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Abstract. In this paper, we introduce the concept of partial cone b-metric spaces as a generalization
of partial metric, cone metric and b-metric spaces and establish some topological properties of
partial cone b-metric spaces. Moreover, we also prove some common fixed point theorems for cyclic
contractive mappings in such spaces. Our results generalize and extend the main results of Huang
and Zhang [Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.
Appl., 332:1468–1476, 2007], Stanić et al. [Common fixed point under contractive condition of
Ćirić’s type on cone metric type spaces, Fixed Point Theory Appl., 2012:35, 2012] and Latif et
al. [Fixed point results for generalized (α,ψ)-Meir–Keeler contractive mappings and applications,
J. Inequal. Appl., 2014:68, 2014]. Some examples and an application are given to support the
usability of the obtained results.

Keywords: partial metric spaces, cone metric spaces, b-metric spaces, contractive mappings,
common fixed point.

1 Introduction and preliminaries

There are many generalizations of concept of metric spaces in the literature. In particular,
many fixed point theorems transpose from metric spaces to b-metric spaces, partial metric
spaces, cone metric spaces considered in the current literature.
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The concept of b-metric spaces was introduced by Bakhtin [7] and extensively used
by Czerwik [8]. Since then, some interesting results have been presented about the ex-
istence of a fixed point for single-valued and multi-valued mappings in b-metric spaces
(see [5, 6, 9, 15, 27]). In [21], Matthews introduced the concept of a partial metric space
as a part of the study of denotational semantics of dataflow for networks. Moreover,
Matthews showed that the Banach contraction principle could be generalized to the par-
tial metric context for applications in program verification. After that, many fixed point
results for mappings satisfying different contractive conditions in partial metric spaces
have been proved (see [2, 4, 23]). Moreover, Shukla [30] defined the notion of partial
b-metric spaces as a generalization of partial metric and b-metric spaces. Mustafa et
al. [22] introduced a modified version of partial b-metric spaces in order to guarantee
that each partial b-metric pb generalizes a b-metric dpb .

In [11], Huang and Zhang introduced the notion of cone metric spaces and extended
the Banach contraction principle to cone metric spaces over a normal solid cone. More-
over, they defined the convergence via interior points of the cone. Such an approach allows
the investigation of the case that the cone is not necessarily normal. Since then, there were
many references concerned with fixed point results in cone spaces (see [3, 13, 16, 20, 25,
26, 29, 32–34]). In 2011, Malhotra et al. [19] and Sonmez [31] defined a partial cone
metric space; Hussain and Shah [12] introduced a cone b-metric space and established
some topological properties in such spaces.

We first recall some definitions from b-metric spaces and partial metric spaces.

Definition 1. (See [7].) Let X be a nonempty set and s > 1 be a given real number.
A function d : X × X → R+ is a b-metric on X if, for all x, y, z ∈ X , the following
conditions hold:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, y) 6 s[d(x, z) + d(z, y)].

In this case, the pair (X, d) is called a b-metric space.

Definition 2. (See [21].) A partial metric on a nonempty setX is a function p : X×X →
R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(x, y) = p(y, y) if and only if x = y;
(p2) p(x, x) 6 p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

In this case, the pair (X, p) is called a partial metric space and p is a partial metric on X .

Now, we recall some definitions from cone metric spaces.
Let E be a topological vector space. A cone of E is a nonempty closed subset P of E

such that

(i) ax+ by ∈ P for each x, y ∈ P and each a, b > 0, and
(ii) P ∩ (−P ) = {θ}, where θ is the zero element of E.
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Common fixed point theorems for cyclic contractive mappings 809

Each cone P ofE determines a partial order 4 onE by x 4 y if and only if y−x ∈ P
for each x, y ∈ E. We shall write x ≺ y to means x 6 y and x 6= y.

A cone P of a topological vector space E is solid if intP 6= ∅, where intP is the
interior of P . For each x, y ∈ E with y − x ∈ intP , we write x � y. A cone P of
a normed vector space (E, ‖·‖) is normal if there exists K > 0 such that θ 4 x 4 y
implies that ‖x‖ 6 K‖y‖ for each x, y ∈ P , and the minimal K is called a normal
constant of P .

Definition 3. (See [11].) Let X be a nonempty set, and let P be a cone of a topological
vector space E. A cone metric on X is a mapping d : X × X → P such that for all
x, y, z ∈ X:

(d1) d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) 4 d(x, z) + d(z, y).

The pair (X, d) is called a cone metric space over P .

It is obvious that b-metric spaces, partial metric spaces and cone metric spaces gener-
alize metric spaces.

In [38], Zhu et al. introduced the following definition and extended the notion of
a cyclic mapping in [17].

Definition 4. (See [38].) Let X be a nonempty set, m be a positive integer, A1, A2, . . . ,
Am be subsets of X , Y =

⋃m
i=1Ai, and S, T : Y → Y be two self-maps. Then Y is said

to be a cyclic representation of Y with respect to S and T if the following two conditions
are satisfied:

(i) S(Ai), i = 1, 2, . . . ,m, are nonempty closed sets;
(ii) T (A1) ⊆ S(A2), T (A2) ⊆ S(A3), . . . , T (Am) ⊆ S(A1).

Let X be a nonempty set, S, T : X → X be two mappings. A point x ∈ X is said
to be a coincidence point of S and T if Sx = Tx. A point w ∈ X is said to be a point
of coincidence of S and T if, for some x ∈ X , w = Sx = Tx. The mappings S, T
are said to be weakly compatible if they commute at their coincidence points (that is,
TSz = STz, whenever Sz = Tz).

Lemma 1. (See [18].) Let E be a topological vector space and P be a cone, and {un}
be a sequence in E. Then un→‖·‖θ implies that for each c ∈ intP , there exists a positive
interger n0 such that c± un ∈ intP , that is, un � c for all n > n0.

Recently, without using the normality of the cone, Malhotra et al. [19] and Jiang and Li
[14] extended the results of [12] to θ-complete partial cone metric spaces. Latif et al. [18]
presented a fixed point theorem for generalized (α,ψ)-Meir–Keeler contractive mappings
in complete metric spaces. Meantime, other authors also obtained some interesting results
in this area (see [1, 10, 17, 24, 28, 35–40]).

The aim of the paper is to introduce the concept of partial cone b-metric spaces and
establish some topological properties of the partial cone b-metric spaces. Moreover, we

Nonlinear Anal. Model. Control, 21(6):807–827



810 C. Zhu et al.

obtain some common fixed point results for cyclic αS-Hardy–Rogers contractive map-
pings and generalized cyclic (α,ψ)S-Meir–Keeler contractive mappings in such spaces.
Also, we use one of our obtained results to prove an existence theorem of a common
solution of integral equations. It is worth pointing that our results generalize and extend
the main results of [1–4, 13, 16, 18, 26, 29, 32–34].

