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Abstract: The multi-objective optimization (MOO) of a planetary gearbox is a challenging opti-
mization problem, which includes simultaneous minimization of a number of conflicting objectives
including gearbox volume, contact ratio, power loss, etc., and at the same time satisfying a number of
complex constraints. This paper addresses this complex problem by proposing a modified hybrid
algorithm, named Multi-objective Hybrid Butterfly Optimization and Particle Swarm Optimization
Algorithm (HMOBPSO), which integrates PSO and Particle Swarm Optimization (BOA) algorithms
with the aim to improve the performance with respect to the considered problem. The proposed
approach solves the non-convex Pareto set and provides vital insights for lowering gear weight
and efficiency and avoiding early failure. The experimental analysis employs numerical simula-
tions to determine the Pareto optimal solutions to the formulated MOO problem. The results show
that the proposed method offers significant improvements in terms of gearbox size, efficiency, and
spacing compared to the conventional methods. In addition, an assessment of the optimization
performance of the proposed HMOBPSO algorithm has been conducted by comparing it to other
established algorithms across several ZDT and DTLZ benchmark problems, where it demonstrated
its effectiveness.

Keywords: multi-objective optimization; planetary gear trains; gear efficiency; Particle Swarm
Optimization; butterfly optimization algorithm

1. Introduction

Planetary gear trains are a type of mechanism that can provide high gear ratios in a
compact space, and they are commonly used in various applications, including automobile
transmissions, industrial drives, rotor-craft, and wind turbines [1,2]. In a planetary gear
train, several planetary gears revolve around a central sun gear and a stationary central
gear with internal gearing, which typically holds the entire system together. Planetary gear
systems have several advantages, including their small size, high efficiency, and capacity
to withstand large torque loads [1,3]. The planetary gearbox inevitably involves multiple
gear mesh regions based on the number of planet branches, which, in addition to the gear
material, tooth profile, lubrication, load distribution, and operating conditions, has a sizable
impact on gearbox efficiency [4–6].

To improve efficiency, designers can use advanced computer simulations to predict
and improve the efficiency of planetary gear systems before they are manufactured [4]. This
includes optimizing the number of planetary gears and their arrangement, gear geometry,
and the choice of materials and lubricants during the design stage. As a result, much
research has been devoted to determining gearbox efficiency. In [5], the authors developed
a computational model for predicting the mechanical efficiency of parallel-axis gear pairs
and proposed a new friction coefficient model by combining a rough-surface thermal EHL
model and a multiple linear regression analysis. The computational model proposed here
can accurately predict the mechanical efficiency of parallel-axis gear pairs under a variety of
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operating, surface, and lubrication conditions. The importance of lubrication technologies
in gear transmission systems for meeting the industrial challenges of increased load, speed,
and temperature is discussed in [7]. To provide more comprehensive references for gear
research and engineering, the authors discuss the effects of lubrication on efficiency, fatigue
performance, and dynamics. In [4], a model for calculating gear efficiency that accounts for
sliding and rolling friction forces is developed, and a complete planetary gearbox’s appro-
priate efficiency is also presented. Moreover, in [6], researchers evaluated the efficiency of a
planetary multiplier gearbox with helical gears using a back-to-back gearbox test rig with
recirculating power and various gear oil formulations, which resulted in distinct stabilized
operating temperatures and varied power loss results based on the employed oil type.
For the purpose of determining how design parameters and lubricant qualities affect the
performance of planetary gearboxes, a composite power loss model and design-sensitivity
study were devised and applied to wind turbines [1].

Due to present-day engineering requirements, which stem from strict regulations and
a highly competitive environment, which requires the successful fulfillment of a number of
criteria, including power efficiency, reliability, and noise reduction, the optimization of gear
parameters has become an important area of study. The primary objective is to reduce the
volume (mass) of the construction and power loss while producing improved components
with a longer service life. In this regard, a great deal of research has been devoted to the
optimal design of gear trains, as discussed in a number of papers [8–10].

These researchers explored gear optimization using a genetic algorithm, where the
module, face width, number of teeth, and profile shift coefficients were utilized as design fac-
tors; the gear pair volume served as a fitness function; and the tooth root bending strength
and contact pressure calculations were employed as constraints [8]. They concluded that
the design process for gearboxes can be enhanced by employing genetic algorithms to de-
termine the optimal parameter values for gear pairs. The problem of the optimal spur gear
tooth profile has been solved using a new evolutionary optimization algorithm called the
adaptive mixed differential evolution, which is based on a self-adaptive approach [9]. The
objectives are to equalize the maximum bending stresses and the specific sliding coefficients
at contact path extremes, which were successfully solved using the proposed method. The
volume minimization of a single stage planetary gearbox was considered in [11] utilizing
a hybrid algorithm combining genetic and artificial immune system algorithms, with the
obtained data demonstrating improved results when compared to the existing results. The
study employed nine meta-heuristics to explore the optimal design of an automatic plane-
tary gear train [10], considering nine mixed decision parameters. The findings indicate that
the differential evolution algorithm exhibited superior statistical performance compared to
other algorithms, while the firefly algorithm demonstrated the most favorable convergence
behavior.

The aforementioned works primarily concentrate on single-objective optimization,
which is insufficient for many of the demands of contemporary engineering design prob-
lems, which frequently involve multiple conflicting objectives. Therefore, there is growing
interest in the development of multi-objective optimization techniques that can handle
such problems effectively. In recent times, there has been an expansion of meta-heuristic
algorithms that draw inspiration from nature. These algorithms encompass a range of
techniques such as the genetic algorithm [12], differential evolution [13], Particle Swarm
Optimization (PSO) [14], and butterfly optimization algorithm (BOA) [15], among others.
These algorithms have predominantly been designed for the purpose of solving single-
objective optimization problems and have been extensively utilized in several domains,
including but not limited to network configurations, telecommunications, and engineering
design [8,12,13]. Nevertheless, as meta-heuristic methods continued to advance, they were
also expanded to be applicable to multi-objective scenarios. This expansion gave rise to
algorithms such as Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [16], Differen-
tial Evolution for Multi-objective Optimization (DEMO) [17], and the more recent multi-
objective non-dominated advanced BOA (MONSBOA) [18]. The utilization of enhanced
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meta-heuristic optimization algorithms has led to the rise in the popularity and effective-
ness of multi-objective optimization (MOO) as a viable method for addressing complex
problems across diverse domains, including engineering, finance, and economics [19,20].
In engineering design, to reduce the structure volume and transmission power loss and to
disclose the influence of the profile shift factor on the optimal structure fitness, researchers
performed a multi-objective optimization of a corrected spur gear pair with objectives
including volume, center distance, and efficiency, while contact stress, bending stress, face
coefficient, and tooth-tip interference served as constraints [21]. The results reveal that the
structural design is compact compared to typical ones and that it has a decent efficiency
for a medium contact ratio. Researchers considered the multi-objective optimization of a
two-stage helical gearbox with a wide range of constraints introduced into the optimiza-
tion problem, such as bending stress, pitting stress, and tribological constraints [22]. To
minimize these objective functions for three distinct gear profiles, four varieties of ISO
oil grades, and two speeds, a specially formulated discrete version of the NSGA-II was
implemented. The obtained results show that there is a high probability of wear failure, but
when using the multi-objective approach, the total power loss of the gearbox is reduced
by half. In order to reduce the weight, improve the efficiency, and prevent premature
failures in planetary gearboxes, the authors developed a novel multi-objective optimization
of planetary gearboxes with the minimization of weight and total power loss as objective
functions [23]. Three distinct gear profiles were investigated on an industrial planetary
gearbox, which exhibited significant weight and power loss improvements while also
being safer in scuffing. Using volume, power output, and center distance as the objectives
and eight design variables, two geometric constraints, and three design constraints, a
two-stage spur gearbox’s multi-objective optimization problem is formulated [24], and
the NSGA-II evolutionary algorithm is used to find the Pareto frontiers. Variation and
sensitivity analyses reveal that module, pinion tooth number, and face-width variables
have a strong influence on volume, offering vital insights for the design of compact gear-
boxes. Another study considered the performance of gear systems regarding the vibration
and noise produced in the process of gear transmission, and the authors formulated an
optimal appropriate multi-objective modification design method for helical gear [25]. The
proposed model shows that it can effectively reduce vibration and noise while ensur-
ing even load distribution on the tooth surface. In addition, the authors developed an
algorithmic framework inspired by deterministic multi-objective optimization methods,
which they paired with a direct-search global optimization algorithm to generate globally
Pareto-optimal solutions [26]. Two tests show that the suggested method efficiently obtains
answers from the global Pareto front. In [2], the researchers developed a framework for
the multi-objective uncertainty optimization design of the planetary gear train used in
electric vehicles, where the volume, transmission efficiency, manufacturing size, material,
and load input are taken into consideration. The results of this study show that the en-
hanced version of NSGA-II exhibits superior convergence efficiency in comparison to the
conventional NSGA-II. In [27], the authors focused on the automatic decision making of
the Pareto front applied to the design of spur gears utilizing a multi-objective optimization
model solved using NSGA-II algorithm, where the variables under consideration are gear
module, teeth number, transmission ratio, center distance, bearing capacity coefficient,
and meshing efficiency. The study utilized three distinct methods for decision making,
namely Shannon Entropy, LINMAP, and TOPSIS, to calculate the optimal solution from the
Pareto frontier, showing insights into the design of spur gears. In study [28], the authors
outline a technique for mitigating vibration and noise levels in the gearbox of an electric bus
through the utilization of a multi-objective optimization algorithm, where the optimization
of gear micro-geometry is performed. The findings indicate that the improved optimiza-
tion technique, which is utilized to solve this task, can efficiently and rapidly decrease
the vibration and noise levels of the gearbox. In [29], the authors consider constrained
multi-objective optimization for the design of spur gear pair, where L10 life is used with
various tribological constraints, including micro-pitting, flank fracture, wear, scuffing, and
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scoring, incorporated as constraints in the optimization problem. The study takes into
account various objectives, including weight, power loss, and heat treatment duration of
the gear. The CRITIC approach is utilized to determine the most optimal solution among
the Pareto-optimal solutions that have been acquired via GA optimization. The study [30]
employed a genetic algorithm to optimize the parameters of gear pairs with the aim of
minimizing transmission volume and power losses. The findings indicate that an optimal
outcome can be achieved through the utilization of a blend of lower gear modules, face
width, profile shift coefficients, and number of teeth.

