise linearized unilateral contact 
behaviour of the soil-pipeline interaction is expressed in the compact form of the following 
linear complementarity conditions: 

 
v+g+wg   0,     r   0,      r.(v+g+wg) = 0.    (1) 
 

Further, the u-element compressive force is in convolutional form [1,11] 
 
r   =  S(t)*y(t),     y = w - ( g + v ),             (2a,b) 
 

or in form used in Foundation Analysis [19] 
  
r  =  cs . (dy/dt) + p(y).      (2c) 
 

Here cs is the soil damping coefficient, w = w(t) the pile-node lateral displacement, y = y(t) 
the shortening deformation of the soil-element,  and p(y) the spring force. By * is denoted 
the convolution operation. S(t) is the dynamic stiffness coefficient for the soil and can be 
computed by the BEM [1]. Function p(y) is mathematically defined by the following, in 
general nonconvex and nonmonotone constitutive relation: 

 
      p(y)    Cg Pg (y),       (2d) 

 
where Cg  is Clarke's generalized gradient and Pg ( ) the symbol of superpotential 
nonconvex functions [5,6,9]. So, eq. (2d) expresses in general the elastoplastic-softening 
soil behaviour, where unloading-reloading, gapping, degrading, fracturing etc. effects are 
included.  

 
For the herein numerical treatment, p(y) is piece-wise linearized in terms of non-negative 
multipliers as in plasticity [8]. So, the dynamic equilibrium conditions for the assembled 
soil-pile system are written in matrix form as follows: 
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       M ü(t) + C ú(t) + K u(t) = f(t) + AT r(t),    (3) 
 
        h = BTr - H z - k,     h  0,      z  0,      zT.h = 0.   (4) 

 
Here, eq. (3) is the dynamic matrix equilibrium condition and eqs. (4) include the unilateral 
and the piece-wise linearized constitutive relations. Dots over symbols denote, as usually, 
time-derivatives. M, C and K are the mass, damping and stiffness matrix, respectively; u, f 
are the displacement and the force vectors, respectively; A, B are kinematic transformation 
matrices; z, k are the nonnegative multiplier and the unilateral capacity vectors; and H is 
the unilateral interaction square matrix, symmetric and positive semidefinite for the 
elastoplastic soil case. But in the case of soil softening, some diagonal entries of H are 
nonpositive [8]. Finally, the force vector f includes the effects due to high-speed moving 
sources in the surrounding soil along the pile-line. 

 
Thus the so-formulated problem is to find (u,r,g,z) satisfying (1)-(4) when f and suitable 
initial conditions are given. 

 
Assuming that the unilateral quantities z and h include all local nonlinearities and unilateral 
behaviour quantities, applying the central-difference time discretization, and after suitable 
elimination of some unknowns, we arrive eventually at 
 
     hn =  D zn + dn,      zn    0,     hn    0,     zn

T.hn  =  0.   (5) 
 
Thus, at every time-moment  tn = n.Δt, where Δt is the time step, the problem of rels. (5) is 
to be treated. This problem is a Non-Convex Linear Complementarity Problem (NCLCP), 
can be treated as an hemivariational one and is solved by available methods and computer 
codes of nonconvex optimization [2, 5]. So, in each time-step Δt we compute which of the 
unilateral constraints are active and which are not. Due to soil softening, the matrix D is not 
a strictly positive definite one in general. But as numerical experiments have shown, in 
most civil engineering applications of soil-pile interaction this matrix is P-copositive, and 
thus the existence of a solution is assured [8]. 

 
Numerical Treatment of the Probabilistic Problem 
 

In order to calculate the random characteristics of the response of the considered soil-pile 
system, the Monte Carlo simulation is used [13-16]. As mentioned, theꞏmain element of a 
Monte Carlo simulation procedure is the generation of random numbers from a specified 
distribution. Systematic and efficient methods for generating such random numbers from 
several common probability distributions are available. The random variable simulation is 
implemented using the technique of Latin Hypercube Sampling (LHS) [16]. The LHS is a 
selective sample technique by which, for a desirable accuracy level, the number of the 
sample size is significantly smaller than the direct Monte Carlo simulation. 
 
In more details, a set of values of the basic design input variables can be generated 
according to their corresponding probability distributions by using statistical sampling 
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techniques. As concerns the uncertain-but-bounded input parameters [17,18] for the 
stochastic analysis, these are estimated here by using available estimates (e.g. by in-situ 
investigations) for upper and lower bounds, denoted as UB and LB respectively. So, the 
mean values are estimated as (UB  + LB)/2. 
 
