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Temperature distribution in the metallic plate influenced by high-frequency 

electromagnetic wave depends on thermal and electrical properties of the 

plate material. The goal of the paper is to present the significance of the 

temperature dependence of the electrical resistivity and its influence on the 

plate heating. A mathematical model of the problem was established and an 

analytical closed-form solution to the problem was presented. The active 

power of the electromagnetic wave was calculated by Poynting vector. 

Temperature field was obtained by integral-transform technique. Numerical 

examples were presented for three different materials (copper, aluminum, and 

steel). Calculated results show the large influence of temperature dependent 

electrical resistance on heating of the metallic plate. 
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1. Introduction 

The aim of the paper is to present the important influence of temperature dependent specific 

electrical resistance on temperature field of the plate made of electrically conductive materials, as 

copper, aluminum, and steel. If structures made of conductive materials are exposed to high-frequency 

electromagnetic waves, such as constructions in nuclear plants and aerospace constructions, and also in 

motors, generators, and inductors, the formation of conduction currents occurs due to the change in the 

electromagnetic field. That is why appropriate electrical characteristics of the material such as electrical 

conductivity or electrical resistance, which largely depend on temperature, must be taken into 

consideration. Depending on the strength of the electromagnetic wave, or on the electric and magnetic 

field intensities and wave frequency, significant changes in temperature may occur. In the mathematical 

modeling of various problems where relatively small temperature changes are expected, of the order of 

100 K, the thermal, elastic, and electrical characteristics of the material can be considered constant. As a 

result, the values of the physical properties of the material that correspond to the average temperature of 

the problem can be used in the calculation. For larger temperature changes, the temperature dependence 

of these properties must be considered. To show the importance of the change in the physical properties 

of the material with respect to temperature, and to obtain the closed-form solution, the paper considers 

the heating of a thin plate of electrically conductive material under the influence of a plane 
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electromagnetic wave. Boundary conditions represent the plate thermally insulated on both sides and 

with constant temperature at the edges. In that case, small-sized plate would cool in a short period of 

time, so in this paper, calculations are presented for larger plates. 

As electromagnetic radiation is both wave and heat, and heat is characterized by temperature as the 

ratio between energy and entropy, in Ref. [1] was presented the calculation of entropy and temperature 

of a single-mode electromagnetic radiation from the wave properties. The influence of the exerting 

magnetic field, at the surface of the magnetized cone, on its heat transfer properties was discussed in 

Ref. [2]. Corresponding coupled equations were numerically simulated. Mathematical model for the 

temperature field of a steel plate, influenced by high frequency induction heater, was set up and solved 

in Ref. [3]. Also, appropriate comparison of temperature history of numerical simulations and 

experimental tests had been discussed. Ref. [4] presents the closed-analytical solution of the 

temperature field for the problem with the moving heat sources. Distribution of the eddy-current power 

was obtained by use of complex analysis. Depending on the boundary conditions, thermal stresses 

appear in thermally loaded structures. That is why analysis of this type of problems must include both 

thermal and mechanical aspects. Modeling of thermal stresses in low alloy steels was provided in Ref. 

[5]. Also, heat capacity, heat conductivity and elastic properties for hypo-eutectoid steel were 

discussed. Boundary value problems of 2-D half space with different types of heating under gravity 

effects were presented in Ref. [6]. Numerically obtained results were presented with comparisons in the 

absence and the presence of the influence of the gravity and magnetic fields. Thermal switching of 

asymmetric transmission of linearly polarized terahertz waves was demonstrated in Ref. [7] 

numerically and experimentally. Physical mechanism based on simulated surface current distribution 

was also explained. The problem of electromagnetic wave absorption at extremely high temperatures 

for some special materials as the binary SiC was investigated in Ref. [8]. 

1.1. Description of the problem 

A homogeneous, isotropic plate with dimensions a×b and small thickness h is placed 

perpendicular to the direction of propagation of the plane electromagnetic wave (axis x). The plate 

material is linear magnetic which is also a good conductor (Figure 1). 

 

 
 

Figure 1 Position of the plate with respect to the direction of the electromagnetic wave 

The analysis of electromagnetic waves is performed using Maxwell's equations (Ref. [9]). In the 

case of the high plate conductivity (copper, aluminum, steel) dielectric current can be neglected in 
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comparison with the conducting current. So, a system of Maxwell's equations for homogeneous, 

isotropic, and linear magnetic plate material has the following equations form (Ref. [10]) 

,E,
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0divrot 
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(1) 

in which E


 and H


are vectors of electric and magnetic fields, ρt is specific electric resistance and μ is 

magnetic permeability of the material. Using by the method of Fourier analysis, electromagnetic wave 

with complex time changing field can be represented as a sum of simple plane waves. With a simple 

plane wave only normal components of the electric and the magnetic field depend on each other (Refs. 