This paper presents a hybridization of the PSO and BOA algorithms named the Multi-
objective Hybrid Butterfly Optimization and Particle Swarm Optimization Algorithm
(HMOBPSO). The objective of this algorithm is to improve optimization performance in
solving complex MOO problems, with a specific focus on the formulated planetary gearbox
optimization presented in this study. This paper presents a hybridization approach to
mitigate the limitations encountered in optimizing conventional PSO and BOA. Specifically,
the proposed method incorporates the PSO velocity update scheme into the equations gov-
erning butterfly movement. The utilization of the crowding distance has been implemented
for the purpose of selecting the optimal individual within the population, with the aim of
facilitating the application to multi-objective optimization problems. Moreover, the adap-
tive parameter has been suggested to determine the suitable expression for the individual
position update in the present optimization scenario and to substitute the conventional
switch probability. In summary, the findings indicate that the HMOBPSO algorithm pro-
posed exhibits improved performance compared to the other algorithms examined with
respect to both convergence rate and solution efficacy. The HMOBPSO algorithm was
observed to be more efficient in discovering solutions that were characterized by greater
diversity and a more uniform distribution across the Pareto front. The findings indicate that
the algorithms employed were successful in enhancing the design of industrial gearboxes.
Additionally, the study underscores the significance of incorporating various objectives
during the design phase.

To summarize, the primary contributions of this research paper can be outlined as
follows:

• This paper presents a modified methodology for optimizing the single-stage planetary
gearbox through the use of MOO. The methodology takes into account a multitude of
conflicting objective functions and formulates critical design constraints.

• A new optimization method, HMOBPSO, a hybrid between the PSO and BOA algo-
rithms, has been proposed, which improves optimization performance, especially
for complicated multi-objective optimization problems. Hybridization has been per-
formed by introducing velocity-updating expression pieces from the PSO algorithm
into BOA’s butterfly position update equation.

• The proposed HMOBPSO algorithm was tested against NSGA-II and several other
well-known algorithms in the literature on ZDT and DTLZ benchmark MOO problems.
The HMOBPSO algorithm outperformed other algorithms in terms of convergence
and Pareto solution quality.

The present paper is structured in the following manner. In Section 2, the formula-
tion of the multi-objective planetary gear-optimization problem is given. Additionally,
Section 2.1 presents the establishment of suitable objectives for the optimization problem
regarding the planetary gearbox under consideration. The formulation of constraints is ex-
plained in Section 2.2. Section 3 presents the formulation of a multi-objective optimization
problem. The theoretical underpinnings of the PSO and BOA algorithms are outlined in
Sections 3.1 and 3.2, respectively. The hybridization procedure and the relevant theoreti-
cal foundations of the proposed hybrid HMOBPSO algorithm are laid out in Section 3.3.
Section 4 provides an overview of the results derived from numerical experiments con-
ducted on planetary gearbox optimization, as well as on the DTLZ and ZDT benchmark
problems. Ultimately, the findings are summed up and presented in Section 5.
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2. Problem Formulation

The development of planetary gearboxes that are both reliable and lightweight while
maintaining high efficiency is a significant challenge in the present field of mechanical
engineering. The creation of a multi-objective optimization model that integrates design
variables, objectives, and constraints is crucial for attaining the intended performance
of planetary gearboxes. The objective of this paper is to develop the appropriate multi-
objective optimization model of a planetary gearbox and investigate the possibilities for
solving this complex optimization problem, with the aim of identifying gear design param-
eters that can lead to weight reduction, decreased power loss, and improved reliability of
components. In this context, we examine a single-stage planetary gearbox, schematically
illustrated in Figure 1. The planetary gearbox under consideration comprises three planet
gears and two central gears. One of the central gears features external gearing and is
referred to as the sun gear, which is directly linked to the input shaft. The other central gear
has internal gearing and is stationary, serving to secure the entire assembly in position. The
system under consideration receives power through the input shaft and sun gear, which is
subsequently distributed among the planet gears and transmitted to the carrier. The output
shaft is connected to the carrier to complete the transfer of power. The analysis maintains
a constant input speed of na = 2750 min−1 and a power of Pa = 175 kW throughout. The
remainder of the parameters used in the design of the planetary gearbox are given in
Table 1.

na

Figure 1. Schematic illustration of the planetary gearbox.

Table 1. Parameters of the planetary gearbox considered in the paper.

Parameters Units Symbol Value

Input Power kW Pa 175
Input speed min−1 na 2750

Pressure angle ◦ αn 20
Gear material 18CrNi8

Gear surface Roughness µm Ra 0.8
Factor of safety against bending - SFmin 1.2
Factor of safety against pitting - SHmin 1.25

Number of planet gears - nw 3

The multi-objective optimization implies the simultaneous optimization of multiple
objectives f1, f2, . . . , fM , which are often conflicting in nature. This type of optimization
problem often arises in different fields of engineering, since a number of these problems
involve multiple objectives and a number of constraints that need to be satisfied to ensure
the physical feasibility of the solution. In general, the multi-objective optimization problem
can be stated as
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min fm(xi) m = 1, . . . , M ∧ i = 1, . . . NP

s.t.

gk(xi) ≥ 0, k = 1, . . . , K

hl(xi) = 0, l = 1, . . . , L

xi,j ∈
[

xLower
j , xUpper

j

]
, j = 1, . . . , n

(1)

where M is the number of objectives taken for optimization; M ≥ 2, gk(xi) denotes the
inequality constraint, with the K being the total number of inequality constraints in the
considered problem; hl(xi) denotes the equality constraint, where L is the total number
of equality constraints; and NP is the number of solutions in the population. Here, the
boundaries of decision variables are denoted as xLower

j and xUpper
j .

Therefore, in formulating the MOO problem of planetary gear optimization, we start
firstly with objective functions that will be taken into account, and then we present a
number of constraints that are developed in order to provide a planetary gearbox with long
service life.

2.1. Objectives

In this subsection, we will outline the objective functions that have been formulated
for the MOO optimization problem.

2.1.1. The Volume of the Gears

Under the assumption that the density of the material is constant and that each gear
is made of the same material given in Table 1, the minimization of gearbox mass can be
reduced to the minimization of the volume of the gears, given as

f1 = V(x) =
π

4
b
[
d(a)

2 + nw

(
d2

a(b) − D2
)
+
(

d2
(g) − d2

s

)]
. (2)

2.1.2. Contact Ratio

In order to ensure smooth, continuous action between gears, it has been included as
the objective as follows:

f2 = εα =

0.5
(√

d2
a(a) − d2

a(b) +
√

d2
a(g) − d2

aag(g)

)
− a sin αwt

πmt cos αt
. (3)

2.1.3. Safety against Bending for Central Gears

In order to ensure the normal working of gears while minimizing the dimensions, the
following objectives are taken into account, which reflect the bending stress for the sun
gear, which is determined based on the following equation

f3 = σF =
Ft

bmn
YFaYSaYεKAKvKFα. (4)

Here, the appropriate safety against the bending, which is used as a constraint in
optimization, is calculated as

SF(x) =
[σF]M

σF
, (5)

where the critical root stress, determined via the gear material, is obtained as

[σF]M = σF limYSTYRrelT . (6)
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In this case, the safety factor against breaking must satisfy the following condition:

SF =
[σF]M

σF
≥ SF min, (7)

where the SFmin is the smallest allowable safety factor value. The factors YFa , YSa , Yε, KA, Kv,
and KFα are determined according to the ISO standard in Appendix A.