2 Basis definitions and properties of partial cone b-metric spaces

In this section, inspired by the notion of partial b-metric spaces in [22], we introduce the
concept of a partial cone b-space and deduce some properties of partial cone b-metric
spaces.

Definition 5. Let X be a nonempty set and P be a cone of a topological vector space E,
and s > 1 be a given real number. A partial cone b-metric on X is a mapping p :
X ×X → P such that for all x, y, z ∈ X:

(p1) p(x, x) = p(x, y) = p(y, y) if and only if x = y;
(p2) p(x, x) 4 p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) 4 s[p(x, z) + p(z, y)− p(z, z)] + (1− s)[p(x, x) + p(y, y)]/2.

The pair (X, p) is called a partial cone b-metric space with coefficient s > 1, and p is
called a partial cone b-metric on X . Since s > 1, from (p4) we have

p(x, y) 4 s
[
p(x, z) + p(z, y)− p(z, z)

]
4 s
[
p(x, z) + p(z, y)

]
− p(z, z).

It should be noted that in a partial cone b-metric space (X, p), if p(x, y) = θ, then
from (p1) and (p2) imply that x = y. But if x = y, p(x, y) may not be θ. On the other
hand, it is obvious that partial cone b-metric spaces generalize partial metric, cone metric
and b-metric spaces. Now, we give some examples to illustrate the partial cone b-metric
spaces.

Example 1. Let X = E = C([0, T ]) and P = {u ∈ E: u(t) > 0 for all t ∈ [0, T ]}.
Define a mapping p : X ×X → P by

p(x, y)(t) = f(t) max
06t6T

{∣∣x(t)− y(t)
∣∣q + β

}
for all x, y ∈ X , where q > 1, β > 0, and f : [0, T ] → R+ is a function such that
f(t) = et for all t ∈ [0, T ]. Then (X, p) is a partial cone b-metric space with coefficient
s = 2q−1.

Example 2. Let E = C1
R[0, 1] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ and X = P =

{u ∈ E: u(t) > 0, t ∈ [0, 1]}, which is a non-normal solid cone. Define a mapping
p : X ×X → P by

p(x, y) =

{
x2, x = y,

(x+ y)2 otherwise.

Then (X, p) is a partial cone b-metric space with coefficient s = 3.
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The following conclusion is valid and its proofs is referenced to [33].

Proposition 1. Let (X, p) be a partial cone b-metric space with coefficient s > 1. For
each x ∈ X and each c � θ, c ∈ E, let Bp(x, c) = {y ∈ X: p(x, y) � p(x, x) + c}
and B = {Bp(x, c): x ∈ X, c� θ}. Then B is a subbase for some topology τ on X .

Proof. For each c � θ, we have p(x, x) � p(x, x) + c for all x ∈ X . It follows that
X =

⋃
Bp∈BBp. Hence, B is a subbase for some topology τ to on X .

We present the following example to show that B is not a base for any topology on X .

Example 3. Let X = {i, j, k} and put p : X ×X → R+ as follows:

(i) p(i, i) = p(j, j) = 2 and p(k, k) = 1;
(ii) p(i, j) = p(j, i) = 3, p(j, k) = p(k, j) = 2 and p(i, k) = p(k, i) = 6.

It is clear that (X, p) is a partial cone b-metric space with coefficient s = 3. For
each x ∈ X and each c > 0, let Bp(x, c) = {y ∈ X: p(x, y) < p(x, x) + c} and
B = {Bp(x, c): x ∈ X, c > 0}.

Since p(i, j) = 3 < 2 + 1 = p(i, i) + 1, we have j ∈ Bp(i, 1). For any c > 0,
since p(j, k) = 2 < 2 + c = p(j, j) + c, we have k ∈ Bp(j, 1). On the other hand,
p(i, k) = 6 > 3 = 2 + 1 = p(i, i) + 1 implies k∈̄Bp(i, 1). Hence, B is not a base for any
topology on X .

Let (X, p) be a partial cone b-metric space. In this paper, τ denotes the topology onX ,
B denotes a subbase for the topology τ , and Bp(x, c) denotes the p-ball in (X, p), which
are described in Proposition 1.

Definition 6. Let (X, p) be a partial cone b-metric space over a solid cone P of a normed
vector space (E, ‖·‖), {xn} be a sequence in X and x ∈ X .

(i) {xn} converges to x with respect to p if, for every c ∈ E with c� θ, there exists
n0 ∈ Z+ such that for all n > n0, p(xn, x) � p(x, x) + c. We denote this by
xn→x.

(ii) {xn} is said to be a Cauchy sequence in (X, p) if there exists u ∈ P such that
limn→∞ p(xm, xn) = u. The partial cone b-metric space (X, p) is complete if
each Cauchy sequence {xn} of X converges to a point x ∈ X with respect to p
such that p(x, x) = u.

(iii) {xn} is said to be a θ-Cauchy sequence in (X, p) if, for each c ∈ intP , there
exists a positive integer n0 such that p(xn, xm) � c for all m,n > n0. The
partial cone metric space (X, p) is θ-complete if each θ-Cauchy sequence {xn}
of X converges to a point x ∈ X with respect to p such that p(x, x) = θ.

Note that if P is a normal solid cone of a normed vector space (E, ‖·‖), then every
θ-Cauchy sequence in (X, p) is Cauchy sequence (X, p) and each complete partial cone
b-metric space is θ-complete.

On the other hand, in partial cone b-metric spaces, the limit of convergent sequence
may not be unique. In fact, if (X, p) is a partial cone b-metric space, then (X, τ) is T0
space, but need not be T1. Now, we give the following example.
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Example 4. Let E = R2, P = {(x, y) ∈ E: x, y > 0} ⊂ R2 and X = R+. Define
p : X ×X → P by

p(x, y) =

(
1

2
max{x, y}, max{x, y}+ β

)
for all x, y ∈ X , where β > 0 is constant. Then (X, p) is a θ-complete partial cone
b-metric space with coefficient s = 1. Now, we define a sequence {xn} in X by xn = 2
for all n ∈ N . Note that if y > 2, we have p(xn, y) = (y/2, y + β) = p(y, y). Thus, for
every c � θ, we have θ 4 p(xn, y) − p(y, y) � c for each y > 2 and for all n ∈ N .
Hence, {xn} converges to y with respect to p for all y > 2. Then the limit of convergent
sequence in the partial cone b-metric space may not be unique. Now, we show that (X, p)
is a T0 space, but it is not a T1 space. In fact, for any given x1, x2 ∈ X , x1 6= x2. Suppose
that x1 < x2 for any c� θ, we have Bp(x1, c) = {y ∈ X: p(x1, y) 6 p(x1, x1) + c} ⊃
[0, x1] and Bp(x2, c) = {y ∈ X: p(x2, y) 6 p(x2, x2) + c} ⊃ [0, x2]. Hence, x1 ∈
[0, x1] ⊂ [0, x2] ⊂ Bp(x2, c), that is, (X, p) is not a T1 space. Let t = x2−x1 > 0, there
exists c0 = (t/2, t/2) such that x2∈̄Bp(x1, c0). Then (X, p) is a T0 space.

