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Aleksandra 

University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia 
 

Abstract: Chamber dryers are widely used in various industries in order to remove the 

moisture from solid materials efficiently. Optimizing the design and operational 

parameters of chamber dryers plays a crucial role in enhancing their performance and 

energy efficiency. In order to maintain the temperature at the desired level, it is 

necessary to implement a good control system. To be able to facilitate the process of 

finding and setting parameters of the controller, for many control algorithms it is 

essential to make the reliable model of the object. The aim is to develop both reliable 

and accurate predictive model that can assist in optimizing the design, structures, and 

inspection processes of chamber dryers, which will lead to enhanced energy efficiency, 

harvesting and improved drying performance. 

In this paper, the authors propose a novel approach for modeling heat flow transfer in 

chamber dryers using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

Quanser chamber was selected as the object of the research because of how closely its 

geometry, material choice, and air flow resemble the structural properties of a dryer. 

To obtain the most realistic model possible, parameters of ANFIS were found using 

Particle Swarm Optimization algorithm. By incorporating historical operational data 

of experimental measurements, the ANFIS model can learn and adapt to the dynamic 

behavior of the dryer system. 

Key words: Design and Structures, Optimization, ANFIS, PSO, Heat-Flow Chamber 

Dryer, Energy Efficiency 

1. INTRODUCTION 

The indoor environmental parameters such as temperature, ventilation, pollution and 

humidity are governed by airflow patterns. These airflow patterns form the essential link 

between the outdoor environment and the chamber microclimate; thus an understanding 

of the principles of air movement is necessary in order to provide the correct quantities of 

air and the proper distribution patterns to meet the needs of the application [1]. 

Temperature control is considered to be one of the crucial parameters [2] in numerous 

industries, including agriculture, where identifying heat transfer within a room or 

chamber is essential for designing an efficient Heating, Ventilation, and Air Conditioning 

(HVAC) system. Some research papers have explored this topic using fuzzy and 

predictive radial basis function (RBF) [3], neural networks [4], or even hybridizing those 

models [5] and [6]. 

Developing accurate heat transfer models can assist researchers and engineers in 

comprehending the physical mechanisms involved in energy conversion processes and 

enhancing the efficiency of control systems. System identification is a vital tool for 

creating a mathematical model that accurately represents the behavior of a physical 
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system based on experimental data. This process is particularly important when the 

mathematical relationships between input and output are unknown or too complex to be 

easily expressed and understood. By gathering experimental data that describe the 

object’s behavior, the created model can predict the system’s output not only under the 

conditions in which the data was collected but also under various unknown conditions. 

As already mentioned above, various techniques, including artificial intelligence, 

fuzzy logic, machine learning, and optimization algorithms, are widely utilized for 

system identification and can be found in the literature. For instance, in two studies, the 

authors proposed an ensemble of various neural networks and an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model for the prediction of heating energy consumption in 

NTNU campus Gløshaugen [7], [8]. 

Additionally, there are approaches that employ some of the metaheuristic algorithms 

in order to optimize the parameters of ANFIS. In [9] Authors used Particle Swarm 

Algorithm (PSO) and Genetic Algorithm (GA) for the time-series prediction of wind 

speed in Brazil. The results demonstrated that the combination of ANFIS models with 

these two metaheuristic algorithms can increase the prediction accuracy of the ANFIS 

model for all time intervals. Similarly, in another study, ANFIS-PSO model was created 

to improve the ability of the neuro-fuzzy approach in the prediction of agricultural 

drought [10].  

Metaheuristics, which encompass abstract stochastic optimization methods, are 

frequently employed in solving both constrained and unconstrained nonlinear system 

problems. In this paper, system identification is performed using both linear methods, 

such as time-delayed transfer functions, and nonlinear methods, such as an ANFIS 

optimized with the PSO. This approach allows for a comprehensive analysis of system 

behavior. 

2. OBJECT DESCRIPTION 

The structural aspects of an agricultural dryer, including its geometry, material 

selection, and insulation properties, can vary depending on the specific design and 

intended application. Agricultural dryers typically consist of a chamber or enclosure 

where the drying process takes place. The chamber can be cylindrical, rectangular, or any 

other suitable shape, depending on the dryer's design. The geometry of the airflow path 

typically includes inlet and outlet openings, air distribution channels, and baffles to guide 

the airflow evenly through the drying material. The frame and structure of the agricultural 

dryer are often made of sturdy materials such as steel or aluminum. These materials 

provide strength, stability, and durability to support the weight of the drying material and 

the operational stresses [11]-[13]. Drying chamber walls, the air distribution system, and 

insulation properties can vary depending on factors such as the type of crop being dried, 

the scale of the operation, the available energy sources, and the desired drying efficiency. 