2.1.4. Safety Factor for Contact Stress

Contact stress is considered as another objective and calculated as follows:

f4 = σH = ZHZEZε

√
Ft

bd(a)

u + 1
u

KAKvKHα, (8)

where the appropriate safety for contact stress is determined as

SH =
[σH ]M

σH
, (9)

where the contact stress for the sun-gear–planet-gear pair is obtained as the minimum
value, according to

σH = min
{

σH,(a), σH,(g)

}
, (10)

where the σH,(a), σH,(g) represent the contact stress calculated for central sun gear and planet
gear, respectively. The critical contact stress is determined as

[σH ]M = σH limZN ZLZR, (11)

while the safety factor from the pitting must satisfy the following condition, taken as a
constraint in optimization, as follows

SH =
[σH ]

σH
≥ SH lim, (12)

where the SHmin is the minimum allowed safety factor value, which is given in Table 1. The
different factors used in the above equations are given in Appendix A.

2.1.5. Gearbox Efficiency

To analyze the performance of the planetary gearbox, various metrics can be employed,
such as efficiency, torque, and speed ratios. The efficiency of the gearbox is defined as
the ratio of output power to input power, and it is a crucial factor in determining the
overall performance of the system. To calculate the efficiency of the single-gear pair in
contact, we can use the model [4], which takes into account the sliding and rolling friction.
Therefore, the total efficiency of a gear pair in contact can be calculated by integrating the
instantaneous efficiency along the active line of action as follows:

ηH
gb =

1
la

∫ D

A
ηi(ξ)dξ, (13)

where the instantaneous efficiency is determined using the numerical procedure described
in [4] and calculated as

ηi(ξ) =
T2

T1

1
uH

gb
, (14)

where T1 and T2 are the unknown torques acting on the pinion and driven gears, respec-
tively, and uH

gb is the relative gear ratio of the considered gear pair, la = A2E2 is the active
length of the path of contact, ξ represents the coordinate in the coordinate system fixed with
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a line of action (LOA). Using the same procedure, the efficiency ηH
ag between the central

and planet gears can be calculated.
Since the planetary gearbox in Figure 1 has multiple interactions between gears in

the system, in calculating the total efficiency of the complete gearbox, we start with the
analysis of power flow. From the problem statement and Figure 1, it follows that the power
is inputted from the central sun gear and exits from the gearbox through the shaft, which is
connected to the planet carrier, while the central internal gear is stationary. Therefore, the
total efficiency is

ηb
aH =

Pout

Pin
= 1− Ploss

Pin
, (15)

where Pout is the output power captured at the exit shaft, and Pin is the input power at the
sun gear, while Ploss is the total power loss, which can be calculated from the analysis of
the relative efficiency ηH

ab, according to the expression

Ploss =
(

1− ηH
ab

)
Taωa,rel , (16)

where the ωa,rel is the relative angular speed of the central gear. Substituting (16) into the
(15) and taking into consideration that the angular speed ratio is

ωa,rel

ωa
=

ωa −ωH
ωa

= 1− ωH
ωa

= 1− 1
ub

aH
=

uH
ab

uH
ab − 1

, (17)

where ωa is the absolute angular speed of the central gear, ωH is the absolute angular speed
of the gear carrier, and the relationship in overall gear ratio ub

aH is ub
aH = 1− uH

ab. Finally,
we obtain the absolute efficiency of the considered planetary gearbox, which can be taken
as f5 as follows:

ηb
aH =

1− ηH
agηH

gbuH
ab

1− uH
ab

. (18)

2.2. Constraints Formulation

In this section, several design constraints regarding the strength requirements em-
ployed in the MOO problem considered in this paper are outlined. Among others, the
employed constraints include bending strength, pitting strength, assembly condition, etc.
By implementing these constraints, the requirement for the gearbox with enhanced service
life of the components is successfully satisfied.

2.2.1. Bending Constraints

The constraint regarding the gear tooth’s bending strength is defined as

g1 =
[σF]M

σF
− SFmin > 0. (19)

2.2.2. Pitting Constraints

The constraint against surface fatigue resistance has been defined as

g2 =
[σH ]M

σH
− SHmin > 0. (20)

2.2.3. Space Requirement

The mounting of the planet gears in the gearbox assembly demands the appropri-
ate clearance between the tip circles of gears in mesh to exist. Therefore, the following
constraint needs to be satisfied
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g3 = 2aag sin
(

π

nw

)
− fz − da(g) ≥ 0, (21)

where fz = 0.5 ·mn is the minimum clearance.

2.2.4. Assembly Condition

To avoid possible interference of teeth during the meshing process, the condition that
must be satisfied is that the simultaneous meshing of central sun gear with planet gears
must always be satisfied. In this regard, the equality constraint is defined as

h1 =
za + zb

nw
− i = 0, (22)

where i is the integer that leads to the constraint being zero.

2.3. Uniform Wear of the Teeth

The profile of the gear teeth wears down during operation, changing the size and
shape of the teeth. As a result, several undesired phenomena, including vibrations and
noise, happen during the transmission. Achieving uniform wear of the tooth profile of the
coupled gear pair requires achieving the equality of the specific sliding in the locations that
are furthest from the present pole of the relative speeds. Hence, it is imperative to examine
the kinematic aspect of the coupling of gear pairs with internal and external gearing to
derive the expressions for specific sliding.

Given the sliding speed, the specific sliding of the profile of the teeth of coupled gears
can be defined as the ratio of the intensity of the sliding speed of the observed pair of teeth
vsliding,1−2 to the intensity of the relative speed vrel,M as follows

νM =
vsliding,1−2

vrel,M
=

vrel,2

vrel,1
− 1, (23)

where vrel,i, i = 1, 2 denotes the relative speed of the driving and driven gear, respectively,
at any point along the LOA. The relative speed of points M1 and M2, which belong to the
respective profiles of the pinion and driven gear, can be determined as

vrel,M1 = vM1 tanαM1 ,
vrel,M2 = vM2 tanαM2 ,

(24)

where the respective angles αM1 and αM2 can be determined from

tan αM1 =
ρM1
rb1

,

tan αM2 =
ρM2
rb2

,
(25)

where the ρM1 and ρM2 are corresponding curve radii on the tooth profile of pinion and
driven gear. Substituting into (23), we obtain the expression for determining the specific
sliding on the pinion and driven gear

νM1 = −1 +
ρM2

uρM1
,

νM2 = u
ρM1
ρM2
− 1,

(26)

where u is the gear ratio of the considered gear pair. Since the specific sliding on the gear
profile is highest on the points furthest from pole C, determining the specific sliding in
points A1 and E2 with equations

νA1 =
ρE2

uρA1
− 1,

νA2 = u
ρE1
ρA2
− 1,

(27)
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is of interest, where the ρA1 , ρE1 and ρA2 , ρE2 are corresponding curve radii on the tooth
profile of the pinion and driven gear. In order to analyze the specific sliding in the character-
istic points on the involute profile of the gears in coupling, Figure 2 shows the dependence
of the specific sliding of simultaneously coupled teeth, for a gear pair with the parameters:
z1 = 20, z2 = 100, mn = 3 mm, x1 = x2 = 0, α = 20◦.

Based on the geometric interpretation of the obtained results, in Figure 2, it follows
that the value of specific sliding is the largest at the beginning of the meshing at the base
of the profile of the pinion E1 and the top of the profile of the tooth of the driven gear
A2. In the kinematic pole (point C) the specific sliding is equal to zero. When the coupled
profiles pass through pole C, the sliding speeds change direction to the corresponding
points on the top of the pinion and the base E2 of the driven gear. Therefore, it is of interest
to analyze how to modify the value of specific sliding. Therefore, in Figure 3, we presented
the sensitivity analysis of the maximum value of specific sliding on the pinion and driven
gear as a function of profile shift coefficients.
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Figure 2. Specific sliding at different points on the pinion and driven gear along the line of action.
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Figure 3. Maximum value of the specific sliding of pinion and driven gear as a function of profile
shift coefficients x1 and x2.
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From Figure 3, we observe that it is possible to change the value of specific sliding
with the appropriate changes in profile shift coefficients. Based on this analysis, it follows
that setting a constraint in the MOO model in the form of equality of specific sliding at
the top and bottom of the profile of the coupled teeth is necessary in order to ensure the
uniformity of wear of the coupled gears profiles. Furthermore, this shows the necessity of
introducing the profile shift coefficients as design variables in optimization.

Design Variables

In this paper, a total of seven design variables are considered during the optimization,
including za, the number of teeth of the central gear; zb, the number of teeth of the central
stationary gear with internal gearing; zg, the number of teeth of the planetary gear; m,
the module of gears in the gearbox; and xa, xb, and xg, the profile shift coefficients of the
central, internal, and planet gears, respectively. The design vector is therefore

x =
[
za, zb, zg, m, xa, xb, xg

]T . (28)

In Table 2 we have given the specification of design variables as well as the types of
variable and their bound range.