3 Common fixed point theorems in partial cone b-metric spaces

In this section, we first give some properties of partial cone b-metric spaces. The following
properties will be used (particularly when we deal with partial cone b-metric spaces in
which the cone need not be normal).

Remark 1. Let (X, p) be a partial cone b-metric space over a solid cone P of a normed
vector space (E, ‖·‖). Then the following properties are used:

(i) if a 4 b and b� c, then a� c;
(ii) if a� b and b 4 c, then a� c;

(iii) if θ 4 u� c for each c ∈ intP , then u = θ;
(iv) if c ∈ intP , an→θ, then there exists a k ∈ N such that for all n > k, we have

an � c;
(v) if an 4 bn and an→a, bn→b, then a 4 b for each cone P ;

(vi) if a 4 λa, where 0 6 λ < 1, then a = θ.

Now, we introduce the concepts of generalized α-admissible mappings and cyclic
αS-Hardy–Rogers contractive mappings.

Definition 7. Let X be a nonempty set, S, T : X → X be two mappings and α :
X × X → [0,+∞) be a function. S and T are called generalized α-admissible if, for
x, y ∈ X such that α(Sx, Sy) > 1, we have α(Tx, Ty) > 1.

Example 5. Let X = [0,∞), Sx = log2(1 + x) for all x ∈ X ,

Tx =

{√
x, x ∈ [0, 9],

x2 + 2x, x ∈ (9,∞),
and α(x, y) =

{
2, x, y ∈ [0, 3],

1/2 otherwise.
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In fact, if x, y ∈ X , α(Sx, Sy) = α(log2(1 + x), log2(1 + y)) > 1, then x, y ∈ [0, 7] ⊆
[0, 9]. Hence, for x, y ∈ [0, 7], we have Tx, Ty ∈ [0,

√
7] ⊆ [0, 3], and soα(Tx, Ty) > 1.

Thus, S and T are generalized α-admissible.

Definition 8. Let (X, p) be a partial cone b-metric space with coefficient s > 1, α :
X×X → [0,+∞) be a symmetric function. Letm be a positive integer,A1, A2, . . . , Am
be nonempty subsets of X , Y =

⋃m
i=1Ai, and S, T : Y → Y be two mappings. Then T :

Y → Y is said to be cyclic αS-Hardy–Rogers contractive if Y is a cyclic representation
of Y with respect to S and T for any x and y lying in different adjacently labeled sets Ai
and Ai+1, i = 1, 2, . . . ,m,

α(Sx, Sy)p(Tx, Ty) 4 a1p(Sx, Sy) + a2p(Tx, Sx) + a3p(Ty, Sy)

+
a4
s
p(Tx, Sy) +

a5
s
p(Ty, Sx), (1)

where Am+1 = A1 and ai > 0 for i = 1, 2, . . . , 5 such that 2a1s + (s + 1)(a2 + a3 +
a4 + a5) < 2.

Theorem 1. Let (X, p) be a θ-complete partial cone b-metric space over a solid cone P
of a normed vector space (E, ‖·‖), m be a positive integer, A1, A2, . . . , Am be nonempty
subsets of X , Y =

⋃m
i=1Ai, T : Y → Y be a cyclic αS-Hardy–Rogers contractive

mapping satisfying (1). Suppose that the following conditions hold:

(i) S and T are generalized α-admissible;
(ii) there exists x0 ∈ A1 such that α(Sx0, Tx0) > 1;

(iii) if {yn} is a sequence in X such that α(yn, yn+1) > 1 for all n ∈ N and yn→y
as n→∞, then α(yn, y) > 1 for sufficiently large n.

Then S and T have a coincidence point in X , that is, there exists z ∈ X such that
Sz = Tz. Moreover, if S, T are weakly compatible and Λ is the set of coincidence points
of S and T for all x, y ∈ Λ, we have α(Sx, Sy) > 1, then S and T has a unique common
fixed point in X .

Proof. Since T (A1) ⊂ S(A2) and x0 ∈ A1, there exists an x1 ∈ A2 such that Sx1 =
Tx0. Since T (A2) ⊂ S(A3) and x1 ∈ A2, there exists an x2 ∈ A3 such that Sx2 =
Tx1. Continuing this process, we can construct two sequences {xn} and {yn} defined
by yn+1 = Sxn+1 = Txn for all n ∈ N, and there exists in ∈ {1, 2, . . . ,m} such that
xn ∈ Ain and xn+1 ∈ Ain+1.

By condition (ii) we get α(Sx0, Sx1) = α(Sx0, Tx0) > 1. It follows from (i) that
α(Tx0, Tx1) = α(Sx1, Sx2) > 1. By induction we have

α(yn, yn+1) = α(Sxn, Sxn+1) > 1 for all n ∈ N. (2)

Since α is symmetric, we have α(yn+1, yn) = α(Sxn+1, Sxn) > 1 for all n ∈ N.
Without loss of generality, assume that yn+1 6= yn for all n ∈ N (otherwise, Txn0

=
Sxn0+1 = yn0+1 = yn0 = Sxn0 for some n0 ∈ N , then xn0 is the coincidence point of
S and T . Hence, the conclusion holds).