Design considerations should also take into account factors such as safety, maintenance, 

and cost-effectiveness. In this paper the Quanser chamber (Fig. 1) is selected for the heat-

flow experiment (HFE), due to its resemblance to the structural characteristics of a 

typical dryer. The apparatus is essentially a sophisticated rheostat, consisting of an 

aluminum plate with three temperature sensors uniformly distributed along the conduit, a 
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blower, and a coil-based heating unit. At various points on the plate, the thermocouples 

measure the temperature. Fast-setting platinum transducers are used in all three sensors. 

The fan speed (corresponding signal Vt) is determined using the tachometer on the 

blower. The provided power (Vh voltage applied to the heater and Vb voltage applied to 

the blower) is controlled using analog signals (S1, S2 and S3), and Quanser's software is 

used to gather and analyze the thermocouple data.  

 

 

Fig. 1 HFE prototype dryer 

3. SYSTEM MODELING  

System modeling based on conventional mathematical methods is not adequately adapted 

for working with poorly defined systems. Important advantages that modern methods can 

offer comparing to the traditional ones are reflected in situations where: (a) there are 

many input variables, but few samples; (b) data are heterogeneous and contain multiple 

types; (v) a nonlinear input-output dependence must be found. Just like traditional 

models, modern techniques are using well-known statistical methods to evaluate the 

obtained performance. One of these up-to-date techniques is precisely the artificial 

intelligence. It includes algorithms that contain elements of the human way of thinking 

and solving problems, such as fuzzy logic algorithms, artificial neural networks, 

metaheuristic algorithms, as well as expert systems [14]. In this chapter, two 

mathematical models of the system will be presented: the first one is a linear model 

obtained through identification, and the second one is created using ANFIS. 

3.1. Linear model: Transfer function with delay 

To identify the mathematical representation of the heat flow system, an open-loop 

experiment was conducted. During the experiment, the voltages of the blower and heater 

were applied, and three temperature sensors were utilized to measure the temperatures 

inside the chamber. After five seconds, a step signal of 5V was introduced. The blower 

input voltage remained at 3V for the entire duration of the experiment. After 120 seconds, 

the experiment automatically ended. Notably, sensor 1, as being closer to the heater and 

the blower, showed a faster temperature rise compared to the sensors 2 and 3. 

Consequently, the rate of temperature increase varied across the chamber. Three models 

were developed, each corresponding to the temperature readings of the respective 
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sensors. The step responses of heat flow align with the identified first-order transfer 

functions with delay, as represented by (1). Moreover, Fig. 2 shows the step responses of 

these models. In terms of the mean square error (MSE) second sensor (s2) gives the best 

results.  
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3.1.1. Linear model testing 

Considering the excessive noise in the output signal of sensor 3 and the larger error 

exhibited by sensor 1, the transfer function selected to describe the system is derived 

from sensor 2 (s2) using (1). This particular sensor, located in the middle of the chamber, 

demonstrates the smallest MSE, as indicated in Fig. 2. (left). Furthermore, a comparison 

is made between the model and the real object, but with a different input signal. In this 

case, a 4V step signal was introduced five seconds into the beginning of the experiment.  

 

 

Fig. 2 Linear model: Transfer functions with delay and (left),  

       Linear model testing with different input (right) [15] 

The obtained results, illustrated in Fig. 2 (right), reveal a significantly higher MSE of 

1.1888. Moreover, there is an approximate 1.5°C difference between the model and the 

actual output signal in a steady state, and this discrepancy tends to amplify as we move 

away from the original identification point.  

Consequently, it is concluded that when altering the input, this particular linear model 

is unsuitable for accurately representing the system. 
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3.2. Nonlinear model 

3.2.1. General architecture of ANFIS 

As an exceptional machine learning model that combines the strengths of fuzzy logic 

and neural networks, ANFIS is capable of creating accurate predictions, classifications, 

and even control algorithms, which have found applications in various domains, 

including complex system identification, controllers, as well as image processing. 