Table 2. Details of the design variables.

Design Variable Lower Bound Upper Bound Type

za 17 26 Integer
zb 22 60 Integer
zg 40 120 Integer
m 2 40 Discrete
xa −0.5 1 Continuous
xb −0.5 1 Continuous
xg 0.0 0.5 Continuous

3. Multi-Objective Optimization
3.1. Multi-Objective Particle Swarm Optimization Algorithm

The PSO belongs to a group of nature-inspired evolutionary algorithms (EAs), whose
mechanisms are inspired by bird-swarming behavior in the process of searching for
food [14]. The optimization process of the PSO algorithm starts with the creation of the
swarm of NP particles in the swarm, written as the set P(G) = {xi | xi ∈ F},
i ∈ {1, 2, . . . , NP}, where F denotes the feasible solution space, and G is the current gen-
eration index in the initial generation G = 0. The current position x(G)

i of each particle is

influenced by the appropriate speed vector s(G)
i . The vector s(G)

i is thus influenced by the

best position that each particle has previously discovered, denoted as x(G)
pbest,i, and the best

position discovered by the entire swarm of particles x(G)
gbest. These parameters represent

particles’ individual intelligence and the group swarm’s intelligence. In each generation,
the position of particles is changed according to

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
, (29)

x(G+1)
i = x(G)

i + s(G+1)
i , (30)

where c1 represents the cognitive and c2 social coefficients, and rand1 and rand2 are random
numbers in the range randi ∈ (0, 1), i = 1, 2, such that rand1 6= rand2 . To update the
personal best position discovered by each particle in each generation in application to
multi-objective optimization, we modify the original PSO in a way that the modification of
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the personal best position of each particle occurs when the present personal best solution is
dominated by the current position, as expressed by the subsequent equation

x(G+1)
pbest,i =

{
x(G)

pbest,i, if x(G)
pbest,i ≺ x(G)

i

x(G)
i , otherwise

. (31)

To update the global best position x(G)
gbest due to the conflicting nature of the objectives

in a multi-objective optimization problem, and when there is no single solution to be used,
an external archive is employed. In this archive, a set of non-dominated solutions obtained
in the optimization process is memorized. Then, in each generation, the crowding distance
is employed to evaluate the diversity of solutions in the archive, and the solution x(G)

gbest is
selected using the binary tournament [31,32].

3.2. Butterfly Optimization Algorithm

BOA is a novel meta-heuristic optimization technique that was developed by Arora
and Singh [15] in 2010 and has gained popularity due to its ability to solve complex
optimization problems in various fields. The BOA algorithm is based on the behavior of
butterflies in their search for food and mates. The BOA algorithm mimics the biological
system and the behavior of butterflies by creating a population of solutions that are updated
and improved over time through a series of iterations, and it is based on the following
assumptions:

1. Every butterfly releases a fragrance that draws other butterflies to it.
2. Butterflies either fly randomly or deliberately toward the butterfly that gives off the

strongest fragrance.
3. The objective function value of the butterfly under consideration determines the

strength of the butterfly stimulus.

During the optimization process, the BOA algorithm goes through three phases. Firstly,
in the initialization stage, all parameters of the algorithm are set, and the initial population
is randomly generated within the bounds of solution feasibility. Next, the iteration stage is
repeated until the algorithm converges toward the optimal solution, at which point BOA
performs the search for the global optimal solution. Finally, at the optimization stage, the
optimal solution is obtained and presented. The iteration stage is performed such that the
objective function is evaluated for each butterfly in the population, and based on this value,
a fragrance is created. Therefore, the stimulus intensity, denoted as I, for the ith butterfly
can be determined as

I = f
(

x(G)
i

)
, (32)

where xi is the ith butterfly in the population and f (·) denotes the objective function.
Each firefly senses the fragrance, and the degree of the fragrance sensed by the butterfly,
designated as ϕi, can be determined as a function of I as follows:

ϕi = cIa, (33)

where a denotes the power exponent and c is the sensory fragrance parameter such that
c ∈ [0, 1]. Regarding the parameter a, when a = 0, other butterflies are unable to smell any
butterfly’s scent, but there is no fragrance absorption when a = 1.

The movement of each butterfly in the population is decided based on the switch
probability p; in this regard, either a global or local search is performed. The global search
phase is performed according to the expression

x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi, (34)
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where g∗ denotes the butterfly that emitted the strongest fragrance, i.e., achieved the best
objective function value, and r ∈ [0, 1] is a uniformly generated random number. The local
search is performed using the expression

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi, (35)

where x(G)
j and x(G)

k are the jth and kth butterflies chosen randomly from the solution space.
Thus, the movement of the ith butterfly is described as

x(G+1)
i =

 x(G)
i +

(
r2 × g∗ − x(G)

i

)
× ϕi, for rp < p

x(G)
i +

(
r2 × x(G)

j − x(G)
k

)
× ϕi, otherwise

(36)

where we see that the global search is activated if the randomly generated number rp is
less than p; otherwise, a local search is performed. The iteration stage is repeated until the
algorithm converges and the solution is displayed.

3.3. Multi-Objective Hybrid Butterfly Optimization and Particle Swarm Optimization Algorithm

Due to the inherent conflicting nature of objective functions in multi-objective opti-
mization problems, there is no single solution that simultaneously minimizes all considered
objective functions. Therefore, in solving MOO problems, it is crucial to obtain a set of
solutions, called Pareto-optimal solutions (Pareto front), which are considered optimal
because they represent a trade-off between the objectives, meaning that improving one
objective comes at the cost of worsening another. The acquired Pareto set offers decision
makers a variety of possibilities from which to pick based on their preferences and priorities.
Let us consider the MOO problem in Equation (1); then, the feasible domain F is a set
of solutions that satisfy all the constraints imposed on the considered problem, which is
written as

F =
{

x | gk(xi) ≥ 0∧ hl(xi) = 0∧ xi,j ∈
[

xLower
j , xUpper

j

]}
(37)

Then, for each solution x ∈ F, we say that it is Pareto-optimal if and only if there does
not exist any point y ∈ F for which f (y) ≤ f (x), such that f (y) 6= f (x) .

Definition 1. Non-dominated solution: The solution x is said to be non-dominated (or Pareto-
optimal) if and only if there does not exist another solution y such that fi(x) ≤ fi(y), ∀i ∈
{1, 2, . . . , M} with at least one strict inequality, i.e., ∃j ∈ {1, 2, . . . , M} : f j(x) < f j(y)

Definition 2. Pareto front: The set, which is composed of non-dominated Pareto-optimal solutions,
is called the Pareto front (PF), denoted as X = {x ∈ F|6 ∃y ∈ F , such that f (y) > f (x)}.

The BOA and PSO algorithms, however, were both initially proposed for single-
objective optimization problems. Later, different versions of the PSO algorithm for MOO
problems, as well as, in recent years, the BOA algorithm, were developed [18]. Furthermore,
to successfully solve MOO problems, we need to provide an adequate balance between
exploration and exploitation and keep population diversity. As a result, in order to suc-
cessfully handle complex MOO problems, the proposed multi-objective Hybrid Butterfly
Optimization and Particle Swarm Optimization Algorithm, named HMOBPSO, aims to
discover the Pareto optimal of the considered problem. This is accomplished by introducing
a selection operator based on crowding distance, as well as a separate archive in which all
non-dominated solutions found in each iteration are saved. Furthermore, with the intro-
duction of the appropriate hybridization between BOA and PSO algorithms, which utilizes
the adaptive parameter in determining which strategy to apply to the current optimization
stage, the algorithm effectively maintains the population diversity. By incorporating a
hybrid approach, the algorithm is able to overcome the limitations of each individual
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method and achieve better performance in solving complex multi-objective optimization
problems.

Firstly, the selection strategy, based on the crowding distance, is used to select the
solutions that will be kept in the archive Ps. The crowding distance is a measure of how
crowded a solution is in the objective space. Solutions that are too close to each other are
considered redundant and only one of them needs to be kept in the archive. The selection
strategy ensures that the archive contains a diverse set of non-dominated solutions that
cover the entire objective space. In each iteration, we compare all solutions written to the
archive Ps in order to determine whether the newly obtained solution should enter the
archive. Therefore, each solution is compared with each non-dominated solution in Ps in
order to determine whether the solution should stay in the archive.