Nonlinear Anal. Model. Control, 21(6):807–827
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Since xn ∈ Ain and xn+1 ∈ Ain+1, by (1) and (2) and using the triangular inequality,
we have

p(yn+1, yn+2) = p(Txn, Txn+1) 4 α(Sxn, Sxn+1)p(Txn, Txn+1)

4 a1p(Sxn, Sxn+1) + a2p(Txn, Sxn) + a3p(Txn+1, Sxn+1)

+
a4
s
p(Txn, Sxn+1) +

a5
s
p(Txn+1, Sxn)

= a1p(yn, yn+1) + a2p(yn, yn+1) + a3p(yn+1, yn+2)

+
a4
s
p(yn+1, yn+1) +

a5
s
p(yn+2, yn)

4 (a1 + a2)p(yn, yn+1) + a3p(yn+1, yn+2) +
a4
s
p(yn+1, yn+1)

+ a5
[
p(yn, yn+1) + p(yn+1, yn+2)− p(yn+1, yn+1)

]
4 (a1 + a2 + a5)p(yn, yn+1) + (a3 + a5)p(yn+1, yn+2)

+
(a4 − a5)

s
p(yn+1, yn+1). (3)

Similarly,

p(yn+2, yn+1) = p(Txn+1, Txn) 4 α(Sxn+1, Sxn)p(Txn+1, Txn)

4 a1p(yn, yn+1) + a2p(yn+1, yn+2) + a3p(yn, yn+1)

+
a4
s
p(yn, yn+2) +

a5
s
p(yn+1, yn+1)

4 (a1 + a3 + a4)p(yn, yn+1) + (a2 + a4)p(yn+1, yn+2)

+
(a5 − a4)

s
p(yn+1, yn+1). (4)

Hence, from (3) and (4) we have

p(yn+1, yn+2) 4 λp(yn, yn+1),

where λ = (2a1 +a2 +a3 +a4 +a5)/(2−a2−a3−a4−a5). Since 2a1s+ (s+ 1) ×
(a2 + a3 + a4 + a5) < 2, we have 0 6 λ < 1/s.

Similarly, we also have p(yn, yn+1) 4 λp(yn−1, yn). Thus, for all n ∈ N, by
repetition of the above process n times we deduce that

p(yn, yn+1) 4 λp(yn−1, yn) 4 λ2p(yn−2, yn−1) 4 · · · 4 λnp(y0, y1).

Hence, for any m,n ∈ Z+ with m > n, it follows that

p(yn, ym) 4 s
[
p(yn, yn+1) + p(yn+1, ym)

]
4 sp(yn, yn+1) + s2

[
p(yn+1, yn+2) + p(yn+2, ym)

]
4 · · ·

4 sp(yn, yn+1) + s2p(yn+1, yn+2) + · · ·
+ sm−n−1

[
p(ym−2, ym−1) + p(ym−1, ym)

]
4 sp(yn, yn+1) + s2p(yn+1, yn+2) + · · ·

+ sm−n−1p(ym−2, ym−1) + sm−np(ym−1, ym).
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Now, p(yn, yn+1) 4 λnp(y0, y1) for all n ∈ N and 0 6 sλ < 1 imply that

p(yn, ym) 4
(
sλn + s2λn+1 + · · ·+ sm−nλm−1

)
p(y0, y1) 4

sλn

1− sλ
p(y0, y1).

Let θ � c be given, choose δ > 0 such that c + Nδ(θ) ⊆ P , where Nδ(θ) = {y ∈
E: ‖y‖ < δ}. Also, choose a natural numberN1 such that (λn/(1−λ))p(y0, y1) ∈ Nδ(θ)
for all n > N1. Then (sλn/(−sλ))p(y0, y1)� c for all n > N1. Thus,

p(yn, ym) 4
sλn

1− sλ
p(y0, y1)� c

for all m > n > N1. Hence, {yn} is a θ-Cauchy sequence in (X, p). Since (X, p) is
a θ-complete partial cone b-metric space, there exists y∗ ∈ X such that {yn} converges
to y∗ with respect p and p(y∗, y∗) = θ. Since S(Y ) = S(

⋃m
i=1Ai) =

⋃m
i=1 S(Ai) is

closed and {yn} ⊂ S(Y ), we obtain that y∗ ∈ S(Y ). Hence, there exists z ∈ Y such that
y∗ = Sz.

Now, we will prove that Tz = Sz. For this, we have

1

s
p(Tz, Sz) 4 p(Tz, Txn) + p(Txn, Sz) = p(Tz, Txn) + p(yn+1, y

∗). (5)

As Y =
⋃m
i=1Ai is a cyclic representation of Y with respect to S and T , the sequence

{xn} has infinite terms in each Ai for i ∈ {1, 2, . . . ,m}. First, suppose that z ∈ Ai, then
y∗ ∈ S(Ai), Tz ∈ S(Ai+1), and we take a subsequence {xnk

} of {xn} with xnk
∈ Ai−1

(the existence of this subsequence is guaranteed by above mentioned argument).
Since α(yn, yn+1) > 1 for all n ∈ N and yn→y∗ as n → ∞, by (iii) we have

α(yn, y
∗)=α(Sxn, Sz)>1 for sufficiently large n. Hence, we also have α(Sz, Sxn)>1

for sufficiently large n. For xnk
∈ Ai−1 and z ∈ Ai, by (1) we have

p(Txnk
, T z) 4 α(Sxnk

, Sz)p(Txnk
, T z)

4 a1p(ynk
, y∗) + a2p(ynk

, ynk+1) + a3p(Tz, Sz)

+
a4
s
p(ynk+1, y

∗) +
a5
s
p(Tz, ynk

)

4 a1p(ynk
, y∗) + a2p(ynk

, ynk+1) + a3p(Tz, Sz)

+
a4
s
p(ynk+1, y

∗) + a5
[
p(Tz, Sz) + p(y∗, ynk

)
]

(6)

and, similarly,

p(Tz, Txnk
) 4 α(Sz, Sxnk

)p(Tz, Txnk
)

4 a1p(ynk
, y∗) + a2p(Tz, Sz) + a3p(ynk

, ynk+1)

+
a4
s
p(Tz, ynk

) +
a5
s
p(ynk+1, y

∗)

4 a1p(ynk
, y∗) + a2p(Tz, Sz) + a3p(ynk

, ynk+1)

+ a4
[
p(Tz, Sz) + p(y∗, ynk

)
]

+
a5
s
p(ynk+1, y

∗). (7)
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From (5)–(7) we get(
2

s
− a2 − a3 − a4 − a5

)
p(Tz, Sz)

4 (2a1 + a4 + a5)p(ynk
, y∗) + (a2 + a3)p(ynk

, ynk+1)

+

(
a4 + a5

s
+ 2

)
p(ynk+1, y

∗). (8)

Since 2a1s+(s+1)(a2 +a3 +a4 +a5) < 2, it follows that q = 2/s−a2−a3−a4−
a5 > 0. Let M = max{2a1 + a4 + a5, a2 + a3, (a4 + a5)/s + 2}/q. Since yn → y∗,
for each c � θ, choose a natural number N2 such that p(ynk

, ynk+1) � c/(3M) and
p(ynk

, y∗)� c/(3M) for all k > N2. Hence, for k > N2, it follows from (8) that

p(Tz, Sz)� c

3
+
c

3
+
c

3
= c,

which implies that p(Tz, Sz) = θ. Then Tz = Sz. Hence, S and T have a coincidence
point in X .