The neural network component of ANFIS adjusts the fuzzy sets and operator settings 

to improve prediction accuracy. Typically, the backpropagation algorithm, a gradient 

descent method, is employed for this purpose to minimize the difference between 

predicted and actual outputs. One of the key advantages of ANFIS is its capability to 

handle nonlinear interactions between input and output variables. This is achieved by 

utilizing fuzzy sets to represent inputs and outputs, capturing complex interactions and 

nonlinearities. Furthermore, the neural network component of ANFIS can be trained to 

adapt the parameters of the fuzzy sets and operators, thereby improving the fit of the data 

and generating more precise predictions. The ANFIS model (with two input variables) 

consists of five layers, as shown in Fig. 3. 

 

 

Fig. 3 ANFIS architecture 

 

First Layer: The initial layer calculates the membership degree of the corresponding 

membership function and outputs it. Each node in this layer is flexible and can adjust its 

shape during training. Every input node represents an input variable and transfers the 

input value to the subsequent layer. 

    1 1

1 2 2,  ,  1,2.
i ii i BO x O x i       (2) 

The membership functions μAi and μBi correspond to i=1,2. In the literature, Gaussian 

or bell-shaped membership functions are commonly used, although various other types 

have also been explored. One specific example is the Gaussian membership function, 

which is defined by two parameters.  

  
 

2

22 ., ,

x c

G x c e




   (3) 

Second Layer: In contrast to the previous layer, the nodes in the second layer remain 

constant. The output of each node indicates the firing strength of the corresponding rule, 
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wi. A higher firing strength suggests that the rule holds greater influence in determining 

the final output.  

    2

1 2· ,  1,2.
i ii i BO w x x i      (4) 

Third Layer: This layer computes the normalized firing strength of each rule by 

dividing the firing strength of a rule by the sum of all firing strengths, ensuring that the 

values fall within the range of 0 to 1.  

 3

1 2

,  1,2.i
i i

w
O w i

w w
  


 (5) 

Fourth Layer: This layer calculates the product of the normalized firing strength and 

the consequent parameter of each rule, combining them to obtain the weighted 

consequent values. 

  4

1 2  ,i i i i i i iO w f w p x q x r     (6) 

where: pi, qi, and ri are the consequent parameters. 

Fifth Layer: The final layer sums up the weighted consequent values from all rules to 

generate the overall output of the ANFIS system. 

        5

1 1 1 1 2 1 1 1 2 1 2 2 2 2 2 2 . 
i ii

i i i

i ii

w f
O y w f w x p w x q w r w x p w x q w r

w
       





 (7) 

3.2.2. PSO algorithm 

The Particle Swarm Optimization (PSO) algorithm is a metaheuristic technique 

inspired by swarm behavior, aiming to find optimal solutions by simulating particle 

movement and interaction in a search space. Each particle represents a potential solution 

and adjusts its position based on local and global best-known positions. Particle 

movement follows the principles of exploration and exploitation. Exploration occurs 

through random velocity adjustments, allowing particles to explore different areas. 

Exploitation involves particles being attracted to the best-known positions, converging 

towards promising areas. In each iteration, particles update their velocities and positions 

using mathematical formulas based on their current state and best-known positions. The 

process continues until a stopping criterion, like a maximum iteration limit or satisfactory 

solution, is reached, as shown in Fig. 4. PSO has been successfully applied to a wide 

range of optimization problems, including engineering design, scheduling, data 

clustering, and neural network training. This algorithm was introduced by Dr. James 

Kennedy and Dr. Russell Eberhart in 1995. and since then, the PSO has gained popularity 

as an effective optimization technique and has been further developed and extended by 

various researchers [16]. There have even been instances where some new metaheuristic 

algorithms have been accused of bearing similarities to PSO in terms of population-based 

search and the concept of updating solutions based on local and global information [17] 

and in terms of the concept of attraction and movement of individuals within the 

population [18]. 
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Fig. 4 Flowchart of PSO algorithm [16] 

The ANFIS structure comprises two sets of parameters: premise parameters and rule 

consequence parameters. The process of training the ANFIS network involves 

determining these parameters through an optimization algorithm. Over time, various 

training approaches have been proposed for ANFIS, including derivative-based 

(gradient), heuristic, and hybrid methods. There are two possible strategies for parameter 

setting: using a single optimization algorithm to set all parameters or employing different 

algorithms for setting the premise and consequence parameters separately. In this 

research, the first approach is used, where PSO is combined with ANFIS in order to 

obtain the best possible results. 