[9,10]). For the clarity of presentation, only one plane wave with Hy and Ez components which vary in 

time t as exp (jωt), where ω is angular frequency, will be observed in the paper. 

If H0 is the strength of the magnetic field on the contact surface of the wave and the plate (x=0), 

using the symbolic-complex method given in details in Ref. [11], the active power   absorbed by the 

conducting plate per unit of its surface can be determined by the Poynting vector method and is as 

follows 

 ,f
H

P t
2

2
0          (2) 

in which f is the frequency of the observed wave. The amount of heat absorbed by the metal plate 

depends on the strength of the magnetic field, the frequency of the waves and the specific electrical 

resistance. The temperature T has the greatest influence on the change in the specific electrical 

resistance ρt because, with the increase in temperature, the speed of the thermal movement of electrons 

also increases, and thus the frequency of collisions. The corresponding diagram is shown in Figure 2 

(Ref. [9]). At temperature between 10 K and 100 K, the specific electrical resistance is proportional to 

T5
, while for temperatures from 100 K to the melting point, it can be described by an almost linear 

function, and can be represented by the following equation (Ref. [12]) 

  00 1 TTet           (3) 

in which ρ0 is the specific electrical resistance at temperature T0 and αe is the thermal coefficient of 

resistance. 

 
 

Figure 2 Specific electrical resistance with respect to temperature 
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In the reference [12] the thermal conductivity coefficient was studied for several types of copper 

wires and the effect of temperature on superconductors was discussed. Different publications studied 

temperature dependence of the electrical resistance and conductivity have presented in Ref. [13] as well 

as the history of discovering the superconductivity. 

Three representative groups of electromagnetic materials were selected: aluminum as paramagnetic 

material, copper as diamagnetic and steel as ferromagnetic material. Magnetic permeability of vacuum 

is μ0=4·π·10
-7

 Hm
-1

 and relative magnetic permeability is defined as the ratio μr=μ/μ0. The relative 

magnetic permeability of paramagnetics is slightly higher than 1, and of diamagnetics slightly lower 

than 1. The value of relative magnetic permeability of ferromagnetics ranges from about 100 for carbon 

steels, about 4000 for steels used in electrical engineering, and about 5000 for pure iron. Since the 

thermal behavior of the electrically conductive plate is considered in the paper, the material 

characteristics corresponding to the given problem must also be introduced into the calculation, such as: 

thermal conductivity λ, specific heat at constant deformation Cε, material density ρ, coefficient of 

thermal expansion αt, coefficient of thermal diffusion κ=λ/(ρCε). Thermal conductivity depends on 

temperature, as shown schematically in Figure 3 (Ref. [14]). 
 

 
 

Figure 3 Thermal conductivity coefficient with respect to temperature 

  

For temperatures above 100 K, the coefficient λ can be assumed to have a constant value for most 

materials. Common values of material properties treated in the paper are shown in Table 1. 

 

Table 1 Common values of material properties 

Material 
ρ0 (20ºC) 

[Ωm] 

αe 

 [K
-1

] 
μr 

Cε 

[Jkg
-1

K
-1

] 

λ 

[Wm
-1

K
-1

] 

αt 

 [K
-1

] 

ρ 

[kg/m
3
] 

κ 

[m
2
/s] 

Al 2.8 ·10
-8

 
~4.2 

·10
-3

 
~1 910 205 2.4 ·10

-5
 2.7 ·10

3
 8.34 ·10

-5
 

Cu 
1.68 

·10
-8

 

~3.9 

·10
-3

 
~1 390 385 1.7 ·10

-5
 8.96 ·10

3
 1.1 ·10

-4
 

Carbon 

steel 

1.43 

·10
-7

 

~5.7 

·10
-3

 
~100 470 50.2 1.2 ·10

-5
 7.85 ·10

3
 1.36 ·10

-5
 

    

Some chemical reactors require materials with a high thermal resistance and low heat conduction. 

In that case a suitable correlation between thermal conductivity and temperature gives multiple linear 

regression model as presented in Ref. [15]. For thermo-sensitive materials, a thermal conductivity 
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coefficient is dependent on temperature and reference [16] discussed corresponding problem of heat 

conduction in a half-space. The dependence of thermal conductivity on temperature for most materials 

can be represented by an equation analogous to equation (3), where the common value of the coefficient 

is about 0.00059 K
-1

, so it will be neglected in this work. 