Next, by looking into the mechanisms for the updating of particle positions of both PSO
and BOA algorithms, we observe that both algorithms have their strengths and weaknesses
in finding the optimal solution. Therefore, to improve the global exploration ability of the
proposed algorithm, we propose the integration of the term c2rand2

(
x(G)

gbest − x(G)
i

)
from

the velocity-updating equation from the PSO algorithm into Equation (34) of the BOA
algorithm, and, substituting the term g∗ with x(G)

gbest, we obtain

x(G+1)
i = x(G)

i +
(

r2 × x(G)
gbest − x(G)

i

)
× ϕi + c2rand2

(
x(G)

gbest − x(G)
i

)
. (38)

On the other hand, in order to improve the exploitation ability, the term
c1rand1

(
x(G)

pbest,i − x(G)
i

)
from Equation (29) has been introduced into Equation (35), and the

following is obtained

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi + c1rand1

(
x(G)

pbest,i − x(G)
i

)
, (39)

where, due to the multi-objective nature of the problem, the term ϕi is calculated according
to the following expression

ϕi =
M

∑
i=1

wi · fi, (40)

where the set of weights wi, i = 1, ..., M is chosen randomly to satisfy the condition

M

∑
i=1

wi = 1. (41)

In order to maintain the population diversity and explore the complete Pareto set, in
this paper, an adaptive parameter using the normalized population spacing is employed to
regulate which developed expression will be applied, which can be calculated as

PS(G+1) =

√√√√ 1
NP − 1

NP

∑
i=1

(
d̄(G+1) − d(G+1)

i

)2
, (42)

where d(G+1)
i is the distance between the ith particle and other particles in the population,

and d̄(G+1) represents the average minimum distance of all particles. In this regard, a large
value of this parameter indicates a diverse and spread-out population, which indicates
that the global search should be intensified. On the other hand, a smaller value of this
parameter indicates that the population is grouped in one region, so the local search is to
be intensified.

Based on this, the appropriate pseudo-code of the proposed HMOBPSO algorithm,
with the mechanism described above for updating the particle position is outlined in
Algorithm 1.
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Algorithm 1 Pseudo-code of the proposed hybrid butterfly optimization and Particle
Swarm Optimization Algorithm—HMOBPSO.

Initialize the parameters NP, n, a, c, c1, c2, MaxIter
Uniformly and randomly generate initial solutions x(0)i ∀i = 1, 2, . . . , NP

Set the initial x(0)i,pbest and x(0)gbest values
Calculate initial intensity I and ϕi
Initialize archive Ps
while iter < MaxIter do

for i = 1:NP do

Calculate the adaptive parameter PS(G+1) =

√
1

NP−1

NP
∑

i=1

(
d̄(G+1) − d(G+1)

i

)2

if PS(G+1) > 0.5 then
x(G+1)

i = x(G)
i +

(
r2 × x(G)

gbest − x(G)
i

)
× ϕi + c2rand2

(
x(G)

gbest − x(G)
i

)
else if PS(G+1) ≤ 0.5 then

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi + c1rand1

(
x(G)

pbest,i − x(G)
i

)
end if
Update archive Ps
Determine the personal best solution according to

x(G+1)
i,pbest =

{
x(G)

i,pbest, ifx(G)
i,pbest ≺ x(G)

i

x(G)
i , otherwise

Calculate x(G)
gbest

end for
end while

The methodology of the proposed HMOBPSO algorithm, described above, can be
divided into the following steps:

1. Initialize parameters: Initialize parameters of the HMOBPSO algorithm, including the
population size NP, the maximum number of generations MaxIter, and the lower and
upper bounds of decision space xLower

j , xUpper
j . Furthermore, initialize c1 = 2, c2 = 2,

a =0.25, c =0.01.
2. Generate the initial population: Generate the initial population of solutions by randomly

deploying NP solutions within the predefined bounds using the equation

x(o)i,j = xLower
j +

(
xUpper

j − xLower
j

)
· rand,

where rand is a random number in [0, 1] and the vector of initial positions is
x(0)i =

[
x(0)i,1 , x(0)i,2 , . . . , x(0)i,j , . . . , x(0)i,n

]
, ∀i = 1, . . . , NP,

3. Calculate the objective function: Calculate the objective function value in each x(0)i ,

4. Initialize the global and local best: Initialize the local best solution x(0)i,pbest, ∀i = 1, . . . , NP,

the same as the initial population x(o)i . Based on the calculated objective function

value, sort the population and determine the global best solution x(0)gbest.

5. Calculate initial intensity and fragrance: For each x(0)i calculate the intensity I using the
Equation (32) and fragrance ϕi using the Equation (33),

6. Initialize the archive: Initialize the empty archive Ps.
7. The following process is repeated until the stopping criterion is reached:
8. Calculate adaptive parameter: PSG+1 Using Equation (42), calculate the value of param-

eter PSG+1. This value will guide the process of optimization.
9. Check the parameter PSG+1 and move the population: Based on the value of parameter

PSG+1, apply the appropriate equation for the movement of population to each
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x(G)
i in the population (i = 1, . . . , NP). Therefore, if PSG+1 > 0.5, we apply the

expression shown in Equation (38), which facilitates the exploration of the solution
space. Otherwise, when PSG+1 ≤ 0.5, we apply the expression shown in Equation (39)
to improve local search.

10. Calculate the crowding distance: For each newly obtained solution in the population,
calculate the crowding distance.

11. Update archive: Ps Based on the calculated crowding distance, update the archive Ps,
where each solution is compared with each non-dominated solution in an archive in
order to determine whether the solution should stay in the archive.

12. Update the personal best: Using the expression

x(G+1)
i,pbest =

{
x(G)

i,pbest, ifx(G)
i,pbest ≺ x(G)

i

x(G)
i , otherwise

,

∀i = 1, 2, . . . , NP

update the personal best solution of the entire population.
13. Update the global best: Using the solutions in the archive Ps, update the global best

solution x(G)
gbest.

14. Stopping criterion: Stop the execution of the HMOBPSO algorithm if the termination
criterion is satisfied and go to Step 15; otherwise, go to Step 7 and repeat the search
for the global optimal solution.

15. Display result: Display the optimal result, which is reflected through the appropriate
Pareto-optimal set as well as a set of solutions that belong to the Pareto-optimal set.

The appropriate diagram depicting the process of the optimization of the planetary
gearbox using the proposed HMOBPSO algorithm is shown in Figure 4.
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Figure 4. Graphic illustration of the application of the HMOBPSO algorithm on the planetary-
gearbox-optimization problem.
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4. Experimental Results

This section presents an numerical analysis of the optimization performance of the
HMOBPSO algorithm. The experimental analysis employs numerical simulations to de-
termine the Pareto-optimal solutions to the formulated MOO problem of optimizing the
planetary gearbox. Furthermore, to validate the hybridization proposed in this paper, we
conduct a statistical analysis to compare the optimization performance of the proposed
HMOBPSO algorithm with that of several established algorithms, namely NSGA-II [16],
MOPSO [33], CMOPSO [34], and MOBOA [35], on DTLZ and ZDT benchmark problems.
For the analysis in this section, the parameters of the algorithms used are displayed in
Table 3.

Table 3. Specification of parameters of the optimization algorithm used in numerical experiments.

Algorithm Population Size NP
Max. Number of

Iterations Other Relevant Parameters

HMOBPSO

100 10,000

c1 = 2; c2 = 2; c = 0.01; a = 0.25

NSGA-II pc = 0.9—crossover probability; pm = 0.33—mutation
probability; ηc = 2 crossover index

CMOPSO γ = 10 size of elite particle set
MOPSO Repository size = 100; Mutation rate = 0.5
MOBOA Switch probability − 0.5

4.1. The Planetary Gear Train Optimization

Here, we present the results of numerical simulations conducted on the optimization
model of the planetary gearbox defined in Section 2. For reference purposes and for com-
parison, the obtained gearbox parameters are compared with an example from the reference
literature outlined in AGMA [36], whose parameters are shown in Table 4. Firstly, the
analysis of conflicting objectives is performed, where we have concluded that the objectives
gearbox volume V (Equation (2)), center distance a, and contact ratio εα (Equation (3)) are
not conflicting objectives and that a linear relationship can be established between them,
with a correlation coefficient of 0.6, as shown in the Figure 5.
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Figure 5. The non-conflicting relationship between gearbox volume V, center distance a, and contact
ratio εα. On the figures the red line represents the fitted linear relationship.

Therefore, for the next analysis, only one of these objectives will be taken into consid-
eration in combination with other conflicting objectives. Thus, we take into consideration
several combinations of objectives, including:

• Contact ratio (defined in Equation (3)) in combination with the gearbox efficiency ηH
gb

defined in Equation (18),
• Contact ratio εα with the bending stress σF defined in Equation (4)
• Contact ratio with the contact stress σH defined in (8),
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as well as three objective problems, which include the following combinations:

• Contact ratio εα with the gearbox efficiency ηH
gb and bending stress σF, and

• Contact ratio εα with the gearbox efficiency ηH
gb and contact stress σH .

Table 4. Parameters of reference gearbox outlined in [36].