Now, we will prove that S and T have a unique point of coincidence. Suppose that
Tw = Sw is another point of coincidence of S and T with Tz = Sz 6= Tw = Sw, then
α(Sz, Sw) > 1. By (1) we have

p(Tz, Tw) 4 α(Sz, Sw)p(Tz, Tw)

4 a1p(Sz, Sw) + a2p(Tz, Sz) + a3p(Tw, Sw)

+
a4
s
p(Tz, Sw) +

a5
s
p(Tw, Sz)

= a1p(Tz, Tw) + a2p(Tz, Tz) + a3p(Tw, Tw)

+
a4
s
p(Tz, Tw) +

a5
s
p(Tw, Tz)

4

(
a1 +

a4 + a5
s

)
p(Tz, Tw) + a2p(Tz, Tz) + a3p(Tw, Tw)

4 (a1 + a2 + a3 + a4 + a5)p(Tz, Tw).

Since 2a1s + (s + 1)(a2 + a3 + a4 + a5) < 2, we get
∑5
i=1 ai < 1. Thus, p(Tz,

Tw) = θ. This is a contradiction. Hence, Tz = Sz = Tw = Sw = v is a unique point
of coincidence of S and T . Since S and T are weakly compatible, we have Sv = STz =
TSz = Tv. Thus, v = Sv = Tv by the uniqueness of point of coincidence of S and T .
Hence, Tz = Sz is the unique common fixed point of S and T .

Remark 2. Taking α(x, y) ≡ 1, in Theorem 1, it extends and generalizes Theorem 2
in [4] and Theorem 12 in [2]. If we take m = 1 and A1 = X in Theorem 1, then we get
immediately the following corollary.

Corollary 1 [αS-Hardy–Rogers type]. Let (X, p) be a θ-complete partial cone b-metric
space over a solid cone P of a normed vector space (E, ‖·‖), α : X ×X → [0,+∞) be
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Common fixed point theorems for cyclic contractive mappings 817

a symmetric function. Suppose that the mappings S, T : X → X satisfy the contractive
condition

α(Sx, Sy)p(Tx, Ty) 4 a1p(Sx, Sy) + a2p(Tx, Sx) + a3p(Ty, Sy)

+
a4
s
p(Tx, Sy) +

a5
s
p(Ty, Sx)

for all x, y ∈ X , where ai > 0, i = 1, 2, . . . , 5, and 2a1s+(s+1)(a2+a3+a4+a5) < 2.
Also assume that the following conditions hold:

(i) T (X) ⊆ S(X), S(X) is closed, S and T are generalized α-admissible;
(ii) there exists x0 ∈ X such that α(Sx0, Tx0) > 1;

(iii) if {yn} is a sequence in X such that α(yn, yn+1) > 1 for all n ∈ N and yn→y
as n→∞, then α(yn, y) > 1 for sufficiently large n.

Then S and T have a coincidence point in X , that is, there exists z ∈ X such that
Sz = Tz.

Remark 3. Taking α(x, y) ≡ 1 in Corollary 1, it extends and generalizes Theorem 3.3
of [32] and so also the famous Hardy and Rogers fixed point theorem to that in the setting
of partial cone b-metric spaces.

Example 6. Let E = R2, P = {(x, y) ∈ E: x, y > 0}, and X = R+. Define p :
X ×X → P by

p(x, y) =

{
(|x− y|2, |x− y|2), x, y ∈ [0, 4),

(max{x, y}, |x− y|2) otherwise

for all x, y ∈ X . Then (X, p) is a θ-complete partial cone b-metric space with coefficient
s = 2.

Suppose that A1 = [0, 3], A2 = [3, 4], A3 = [0, 3] and Y =
⋃3
i=1Ai = [0, 4]. Define

S, T : Y → Y and α : X ×X → [0,+∞) by

Sx = x, Tx =

{
3, x ∈ [0, 4),

1, x = 4,

α(x, y) =

{
1/4, x ∈ [0, 3], y = 4 or x = 4, y ∈ [0, 3],

1 otherwise.

It is not difficult to prove that conditions (i)–(iii) of Theorem 1 are satisfied. Let ai = 1/9
for i = 1, 2, . . . , 5. Now, we verify inequality (1) in Theorem 1. We consider the following
four cases:

Case 1. If x ∈ A1, y ∈ A2, then, for x ∈ [0, 3] and y ∈ [3, 4), we have |Tx−Ty|2 =
1− 1 = 0, which implies that (1) holds.
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Case 2. If x ∈ A1, y ∈ A2, then, for x ∈ [0, 3] and y = 4, we have

max{Sx, Sy} = 4, max{Sx, Tx} > 3, max{Sy, Ty} = 4,

max{Sx, Ty} > 1, max{Sy, Tx} = 4,

|Sx− Sy|2 > 1, |Sx− Tx|2 > 0, |Sy − Ty|2 = 9,

|Sx− Ty|2 > 0, |Sy − Tx|2 = 1.

Hence,

α(Sx, Sy) max{Tx, Ty} =
3

4
6

1

9

(
4 + 3 + 4 +

1

2
+ 2

)
6

1

9

(
max{Sx, Sy}+ max{Sx, Tx}+ max{Sy, Ty}

+
max{Sx, Ty}

2
+

max{Sy, Tx}
2

)
and

α(x, y)|Tx− Ty|2 =
1

4
|Tx− Ty|2 = 1

6
1

9

(
|Sx− Sy|2 + |Sx− Tx|2 + |Sy − Ty|2

+
|Sx− Ty|2

2
+
|Sy − Tx|2

2

)
,

which implies that (1) holds.

Case 3. If x ∈ A2, y ∈ A3 = A1. As in the previous case, we also have (1) holds.

Case 4. If x ∈ A3, y ∈ A1, then, for x ∈ [0, 3] and y ∈ [0, 3], we have |Tx−Ty| = 0,
which implies that (1) holds.

Thus, all the conditions of Theorem 1 are satisfied. Therefore, S and T have a com-
mon fixed point in Y , indeed, x = 3 is a common fixed point of S and T .

Now, we introduce the concepts of mapping ψ and generalized cyclic (α,ψ)S-Meir–
Keeler contractive mappings.

Definition 9. Let (X, p) be a partial cone b-metric space with coefficient s > 1. Let Ψ
stand for the family of nondecreasing mappings ψ : P → P such that

(i) ψ(θ) = θ and θ ≺ ψ(x) ≺ x/s for x ∈ P \ {θ};

(ii)
∞∑
n=1
‖snψn(x)‖ < +∞ for each x ∈ P , where ψn is the nth iterate of ψ.