Gradient algorithms, while effective, can be susceptible to getting trapped in local 

minima. This limitation has paved the way for the emergence of metaheuristic 

algorithms. A comprehensive analysis of recent literature reveals that metaheuristic 

algorithms are more prevalent than gradient algorithms, and their popularity continues to 

grow (as depicted in Fig. 5 [14]). Some of the widely known and frequently used 

metaheuristic algorithms include Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), 

Differential Evolution (DE), Harmony Search (HS), Firefly Algorithm (FA), Mine Blast 

Algorithm (MBA), Cuckoo Search (CS), and Artificial Bee Colony (ABC). 
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Fig. 5 Percentage of papers on KOBSON when ANFIS and metaheuristic algorithms are 

set as keywords [14] 

3.2.3. ANFIS optimization and experimental results 

To avoid an infinite number of identification points and models, an alternative model 

for heat flow exchange in the chamber is created. This model is nonlinear and it is 

intended to be valid for the entire state space. For this purpose, ANFIS is particularly 

suitable. 

In this paper, ANFIS utilizes Gaussian membership functions, as shown in (3), where 

the premise parameters are represented by σi (standard deviation) and ci (center). The 

total number of underlying parameters is determined by the sum of parameters across all 

membership functions. In this case, there are 40 premise parameters (2 inputs, 10 

Gaussian membership functions with 2 parameters). Additionally, the consequent 

parameters, denoted as pi, qi, and ri, are identified from the fourth layer, as indicated in 

(6). The ANFIS structure in this paper encompasses a total of 30 consequent parameters 

(3 parameters per rule, with a total of 10 rules). To summarize, the ANFIS architecture 

presented in this paper involves a total of 70 parameters that need to be optimized using 

the PSO metaheuristic approach. Evaluating the effectiveness of the ANFIS model on a 

specific dataset is done through a fitness function, with the MSE being commonly used 

for comparison with linear identification approaches. The ANFIS model was constructed 

by employing various input voltages, including 1.5V, 2V, 3V, 3.5V, 4.5V, and 5V while 

maintaining a constant blower input voltage of 3V. To assess its performance on an 

untrained input of 4V, the same input was also applied to the linear model utilizing the 

second transfer function from (1). Fig. 6 presents the performance of both models under 

these conditions, with the ANFIS model yielding a MSE of 0.0003 (blue line). The 

results demonstrated that the ANFIS model optimized by PSO outperformed both the 

standard linear model (which MSE, in this case, is 1.1888, green line) and even ANFIS – 

GA model that has been made in previous research [15] for the same purposes (which 

MSE was 0.009864). This case study showed that combining ANFIS with PSO algorithm 

can provide excellent results in the real world problem of identification dryer model. 
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Fig. 6 Comparison of the linear model and ANFIS optimized with the PSO algorithm 

4. CONCLUSION 

After conducting experiments outlined in this paper, it becomes evident that the 

ANFIS nonlinear identification method exhibits superiority over standard identification 

approaches. The standard method relies on a linear model with a transfer function and 

delay, which only operates effectively around a specific point. In contrast, ANFIS 

possesses the capability to handle highly nonlinear systems and this flexibility is crucial 

for decision-making in intricate systems. To ensure optimal performance, the parameters 

of the ANFIS model, both premise and consequent, are determined using a well-known 

metaheuristic method called Particle Swarm Optimization. The improvement that this 

paper provides to the problem of finding the dryer model is reflected in the MSE, which 

drops from 1.1888 with the classical method to 0.0003 with ANFIS. Therefore, it can be 

concluded that the ANFIS model outperforms basic models, even when faced with input 

voltages that were not included during training.  

This research could contribute not only to the identification of dryer models, but also 

to temperature control in them. Enhancing the performance and energy efficiency of 

chamber dryers heavily relies on optimizing their design and operational parameters. An 

effective control system is crucial for maintaining the desired temperature levels. To 

facilitate the parameter configuration process for the controller, it is imperative to 

establish a reliable model of the object. This model will aid in optimizing the processes of 

chamber dryers, ultimately resulting in improved energy efficiency, increased yield, and 

enhanced drying performance. 
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