Parameter Value

z1 20
z2 37
z3 94

m (mm) 9
a (mm) 295.6 mm

ηH
gb 0.97

V (mm3) 3.66 × 1010

εα 1.36

As stated in the introduction, since the majority of papers employ the NSGA-II algo-
rithm for engineering multi-objective optimization, we have performed numerical sim-
ulations with NSGA-II and proposed the HMOBPSO algorithm for comparison. The
parameters used in the simulations are NP = 100 particles and a maximum number of
generations of 10,000. The remaining parameters of these optimization algorithms are dis-
played in Table 3. The simulations are performed using MATLAB software on a computer
with 3.2 GHz CPU and 16 GB of RAM. Since the considered objectives are conflicting, there
is no single solution that can be extracted; rather, a Pareto set of solutions is obtained and
presented. Therefore, for comparison, an ideal solution xideal = (xideal,1, xideal,2, . . . , xideal,M)
is firstly generated as follows:

xideal,i = min( fi), ∀i = 1, 2, . . . , M (43)

where M is the number of objectives. Since solution xideal does not belong to the obtained
Pareto set, for the comparison, we obtained a compromise solution, as the solution closest
to the Pareto front to the ideal solution, with the Euclidean distance serving as the measure
of proximity.

The compromise solutions, derived through numerical simulation for various combi-
nations of objective functions described above, are presented in Table 5. These solutions
were obtained using both the proposed HMOBPSO algorithm and the widely used NSGA-II
algorithm. Additionally, the values for the reference AGMA gearbox are included in Table 4
for comparison.

To achieve an in-depth understanding of the data shown in Table 5, a visual overview
of the Pareto-optimal curves for the multi-objective optimization problem under consid-
eration, which were derived using both the proposed and the NSGA-II algorithm, were
analyzed. The Pareto optimum curves offer a graphical depiction of the trade-offs among
several objectives, enabling decision-makers to choose the most appropriate solution ac-
cording to their preferences, not just the compromise solution.

Since the gearbox efficiency and dimensions are of greatest importance, it is vital to
examine the impact of variations in the contact ratio (representing the gearbox dimensions)
of the planetary gearbox on the overall efficiency of the gearbox, where the appropriate
Pareto curves are presented in Figure 6.

The Pareto optimum curves depicted in Figure 6 illustrate the presence of conflicting
objectives. The ideal values for the contact ratio and efficiency of the gearbox are εα = 1.25
and ηH

gb = 0.9949, correspondingly, while the compromise solution for NSGA-II is εα = 1.4

and ηH
gb = 0.9932 and εα = 1.35 and ηH

gb = 0.9949 for the HMOBPSO algorithm. It has been
observed that the NSGA-II algorithm fails to achieve the entirety of the Pareto curve, hence
omitting crucial information that is essential for the designer.
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Table 5. The obtained values of design variables for the considered MOO problem of the planetary
gearbox and parameters of the reference industrial gearbox.

Algorithm z1 z2 z3 m mm x1 x2 x3 a mm ηH
gb V mm3 εα

Objectives εα and σF

HMOBPSO 19 22 60 10 0.70 0.50 0.50 215.31 0.9873 3.99 × 109 1.27
NSGA-II 19 22 97 10 0.70 0.50 0.50 215.31 0.9842 1.62 × 1010 1.27

Objectives εα and σH

HMOBPSO 20 23 104 10 0.70 0.50 0.50 225.35 0.9914 2.28 × 1010 1.29
NSGA-II 22 43 105 10 0.70 0.50 0.50 335.78 0.9850 7.43 × 1010 1.40

Objectives εα and ηH
gb

HMOBPSO 20 35 45 10 0.70 0.50 0.50 285.62 0.9949 3.76 × 109 1.35
NSGA-II 22 43 45 10 0.70 0.49 0.50 335.69 0.9933 5.99 × 109 1.40

Objectives εα, σH and ηH
gb

HMOBPSO 20 23 47 10 0.69 0.50 0.50 225.28 0.9925 2.23 × 109 1.29
NSGA-II 21 28 45 10 0.70 0.50 0.50 255.51 0.9903 2.79 × 109 1.33

Objectives εα, σF and ηH
gb

HMOBPSO 19 22 46 10 0.70 376.00 0.38 214.35 0.9912 1.84 × 109 1.30
NSGA-II 22 22 45 10 0.70 0.49 0.50 230.32 0.9894 2.12 × 109 1.31
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Figure 6. The appropriate Pareto-optimal curves obtained using the HMOBPSO and NSGA-II
algorithms for the case where the contact ratio εα in combination with gearbox efficiency are taken as
objectives.

Another important aspect for a gearbox is its safety and dimensions, which is analysed
with the following combinations of objectives εα and σF, as well as εα and σH , where the
appropriate Pareto-optimal curves are presented in Figure 7.
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Figure 7. Pareto-optimal curves obtained using HMOBPSO and NSGA-II algorithms, for two combi-
nations of objective functions (a) εα and σH and (b) εα and σF.

As in the previous case, we observe from Figure 7 that the considered paired objectives
are conflicting, as the reduction in gearbox dimensions inevitably leads to the increase
in appropriate stress. In the case of combination εα and σF , the ideal solution is 1.25 for
the contact ratio and 924.6 N/mm2 for the bending stress. In this regard, the compromise
solution for this case is represented as a tuple (εα, σF) and is (1.27, 817.7), which is obtained
using the HMOBPSO algorithm, and (1.27, 924.7) for the NSGA-II algorithm. For the
combination of objectives εα and σH , the ideal solution is represented as a tuple (εα, σH)
and is (1.25, 614.8). The compromise solution obtained using the proposed algorithm is
(1.29, 634), while for the NSGA-II, it is (1.4, 632).

By analyzing the three-dimensional Pareto-optimal curves for objectives such as
contact ratio εα, gearbox efficiency ηH

gb, and gear strength (σF and σH), engineers can gain
valuable insights into the trade-offs between these objectives. These insights can inform
decision making and help engineers make more informed choices based on their priorities.
For example, if the contact ratio is of utmost importance, the design engineer can identify
the region on the Pareto curve that maximizes this objective while still considering the
trade-offs with gearbox efficiency and strength. To enhance the evaluation of algorithmic
performance in addressing the planetary gearbox MOO problem within a three-dimensional
context, this study utilizes the Spacing metric. This metric is employed to assess the spread
or diversity of solutions across the Pareto front, particularly when the problem’s complexity
is less apparent compared to a two-dimensional scenario. This metric is defined as

S =

√
1

n− 1

n

∑
i=1

(
d− di

)2
, (44)

where n is the number of non-dominated solutions, di is the Euclidean distance between
the ith non-dominated vector and its nearest vectors in the Pareto set, and d is the mean of
all di. A higher spacing metric value indicates a more evenly distributed set of solutions.

Therefore, the appropriate three-dimensional Pareto-optimal curves, for the case when
three objectives have been considered, are depicted in Figure 8, where, for the objectives,
the contact ratio εα, gearbox efficiency ηH

gb, and contact stress σH have been taken into the
account.
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Figure 8. Three-dimensional Pareto-optimal curves obtained using the considered algorithms for the
case with three objective functions, including εα, σH and ηH

gb.

From the results in Figure 8, we observe that all considered objectives are conflicting,
where the increase in one objective leads to a decrease in the other two. In this regard, for
comparison purposes, an ideal solution (which does not belong to the Pareto front but
minimizes all objectives) is extracted as a tuple

(
εα, σH , ηH

gb

)
= (1.25, 614.8, 0.995), and the

compromise solution obtained using the HMOBPSO algorithm is (1.29, 633, 0.9925), and
the solution obtained using NSGA-II is (1.33, 630, 0.9903). The Spacing parameter of the
NSGA-II algorithm is 3.25, while the proposed HMOBPSO achieved a higher spacing value
of 4.99, showing that it is more efficient for the considered problem.

Next, we consider the following objectives: the contact ratio εα, gearbox efficiency
ηH

gb, and root stress σF in the MOO problem, with the obtained Pareto curves displayed in
Figure 9.
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Figure 9. Three-dimensional Pareto-optimal curves obtained using the considered algorithms for the
case with three objective functions, including εα, σF and ηH

gb .

From Figure 9, we can see that for the conflicting objectives, the ideal solution is a
tuple

(
εα, σF, ηH

gb

)
= (1.25, 817.7, 0.9949), while the compromise solution obtained using

the HMOBPSO algorithm is a tuple (1.3, 860, 0.9912) and the solution given using the
NSGA-II algorithm is (1.31, 863, 0.9894). The spread indicator for the NSGA-II algorithm is
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9.82, while for HMOBPSO, it is 17.77. This shows that the HMOBPSO is better suited for
the considered optimization problem.