Example 7. Let E = C[0, 1] with the norm ‖u‖ = maxt∈[0,1] |u(t)| and X = P = {u ∈
E: u(t) > 0, t ∈ [0, 1]}. Define ψ1, ψ2 : P → P , p : X ×X → P by

ψ1(x) =
x

4
, ψ2(x) =

{
x/4, 0 6 ‖x‖ < 1;

2x/7 otherwise,
p(x, y) =

{
x2, x = y,

(x+ y)2 otherwise.
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It is clear that ψ1, ψ2 ∈ Ψ . Note that ψ1, ψ2 are examples of continuous and discon-
tinuous functions in Ψ .

Definition 10. Let (X, p) be a partial cone b-metric space with coefficient s > 1, α :
X ×X → [0,+∞) be a function, m be a positive integer, A1, A2, . . . , Am be nonempty
subsets of X , Y =

⋃m
i=1Ai and S, T : Y → Y be two mappings. T : Y → Y is said

to be a generalized cyclic (α,ψ)S-Meir–Keeler contractive if Y is a cyclic representation
of Y with respect to S and T for any x and y lying in different adjacently labeled sets Ai
and Ai+1, i = 1, 2, . . . ,m,

α(Sx, Sy)p(Tx, Ty) 4 ψ
(
u(x, y)

)
, (9)

where Am+1 =A1, ψ∈Ψ and u(x, y)∈{p(Sx, Sy), p(Tx, Sx), p(Ty, Sy), p(Tx, Sy)}.

Theorem 2. Let (X, p) be a θ-complete partial cone b-metric space over a solid cone P
of a normed vector space (E, ‖·‖), m be a positive integer, A1, A2, . . . , Am be nonempty
subsets of X , Y =

⋃m
i=1Ai, T : X → X , be a generalized (α,ψ)S-Meir–Keeler

contractive mapping satisfying (9). Suppose that the following conditions hold:

(i) S and T are generalized α-admissible;
(ii) there exists x0 ∈ A1 such that α(Sx0, Tx0) > 1;

(iii) if {yn} is a sequence in X such that α(yn, yn+1) > 1 for all n ∈ N and yn→y
as n→∞, then α(yn, y) > 1, for sufficiently large n.

Then S and T have a coincidence point in X , that is, there exists z ∈ X such that
Sz = Tz. Moreover, if S, T are weakly compatible and Λ is the set of coincidence points
of S and T , for all x, y ∈ Λ, we have α(Sx, Sy) > 1. Then S and T have a unique
common fixed point in X .

Proof. From the proof of Theorem 1 we can construct two sequences {xn}, {yn} ⊆ X
such that yn+1 = Sxn+1 = Txn for all n ∈ N, and there exists in ∈ {1, 2, . . . ,m} such
that xn ∈ Ain and xn+1 ∈ Ain+1. By condition (ii) we deduce

α(yn, yn+1) = α(Sxn, Sxn+1) > 1 for all n ∈ N. (10)

Since xn ∈ Ain and xn+1 ∈ Ain+1, by (9) and (10) we have

p(yn, yn+1) = p(Txn−1, Txn) 4 α(Sxn−1, Sxn)p(Txn−1, Txn)

4 ψ
(
u(xn−1, xn)

)
,

where

u(xn−1, xn) ∈
{
p(Sxn−1, Sxn), p(Txn−1, Sxn−1), p(Txn, Sxn), p(Txn−1, Sxn)

}
=
{
p(yn−1, yn), p(yn, yn−1), p(yn+1, yn), p(yn, yn)

}
=
{
p(yn−1, yn), p(yn+1, yn), p(yn, yn)

}
.
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Thus, we get the following cases:

Case 1. p(yn, yn+1) 4 ψ(p(yn−1, yn)).

Case 2. p(yn, yn+1) 4 ψ(p(yn, yn+1)), it follows from Definition 9(i) that p(yn,
yn+1) = θ.

Case 3. p(yn, yn+1) 4 ψ(p(yn, yn)) 4 ψ(p(yn−1, yn)).

Then, in all cases, we have p(yn, yn+1) 4 ψ(p(yn−1, yn)). Therefore,

p(yn, yn+1) 4 ψ
(
p(yn−1, yn)

)
4 ψ2

(
p(yn−2, yn−1)

)
4 · · · 4 ψn

(
p(y0, y1)

)
.

For n,m ∈ Z+ with m > n, it follows that

p(yn, ym) 4 sp(yn, yn+1) + s2p(yn+1, yn+2) + · · ·+ sm−np(ym−1, ym)

4 sψn
(
p(y0, y1)

)
+ s2ψn+1

(
p(y0, y1)

)
+ · · ·+ sm−nψm−1

(
p(y0, y1)

)
4 snψn

(
p(y0, y1)

)
+ sn+1ψn+1

(
p(y0, y1)

)
+ · · ·+ sm−1ψm−1

(
p(y0, y1)

)
=

m−1∑
k=n

skψk
(
p(y0, y1)

)
.

Since
∑∞
n=1 ‖snψn(x)‖ < +∞ for all x ∈ P , then for any given ε > 0, there exists

N1 ∈ Z+ such that
∑∞
k=n ‖skψk(x)‖ < ε for all n > N1. Hence,∥∥∥∥∥

m−1∑
k=n

skψk
(
p(y0, y1)

)∥∥∥∥∥ 6
m−1∑
k=n

∥∥skψk(p(y0, y1)
)∥∥ 6

∞∑
k=n

∥∥skψk(p(y0, y1)
)∥∥ < ε.

