Error estimates for Gaussian quadrature of analytic functions

Davorka Jandrlić ${ }^{1}$, Aleksandar Pejčev ${ }^{1}$ and Miodrag Spalević ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mechanical Engineering, University of Belgrade, Serbia
djandrlic@mas.bg.ac.rs
apejcev@mas.bg.ac.rs
mspalevic@mas.bg.ac.rs

Abstract

We studied the error bound of Gaussian quadrature for analytic functions. The basic idea is to express the remainder of Gaussian quadrature as a contour integral, then the error bound is reduced to find the maximum of the kernel function:

$K_{n}(z ; \omega)=\frac{\varrho_{n}(z ; \omega)}{\pi_{n}(z)}, \quad \varrho_{n}(z ; \omega)=\int_{-1}^{1} \frac{\pi_{n}(t)}{z-t} d t, \quad z \in \mathbb{C} \backslash[-1,1]$.
The integral representation of the error term leads directly to the error bound
$\left|R_{n}(f)\right| \leq \frac{l(\Gamma)}{2 \pi}\left(\max _{z \in \Gamma}\left|K_{n}(z)\right|\right)\left(\max _{z \in \Gamma}|f(z)|\right)$,
where $l(\Gamma)$ represents the length of the chosen contour Γ.
We studied the estimates (2) for various weight functions with respect to this particular Γ.

ACKNOWLEDGEMENT

This research was supported in part by the Serbian Ministry of Science, Technological Development and Innovation according to contract number 451-03-47/2023-01/200105 dated February 3, 2023.

REFERENCES

[1] W. GAUTSCHI AND R. S. VARGA, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20 (1983), pp. 1170-1186.
[2] D. R. Jandrlić, Dj. M. Krtinić, Lj. V. Mihić, A. V. Pejčev, M. M. Spalević, Error bounds of Gaussian quadrature formulae with Legendre weight function for analytic integrands, Electron. Trans. Numer. Anal., 55 (2022), pp. 424-437.