The generated basic design variables are treated as a sample of experimental observations 
and used for the system deterministic analysis to obtain a simulated solution as in previous 
subsection is described. As the generation of the basic design variables is repeated, more 
simulated solutions can be determined. Finally, statistical analysis of the simulated 
solutions is then performed. 

 
NUMERICAL EXAMPLE 

 
An empty horizontal steel circular pipeline of length L = 200 m, outside diameter 1 m, 
thickness 1.5 cm, elastic modulus 21*107 KN/m2 and yield stress 50 KN/cm2 is considered. 
As depicted in Figure 1, the pipeline is clamped by the two anchor blocks A and B 
imbedded into a rock soil. The soil, into which the horizontal pipeline is buried, has an 
elastoplastic behaviour as in Figure 2 and consists of two regions with the following 
statistical data:  

 
Figure 1. Soil-pipeline system, horizontal wave travelling ground motion and 

soil-pipeline interaction modelization. 
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Figure 2. Unilateral, degradating soil behaviour in loading-unloading with remaining gaps. 
 

- The first soil region (I) is soft soil, degraded due to environmental actions, with a shear 
modulus having mean value Gi = 5 MPa and upper and lower bound estimates 

 
4 MPa < Gi = 5 MPa < 6 MPa              (6a), 
 

- The second (II) soil region is hard (non-degraded) with a shear modulus having mean 
value  Gii = 100 MPa and upper and lower bound estimates 

 
96 MPa < Gii = 100 MPa < 104 MPa                 (6b), 
 

The parameters for the elastoplastic behaviour in Figure 2 are taken to be a = pu.b,  b = 100 
m-1, where the mean values are puI = 100 KN/m2 for the soft region (I) and  puII = 2000 
KN/m2 for the hard region (II), and the coefficient of variation COV = 20%.  

 
All the above reported input parameters Gi,  Gii , puI  and puII  are considered as random 
variables having uniform probability distributions [14].      

 
Further, the seismic ground excitation is assumed to be a sinusoidal horizontal wave 
propagation parallel to the pipeline axis (Figure 1), with mean speed vg= 0.4 km/sec in the 
soft region (I) and vg  = 0.8 km/sec in the hard one (II), frequency fg = 10 rad/sec, duration T  
=  2 π  /fg  and maximum ground displacement wo = 5 cm. Thus the horizontal ground 
motion, perpendicular to the pipeline axis x, is expressed mathematically by the following 
relation, where H(t) is the Heaviside function: 

 
       ug (x,t)  =  wo sin(t-x/vg) .{H(t-x/vg)-H(t-x/vg-T)}.   (7) 
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By using 250 Monte Carlo samples, some indicative results from the numerical ones, 
obtained by applying the presented procedure, are here reported. So in Figure 3 the mean 
values of the gaps along the pipeline due to permanent soil deformations are shown for the 
time moments t1 = 0.6 sec and  t2 = 2.1 sec. The difference of the gap widths in the soft and 
in the hard soil region is remarkable. Because of these created gaps, for a subsequent soil 
excitation the part of the pipeline in the soft region may not have a behaviour of a beam 
fully supported by foundation.   

 
Figure 3.  Gaps mean values along the pipeline at times t1 = 0.6 sec and t2 = 2.1 sec. 

 

 
Figure 4. Soil-pressure distribution mean values along the pipeline at the time t1 = 0.6 sec 

 
On the other hand, in Figure 4 it is shown the distribution of the soil-pressures mean values 
at the time  t1 = 0.60 sec. The stresses are smaller in the soft region than in the hard one. 
Furthermore, a concentration of stresses is observed around the pipeline middle C, where 
the soil quality changes.  
 
The statistical performance of the above 250 Monte Carlo samples has given  a coefficient 
of variation COV = 27.8%  for the gaps and COV = 28.4%  for the soil-pressure 
distribution along the pipeline. 
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CONCLUDING REMARKS 
 
The herein presented stochastic procedure provides a numerical tool for the probabilistic 
analysis of soil-pipeline analysis interaction under uncertain input parameters. The 
representative results of the numerical example show that unilateral contact effects due to 
tensionless soil capacity, reduced by environmental effects, and due to gapping, may be 
significant and have to be taken into account for the dynamic soil- pipeline interaction.  So 
the herein presented stochastic procedure can be useful in the geotechnical praxis for the 
earthquake resistant construction, design and control of pipelines. 
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