Thus,
∑m−1
k=n s

kψk(p(y0, y1))→‖·‖ θ. It follows from Lemma 1 that for any c� θ, there
exists n0 ∈ N such that

∑m−1
k=n s

kψk(p(x0, x1))� c for all n > n0. Thus,

p(yn, ym) 4
m−1∑
k=n

skψk
(
p(y0, y1)

)
� c

for all n,m > n0. Therefore, {yn} is a θ-Cauchy sequence. Since (X, p) is a θ-complete
partial cone b-metric space, there exists y∗ ∈ X such that yn→y∗ and p(y∗, y∗) = θ.
Since S(Y ) = S(

⋃m
i=1Ai) =

⋃m
i=1 S(Ai) is closed and {yn} ⊂ S(Y ), we know that

y∗ ∈ S(Y ). Hence, there exists z ∈ Y such that y∗ = Sz.
Now, we prove that Tz = Sz. As Y =

⋃m
i=1Ai is a cyclic representation of Y with

respect to S and T , the sequence {xn} has infinite terms in eachAi for i ∈ {1, 2, . . . ,m}.
First, suppose that z ∈ Ai, then y∗ ∈ S(Ai), Tz ∈ S(Ai+1), and we take a subsequence
{xnk

} of {xn}with xnk
∈ Ai−1(the existence of this subsequence is guaranteed by above

mentioned argument).
Since α(yn, yn+1) > 1 for all n ∈ N and yn→y∗ as n → ∞, by (iii) we have

α(yn, y
∗) = α(Sxn, Sz) > 1 for sufficiently large n. Let c � θ, choose a natural
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number N2 such that p(ynk
, ynk+1) � c/2 and p(ynk

, y∗) � c/2 for all k > N2. For
xnk
∈ Ai−1 and z ∈ Ai, by (9) we have

1

s
p(Tz, Sz) 4 p(Txnk

, Sz) + p(Txnk
, T z)

4 p(ynk+1, y
∗) + α(Sxnk

, Sz)p(Txnk
, T z)

4 p(ynk+1, y
∗) + ψ(u(xnk

, z)),

where

u(xnk
, z) ∈

{
p(Sxnk

, Sz), p(Txnk
, Sxnk

), p(Tz, Sz), p(Txnk
, Sz)

}
=
{
p(ynk

, y∗), p(ynk
, ynk+1), p(Tz, Sz), p(ynk+1, y

∗)
}
.

Thus, we get the following cases:

Case 1. (1/s)p(Tz, Sz) 4 p(ynk+1, y
∗) + ψ(p(ynk

, y∗)) 4 p(ynk+1, y
∗) + (1/s)×

p(ynk
, y∗)� c implies p(Tz, Sz) = θ;

Case 2. (1/s)p(Tz, Sz) 4 p(ynk+1, y
∗) + ψ(p(ynk

, ynk+1)) 4 p(ynk+1, y
∗) +

(1/s)p(ynk
, ynk+1)� c implies p(Tz, Sz) = θ;

Case 3. (1/s)p(Tz, Sz) 4 p(ynk+1, y
∗) + ψ(p(Tz, Sz)) � c + ψ(p(Tz, Sz))

implies (1/s)p(Tz, Sz) 4 ψ(p(Tz, Sz)). If p(Tz, Sz) 6= θ, then (1/s)p(Tz, Sz) 4
ψ(p(Tz, Sz)) ≺ (1/s)p(Tz, Sz). This ia a contradiction. Thus, p(Tz, Sz) = θ;

Case 4. (1/s)p(Tz, Sz) 4 p(ynk+1, y
∗)+ψ(p(ynk+1, y

∗)) 4 p(ynk+1, y
∗)+(1/s)×

p(ynk+1, y
∗)� c implies p(Tz, Sz) = θ.

Then, in all cases, we have p(Tz, Sz) = θ. Hence, Tz = Sz. Thus, S and T have
a coincidence point in X .

Now, we prove that S and T have a unique point of coincidence. Suppose that Tw =
Sw is another point of coincidence of S and T with Tz = Sz 6= Tw = Sw, then
α(Sz, Sw) > 1. By (9) we have

p(Tz, Tw) 4 α(Sz, Sw)p(Tz, Tw) 4 ψ
(
u(z, w)

)
,

where

u(x, y) ∈
{
p(Sz, Sw), p(Tz, Sz), p(Tw, Sw), p(Tz, Sw)

}
= {p(Tz, Tw), p(Tz, Tz), p(Tw, Tw), p(Tz, Tw)

}
= {p(Tz, Tw), p(Tz, Tz), p(Tw, Tw)

}
.

Thus, we get the following cases:

Case 1. p(Tz, Tw) 4 ψ(p(Tz, Tw)) implies p(Tz, Tw) = θ.

Case 2. p(Tz, Tw) 4 ψ(p(Tz, Tz)) 4 ψ(p(Tz, Tw)) implies p(Tz, Tw) = θ.

Case 3. p(Tz, Tw) 4 ψ(p(Tw, Tw)) 4 ψ(p(Tz, Tw)) implies p(Tz, Tw) = θ.
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Then, in all cases, we have p(Tz, Tw) = θ. This is a contradiction. Hence, Tz =
Sz = Tw = Sw = v is a unique point of coincidence of S and T . Since S and T
are weakly compatible, we have Sv = STz = TSz = Tv. Thus, v = Sv = Tv by
uniqueness uniqueness of point of coincidence of S and T . Hence, Tz = Sz is the unique
common fixed point of S and T .

Remark 4. If we take α(x, y) ≡ 1 in Theorem 2, it extends and generalizes Theorem 1
in [4], Theorem 9 in [2]. If we take m = 1 and A1 = X in Theorem 2, then it extend and
generalize Theorem 3.1 in [32], Theorems 15 and 17 in [18].

In Theorem 2, taking ψ(x) = λx with 0 6 λ < 1/s, we get the following corollary.

Corollary 2. Let (X, p) be a partial cone b-metric space with coefficient s > 1, α :
X ×X → [0,+∞) be a function, m be a positive integer, A1, A2, . . . , Am be nonempty
subsets of X , Y =

⋃m
i=1Ai, and S, T : Y → Y be two mappings. Y is a cyclic

representation of Y with respect to S and T for any x and y lying in different adjacently
labeled sets Ai and Ai+1, i = 1, 2, . . . ,m,

α(Sx, Sy)p(Tx, Ty) 4 λu(x, y),

where Am+1 = A1, 0 6 λ < 1/s, and u(x, y) ∈ {p(Sx, Sy), p(Tx, Sx), p(Ty, Sy),
p(Tx, Sy)}. Also assume that the following conditions hold:

(i) S and T are generalized α-admissible;
(ii) there exists x0 ∈ A1 such that α(Sx0, Tx0) > 1;

(iii) if {yn} is a sequence in X such that α(yn, yn+1) > 1 for all n ∈ N and yn→y
as n→∞, then α(yn, y) > 1 for sufficiently large n.

Then S and T have a coincidence point in X , that is, there exists z ∈ X such that
Sz = Tz.

Remark 5. If we take α(x, y) ≡ 1, in Corollary 2, it extends and generalizes Theorem 14
in [34].

Now, in order to support the usability of our results, we present the following example.

Example 8. Let E=C[0, 1] with the norm ‖u‖ = maxt∈[0,T ] |u(t)| and X=P ={u∈E:
u(t) > 0, t ∈ [0, 1]}. Define a mapping p : X ×X → P by

p(x, y) =

{
x2, x = y,

(x+ y)2 otherwise.