Upon examination of the data supplied in Table 5 and considering the findings from
the Pareto-optimal fronts displayed in Figures 6–9, it is observed that in the majority of
cases, the optimal solution is achieved using the HMOBPSO algorithm described in this
paper. The best efficiency achieved is 0.9949, which is achieved with the proposed algorithm
for the case of objectives εα and ηH

gb. In all other objective combinations, the best efficiency
is achieved using the HMOBPSO algorithm. When compared to the industrial gearbox
reference, the proposed approach demonstrates a notable enhancement in various aspects.
Specifically, it yields a 35% decrease in gearbox volume and a 27.5% reduction in center
distance, which directly corresponds to gearbox size, and a 2.56% gain in gearbox efficiency.
By analyzing the Pareto fronts on Figures 6–9, we can see that the NSGA-II is not always
able to obtain the whole Pareto-optimal set. Comparing the spacing values obtained in 3D
Pareto fronts, we can see that the proposed algorithm is able to achieve higher spacing,
which is more appropriate for complex design processes. Overall, the results show that the
proposed algorithm offers significant improvements in terms of gearbox size, efficiency, and
spacing compared to the NSGA-II. The reduction in gearbox volume and center distance
not only reduces the overall size of the gearbox but also contributes to improved efficiency.
Additionally, the higher spacing achieved using the proposed algorithm indicates that it is
better suited to complex design processes, making it a more reliable and effective solution.

4.2. The Benchmark Results

In order to validate the performance in solving complex multi-objective optimization
problems with the proposed modified HMOBPSO algorithm, a set of DTLZ and ZDT
benchmark problems is employed in this paper. The ZDT benchmark problems were first
introduced by Zitzler, Deb, and Thiele and have since become a standard test suite for
multi-objective optimization algorithms [37]. The DTLZ problems are another popular
set of benchmark problems for multi-objective optimization, which were introduced by
Deb, Thiele, Laumanns, and Zitzler [38]. The solutions to these problems are known,
making it possible to compare the performance of different algorithms. Therefore, these
benchmark problems are widely used in the literature to evaluate the effectiveness of
multi-objective optimization algorithms. The performance of the algorithm is evaluated
based on its ability to find a set of Pareto-optimal solutions that provide a trade-off between
the conflicting objectives. The proposed modified HMOBPSO algorithm is compared
with other state-of-the-art multi-objective optimization algorithms, such as NSGA-II [16],
MOPSO [33], CMOPSO [34], and MOBOA [35], on the ZDT and DTLZ benchmark problems
to demonstrate its effectiveness.

To compare the optimization performance among the tested algorithms, the Inverted
Generational Distance (IGD) is employed as the commonly used metric for evaluating the
quality of a set of solutions obtained using a multi-objective optimization algorithm [39]. It
measures the distance between the obtained solutions and the true Pareto-optimal front.
The lower the IGD value, the better the quality of the solutions obtained. In addition to
IDG, other performance metrics such as the hypervolume and spread are also used in the
literature [39,40]. The IGD value is calculated using the following expression:

IGD =
∑vi∈PA

d(vi, PA)

|P∗| , (45)

where d(·) represents the smallest possible Euclidean distance between vi and the non-
dominated solution set’s points PA, which are provided by the tested algorithm, P∗ is a
set of uniformly distributed points along the true Pareto-optimal front, and |·| denotes the
operator that returns the number of the elements in the set. Ten thousand reference points
were chosen at random from the resulting Pareto fronts to construct IGD metrics.
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A Comparative Analysis of Statistical Performance

The Wilcoxon Signed-Rank and Friedman tests are commonly used statistical tests
to compare the performance of different algorithms based on their IGD values [41]. The
Wilcoxon Signed-Rank test is a non-parametric test used to compare two related samples,
while the Friedman test is a non-parametric test used to compare more than two related
samples. Since both of these tests are non-parametric tests, they do not require assumptions
regarding the distribution of the data. These tests help to determine if there is a statistically
significant difference between the algorithms’ performances or if they perform similarly.
Overall, the use of performance metrics and statistical tests is essential in determining the
effectiveness of multi-objective optimization algorithms and selecting the most suitable
algorithm for a given problem. In order to carry out statistical analysis in this paper, the
experiments were conducted independently for a total of 30 iterations, and the standard
deviation of the aforementioned performance metrics was computed. The statistical tests
were performed with a significance level of α = 0.05.

The Wilcoxon signed-rank test was applied in order to compare the performance of
the two algorithms and reveal if the first algorithm taken for comparison outperforms
the second method statistically. The present notation designates the summation of ranks
for the scenario in which the first algorithm exhibits superior performance compared to
the second as R+, whereas the summation of ranks for the scenario in which the second
algorithm outperforms the first is represented by R−. In this regard, the null hypothesis of
the Wilcoxon signed-rank test states that “it is assumed that there is no significant difference
between the performance of the two algorithms” [41], and the alternative hypothesis states
that there is a significant difference between the performance of the two tested algorithms.
If the tested p-value is less than the significance α, then the null hypothesis is rejected. On
the other hand, if the p-value is greater than α, the null hypothesis is accepted, and it can
be concluded that there is no significant difference between the performance of the two
algorithms.

The Friedman test, on the other hand, is used to compare the performance of more
than two related samples and determine if there is a significant difference between them.
Here, the algorithm that possesses the minimum rank value is identified as the most ef-
fective algorithm, whereas the algorithm with the highest rank is deemed to be the least
effective algorithm. Therefore, the null hypothesis of the Friedman test is that there is “no
significant difference between the performances of the tested algorithms” [41], and the
alternative hypothesis is that “there is a significant difference between the performance of
tested algorithms”. The Friedman test uses the test statistic Q, which is calculated as the
sum of squared deviations of the ranks of each algorithm from their mean rank, divided by
a constant factor. The p-value obtained from the test is compared to the significance level α
to determine if the null hypothesis should be rejected or not.

Table 6 presents the outcomes of numerical simulation conducted across 30 indepen-
dent runs for each of the ZDT test problems under consideration. The results are presented
in the form of mean and standard deviation values of IGD metrics.

From the results presented in Table 6, it is observed that the HMOBPSO algorithm
showed the best performance on a number of considered problems, including DTLZ1,
DTLZ3, DTLZ5, DTLZ6, and DTLZ7, while on other it had a performance similar to that of
the best-performing algorithm. To achieve better insight into the obtained data presented
in Table 6, the appropriate chart is created with the logarithm of the mean of IGD metric on
the y-axis, which is depicted in Figure 10.

The Wilcoxon signed-rank test was used to undertake a statistical pair-wise com-
parison of the optimization performance of the proposed HMOBPSO and other exam-
ined algorithms. Table 7 displays the statistical results obtained from the application of
Wilcoxon’s signed-rank test on ZDT benchmark problems within the present context. The
statistical analysis provided results that were used to assign one of three signs (+,−,≈) to
the comparison of the algorithms. Regarding this matter, the symbol (+) signifies that the
initial algorithm exhibits a significantly superior performance compared to the second algo-
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rithm, while the symbol (−) indicates that the first algorithm’s performance is significantly
inferior to that of the second algorithm. The symbol (≈) denotes that the two algorithms
being evaluated demonstrate comparable performance.

Table 6. The obtained mean and standard deviation values of the IGD metric for all used algorithms
over all considered ZDT and DTLZ benchmark problems.

Test Instances HMOBPSO NSGA-II MOBOA CMOPSO MOPSO
Mean ± Std

DTLZ1 2.5878 × 10−1

(2.78 × 10−1)
6.8853 × 100

(1.77 × 100)
2.1367 × 100

(6.27 × 100)
1.3832 × 101

(4.54 × 100)
4.3650 × 100

(2.50 × 100)

DTLZ2 6.9384 × 10−2

(2.53 × 10−3)
5.6932 × 10−2

(7.66 × 10−4)
3.5930 × 10−1

(2.92 × 10−2)
5.8342 × 10−2

(1.06 × 10−3)
1.2624 × 10−1

(2.13 × 10−2)

DTLZ3 7.6168 × 100

(3.99 × 100)
1.1711 × 102

(1.57 × 101)
3.2117 × 102

(5.48 × 101)
1.3933 × 102

(3.99 × 101)
1.3230 × 102

(5.20 × 101)

DTLZ4 1.4369 × 10−1

(1.99 × 10−1)
6.2684 × 10−2

(6.03 × 10−3)
8.8102 × 10−1

(1.13 × 10−1)
1.4057 × 10−1

(2.53 × 10−1)
3.0302 × 10−1

(2.65 × 10−1)

DTLZ5 6.0880 × 10−3

(3.45 × 10−4)
5.3969 × 10−2

(5.44 × 10−3)
2.6824 × 10−1

(3.37 × 10−2)
7.3418 × 10−3

(5.74 × 10−4)
9.1614 × 10−3

(1.39 × 10−3)

DTLZ6 1.0085 × 10−2

(5.19 × 10−2)
2.6649 × 10−1

(2.64 × 10−1)
7.8499 × 100

(4.91 × 10−1)
1.5201 × 10−1

(4.00 × 10−1)
9.1875 × 100

(1.11 × 10−1)

DTLZ7 1.0292 × 10−1

(5.36 × 10−2)
2.8526 × 10−1

(1.01 × 10−1)
6.7820 × 100

(5.19 × 10−1)
1.4424 × 10−1

(1.85 × 10−1)
6.9118 × 100

(7.16 × 10−1)

ZDT1 1.2544 × 10−2

(2.28 × 10−3)
2.4370 × 10−2

(1.62 × 10−2)
1.6425 × 100

(1.30 × 10−1)
5.0456 × 10−3

(3.85 × 10−4)
1.6634 × 100

(9.22 × 10−2)

ZDT2 2.7702 × 10−2

(4.03 × 10−2)
2.3539 × 10−2

(3.32 × 10−2)
2.5048 × 100

(1.38 × 10−1)
4.6474 × 10−3

(3.57 × 10−4)
3.1771 × 100

(2.18 × 10−1)

1x10−2

1x10−1

1x100

1x101

1x102

Figure 10. Visual representation of the mean of IGD metric from Table 6.