Then (X, p) is a θ-complete partial cone b-metric space with coefficient s = 3. Define
S, T : X → X , α : X ×X → [0,+∞) by

Sx(t) =
1

2

t∫
0

x(s) ds, Tx(t) =
1

6

t∫
0

x(s) ds, α(x, y) =

{
1, x 4 y,

0 otherwise.
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It is not difficult to prove that (i)–(iii) of Theorem 2 are satisfied. Define ψ : P → P by

ψ(x) =

{
x/4, 0 6 ‖x‖ < 1,

2x/7 otherwise.

LetAx(t) =
∫ t
0
x(s) ds. Then Sx = (1/2)Ax and Tx = (1/6)Ax. Letm = 1,A1 = X .

Now, we verify inequality (9) in Theorem 2. We consider the following three cases:

Case 1. If x� y, then α(x, y) = 0 and α(Sx, Sy) = 0, which implies that (9) holds.

Case 2. If x = y = θ, then p(Tx, Ty) = θ, that is, (9) holds.

Case 3. If x = y 6= θ, then α(Sx, Sy) = 1, and we have

α(Sx, Sy)p(Tx, Ty) =

(
1

6
Ax

)2

4
2

27
(Ax)2 =

1

6
p(Tx, Sx) 4 ψ

(
p(Tx, Sx)

)
,

which implies that (9) holds.

Case 4. If x 6= y and x� y, then α(Sx, Sy) = 1, and we have

α(Sx, Sy)p(Tx, Ty) =

(
1

6
Ax+

1

6
Ay

)2

4
1

24
(Ax+Ay)2

=
1

6
p(Sx, Sy) 4 ψ

(
p(Sx, Sy)

)
,

which implies that (9) holds.
Thus, all the conditions of Theorem 2 are satisfied. Therefore, S and T have a coinci-

dence point in X , indeed, x = θ is a coincidence point of S and T .

4 An application: the existence of a common solution to integral
equations

In this section, we apply Theorem 2 to study the existence of solutions to a class of system
of nonlinear integral equations.

We consider the following system of integral equations

x(t) =

t∫
0

f
(
s, x(s)

)
ds,

x(t) =

t∫
0

x(s) ds

(11)

for all t ∈ I = [0, T ], where T > 0, f : I × R→ R is a continuous function.

Nonlinear Anal. Model. Control, 21(6):807–827
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Let X=E=C(I,R) be the set of all real continuous functions on I and P ={u∈E:
u > 0}. We endow X with the partial cone b-metric

p(x, y)(t) = et max
t∈[0,T ]

∣∣x(t)− y(t)
∣∣2

for all x, y ∈ X . It is clear that (X, p) is a θ-complete partial cone b-metric space with
coefficient s = 2. We endow X with the partial order 4 given by

x 4 y if and only if x(t) 6 y(t) for all t ∈ [0, T ].

Let u, v ∈ E such that u 4 v,

t∫
0

u(s) ds >

t∫
0

f
(
s, v(s)

)
ds and

t∫
0

v(s) ds >

t∫
0

f
(
s, u(s)

)
ds

for all t ∈ [0, T ]. Let A1 = {x ∈ E: x 4 v}, A2 = {x ∈ E: x 4 u} be two closed
subsets of X and Y = A1 ∪A2.

Now, define the mappings S, T : Y → Y by

Sx(t) =

t∫
0

x(s) ds, Tx(t) =

t∫
0

f
(
s, x(s)

)
ds

for all x ∈ Y . Then the existence of a solution to (11) is equivalent to the existence of
a common fixed point of S and T .

Theorem 3. Suppose that the following hypotheses hold:

(i) for all s ∈ [0, T ], f(s, ·) is a nondecreasing function, that is, for all t1, t2 ∈ R,
t1 6 t2 implies that f(s, t1) 6 f(s, t2);

(ii) if f(s, x(s)) = x(s) for all s ∈ [0, T ], then we have

f

(
s,

s∫
0

x(w) dw

)
=

s∫
0

f
(
w, x(w)

)
dw for all s ∈ [0, T ];

(iii) there exists a continuous function K : [0, T ]→ R+ such that

f
(
s, y(s)

)
− f

(
s, x(s)

)
6 K(s)

[
y(s)− x(s)

]
for all s ∈ [0, T ], x and y lying in different adjacently labeled sets A1 and A2

with x 4 y;
(iv) there exists L ∈ [0, 1) such that sups∈[0,T ]K(s) 6 L/2.

Then the integral equation (11) has a solution x∗ ∈ X .
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Proof. From condition (i) it is easy to verify that Y is a cyclic representation of Y with
respect to S and T . By condition (ii) we can prove that S and T are weakly compatible.
Define ψ : P → P , α : X ×X → [0,+∞) by

ψ(x) =
L2

3
x, α(x, y) =

{
1, x 4 y,

0 otherwise.

Then S and T are generalized α-admissible, and (ii)–(iii) of Theorem 2 are satisfied. Now,
for all x and y lying in different adjacently labeled sets A1 and A2 with x 4 y, by (iii)
and (iv) we have∣∣Tx(t)− Ty(t)

∣∣2
=

∣∣∣∣∣
t∫

0

f
(
s, x(s)

)
ds−

t∫
0

f
(
s, y(s)

)
ds

∣∣∣∣∣
2

=

[ t∫
0

(
f
(
s, y(s)

)
− f

(
s, x(s)

))
ds

]2

6

[ t∫
0

K(s)
(
y(s)− x(s)

)
ds

]2
6

[
sup
s∈[0,t]

K(s)

t∫
0

(
y(s)− x(s)

)
ds

]2

6
[

sup
t∈[0,T ]

K(t)
]2[ t∫

0

(
y(s)− x(s)

)
ds

]2
6
L2

4

∣∣Sx(t)− Sy(t)
∣∣2.

Hence, for all t ∈ [0, T ], we have

α(Sx, Sy)p(Tx, Ty)(t)

= α(Sx, Sy)et max
t∈[0,T ]

∣∣Tx(t)− Ty(t)
∣∣2 6

L2

4

(
et max
t∈[0,T ]

∣∣Sx(t)− Sy(t)
∣∣2)

=
L2

4
p(Sx, Sy)(t) 6 λu(x, y)(t),

where λ=L2/3 ∈ [0, 1/s) and u(x, y)∈{p(Sx, Sy), p(Tx, Sx), p(Ty, Sy), p(Tx, Sy)}.
It follows that (9) holds.

Thus, all the conditions of Theorem 2 are satisfied. Then S and T have a common
fixed point x∗ ∈ X , that is, x∗ is a solution of the system of integral equations (11).
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