Table 7. The results of Wilcoxon’s statistical test between the proposed HMOBPSO and the other
algorithms taken for consideration on the selected ZDT and DTLZ benchmark problems.

Algorithms R+ R− p-Value Dec.

HMOBPSO vs. NSGA-II 36 9 0.1289 ≈
HMOBPSO vs. MOBOA 45 0 0.0039 +
HMOBPSO vs. MOPSO 45 0 0.039 +

HMOBPSO vs. CMOPSO 31 14 0.3594 ≈
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From the results in Table 7, it can be concluded that the proposed HMOBPSO algo-
rithm achieved similar performance to the NSGA-II and CMOPSO algorithms, while still
providing higher R+ values than R− in these cases. Compared to the MOBOA and MOPSO,
it clearly outperformed these algorithms.

Table 8 displays the mean rankings of the analyzed algorithms for various objective
functions of the ZDT benchmark problems, as per Friedman’s methodology, which is
performed to evaluate the efficiency of the proposed HMOBPSO algorithm with regard to
other state-of-the-art multi-objective optimization algorithms taken for analysis.

Table 8. The results of the Friedman statistical test for all algorithms across all ZDT and DTLZ test
problems, with a significance level of α = 0.05.

Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 ZDT1 ZDT2 Mean Ranking Rank

HMOBPSO 1 2.67 1 2.55 2.22 1.667 1.78 1.89 1.89 1.85 1
NSGA-II 3 2.55 2 2.11 3.11 1.889 2.33 1.78 2 2.35 2
CMOPSO 4 2.22 4 2.67 2.67 2.44 1.89 2.33 2.11 2.78 3
MOPSO 2 2.67 3 2.67 3 5 4.79 4.44 4.89 3.45 4
MOBOA 5 4.89 5 5 4 4 4.22 4.55 4.11 4.58 5

Friedman p value 0 0 0 0 0 0 0 0 0

Here, we display in bold the rank of the best-performing algorithm for the considered
problem, while the second-best algorithm is underlined. When analyzing the results in
Table 8, we observe that the obtained p values are lower than the significance α = 0.05,
meaning that there exists a significant difference between the performance of algorithms
taken for consideration. We observe that the HMOBPSO algorithm achieved the best
overall rank, which is in agreement with the results of Wilcoxon’s test. Hence, the statistical
analysis of the outcomes validates the efficacy of the hybrid algorithm proposed in this
paper.

5. Conclusions

The present paper examines the multi-objective optimization of the planetary gearbox,
taking into account various objective functions, including the center distance, gear volume,
gearbox efficiency, and the surface and bending stresses. A multi-objective optimization
model was developed for a planetary gearbox, incorporating various objectives and several
constraints, such as safety and reliability constraints, mounting constraints, and a constraint
ensuring uniform wear of the tooth profile. This study presents a novel hybrid method,
namely HMOBPSO, which integrates the PSO and BOA algorithms to address a challenging
MOO problem. The proposed approach integrates the PSO velocity update scheme into the
equations governing butterfly movement. Additionally, it combines the use of crowding
distance to optimize the selection of individuals. Furthermore, it suggests the inclusion
of an adaptive parameter for individual position updates and the substitution of switch
probability.

The algorithm under consideration has successfully generated the non-convex Pareto
frontier, which serves as a graphical representation of the interplay between opposing
objectives and is of importance for the designer in facilitating the selection of suitable
building parameters. The obtained findings were subjected to validation and subsequently
compared with the parameters of the reference industrial gearbox. The analysis revealed a
significant reduction in center distance, with a maximum decrease of 27.5%. Additionally,
the volume of the gearbox exhibited a notable improvement of 35%. Furthermore, the
efficiency of the gearbox displayed an enhancement of 2.56%. In addition, an assessment of
the optimization performance of the HMOBPSO algorithm was conducted by comparing it
to other established algorithms across several ZDT and DTLZ benchmark problems. The
efficacy of the HMOBPSO algorithm in the optimization of the planetary gearbox model
is evidenced by the improved solutions it yields in comparison to the NSGA-II method.
This observation underscores the efficacy and resilience of the algorithm proposed for
identifying optimal solutions.
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Future work can focus on examining the algorithm’s effectiveness across other issue
domains and exploring its capacity for addressing more intricate optimization challenges.
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Nomenclature

KA Application factor (-)
aag Center distance between sun and planet gears (mm)
Yε Contact ratio factor (-)
Zε Contact ratio factor (-)
Kv Dynamic factor(-)
ZE Elasticity factor (

√
N/mm2)

KFα Face load factor (-)
F Feasible domain of the optimization problem
b Gear width (mm)
β Helix angle (◦)
ZN Life factor for contact stress (-)
ZL Lubricant factor (-)
mn Module (mm)
E Modulus of elasticity of gears (kN/mm2)

αn Normal pressure angle (◦)
nw Number of planet gears (-)
zg Number of teeth of planet gear (-)
zb Number of teeth of ring gear (-)
za Number of teeth of sun gear (-)
da(g) Outside diameter of planet gear (mm)
da(b) Outside diameter of ring gear (mm)
da(a) Outside diameter of sun gear (mm)
ds Outside bearing diameter (mm)
D Outside diameter of ring gear (mm)
ηH

gb Planetary gearbox efficiency (-)
xg Profile shift coefficient of planet gear (-)
xb Profile shift coefficient of ring gear (-)
xa Profile shift coefficient of sun gear (-)
d(a) Pitch circle of sun gear (mm)
d(g) Pitch circle of planet gear (mm)
YRelT Relative surface factor (-)
ZR Roughness factor affecting surface durability (-)
YST Stress concentration factor (-)
YSa Stress correction factor (-)
YFa Tooth form factor (-)
Ft Transverse component of the normal force (N)
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KHα Transverse load factor (-)
αt Transverse pressure angle (◦)
V Volume of gears (mm3)

ZH Zone factor (-)

Appendix A

The values and procedures for the calculation of different factors used in the calculation
of the contact and bending stress of the planetary gearbox are outlined in this section. The
contact ratio factors Yε and Zε, as well as zone factor ZH , are determined according to the
expressions in [42,43]. The factors YFa and YSa are calculated according to the DIN3990
standard method C [42]. The values of the application factor and elasticity factor are taken
as KA = 1.2 and ZE = 189.9

√
N/mm2, respectively. Dynamic factor Kv and face and

transverse load factors KFα and KHα are calculated according to method B and method C of
the ISO standard, respectively [43]. Furthermore, the relative surface factor YRelT , stress
concentration factor YST , life factor for contact stress ZN , lubricant factor ZL, and roughness
factor affecting surfaces ZR are determined according to [42,43].
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8. Miler, D.; Lončar, A.; Žeželj, D.; Domitran, Z. Influence of profile shift on the spur gear pair optimization. Mech. Mach. Theory

2017, 117, 189–197. [CrossRef]
9. Abderazek, H.; Ferhat, D.; Ivana, A. Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear

optimization. Int. J. Adv. Manuf. Technol. 2017, 90, 2063–2073. [CrossRef]
10. Abderazek, H.; Sait, S.M.; Yildiz, A.R. Optimal design of planetary gear train for automotive transmissions using advanced

meta-heuristics. Int. J. Veh. Des. 2019, 80, 121–136. [CrossRef]
11. Yaw, M.; Chong, K. Optimize Volume for Planetary Gear Train by using Algorithm Based Artificial Immune System. Int. J. Adv.

Trends Comput. Sci. Eng. 2020, 9, 3. [CrossRef]
12. Kahouli, O.; Alsaif, H.; Bouteraa, Y.; Ben Ali, N.; Chaabene, M. Power system reconfiguration in distribution network for

improving reliability using genetic algorithm and particle swarm optimization. Appl. Sci. 2021, 11, 3092. [CrossRef]
13. Rosić, M.; Sedak, M.; Simić, M.; Pejović, P. An Improved Chaos Driven Hybrid Differential Evolutionand Butterfly Optimization

Algorithm for Passive Target Localization Using TDOA Measurements. Appl. Sci. 2023, 13, 684. [CrossRef]
14. Kennedy’, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; p. 7.
15. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734.

[CrossRef]
16. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
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