2. The heat source definition based on the properties of the electromagnetic wave 

Based on expressions (2) and (3), the active power of the wave absorbed by the plate depends on 

the temperature and is described by the following equation 

 00

2
0 1

2
TTf

H
P e   .       (4) 

If the temperature change T-T0 is denoted as θ, for small temperature changes (Taylor series) it can 

be written that 

...e
e  




2
11 .        (5) 

but for larger temperature changes, this approximation is not valid. To determine an acceptable linear 

approximation for the temperature, range from about 300 K to about 1300 K, a suitable diagram is 

drawn, as shown in Fig. 4. 

 

Figure 4    with respect to temperature 

The diagram in Figure 4 shows the relation between Kρ and θ can be written as 










k
K e

e

)K(

t  11
2930

.       (6) 

It is evident that for temperature changes θ greater than 100 K, the best linear approximation is obtained 

by taking the factor k around 3. 

To mathematically define the problem, it is necessary to calculate the power that the 

electromagnetic wave transmits to plate and to define spatially and temporally Joule heating losses as a 

suitable source of heat. Based on relation (4), the total power of the losses is shown by the equation 
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To spatially define the source of heat, it is necessary to first determine the skin depth of the waves 

into the conductive plate. Skin depth   mostly depends on the wave frequency and is given by the 

following equation (Ref. [11]) 

 









ff

et 


10 .        (8) 

The frequency of electromagnetic waves in microwave ovens is of the order of 10
10 

Hz, while the 

frequency of gamma radiation is of the order of 10
20 

Hz. For induction heating, a frequency of up to 25 

kHz is used, for welding around 25 MHz, and for microwave ovens it is usually around 2.5 GHz. The 

average power of electromagnetic radiation at the top of the atmosphere is about 1400 Wm
-2

. 

Skin depths for the observed materials at a temperature of 20°C, and for different frequencies, are 

shown in Table 2. 

 

Table 2 Skin depth at 20°C 

 10Hz 100Hz 1kHz 1MHz 1GHz 

Al 26.63 mm 8.42 mm 2.66 mm 84.22 μm 2.66 μm 

Cu 20.6 mm 6.52 mm 2.06 mm 65.23 μm 2.06 μm 

Steel 6.02 mm 1.9 mm 0.6 mm 19.03 μm 0.6 μm 

  

Diagrams from Figures 5a and 5b show the change in skin depth for an aluminum plate depending 

on the temperature and frequency of the incident wave. 

 

  
a) b) 

Figure 5 a) Skin depth with respect to frequency (aluminum); b) Skin depth with respect to 

temperature (aluminum) 

 

Based on the presented analysis, for high-frequency waves, the skin depth is very small, so the 

position of the heat sources that generate conduction currents can be shown by applying the Dirac   

function. According to the coordinate system attached to the plate and shown in Figure 1, the heat losses 

caused by the conduction currents due to the action of the high-frequency wave are treated as a heat 

source described by the equation 
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where the Dirac function δ(x) describes the position of the heat source, and the Heaviside function H(t) 

defines the corresponding time change (t is time). 

3. Mathematical modeling of the problem. Temperature field 

The differential equation that describes the temperature field in the observed conductive plate, for 

the uncoupled problem, is as follows, (Ref. [10,11]) 






W

tzyx
































 1
2

2

2

2

2

2

.       (10) 

In the case of thin plates, the assumption that the temperature changes linearly along the thickness 

of the plate is introduced, and for the adopted coordinate system it is represented by the following 

equation 

      









2
10

h
xt,z,yt,z,yt,z,y,x  ,      (11) 

in which τ0 is the temperature of the middle cross section of the plate, and τ1 is the temperature gradient 

across the plate thickness. As the intent of this work is to determine the influence of the change of 

specific electrical resistance on the thermal behavior of electrically conductive plates, in the further 

discussion only the determination of the temperature of the middle cross section of the plate will be 

shown. In the case of thin plates that are thermally insulated on both sides (x=0 and x=h), the 

temperature gradient across the thickness is small, and terms that have no direct impact on the final 

purpose of this work are removed from the differential equation. In that case, the differential equation 

describing the temperature of the middle cross section of the observed plate has the following form 
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If the boundary conditions are adopted so that the temperature at the edges y=0, a and z=0, b is 

constant (θ=0), a double finite Fourier transformation (symbol τ0nm) can be applied in the directions of 

the y and z axes, so that the equation takes the following form 
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equation (13) takes the following form 
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Since a dynamic problem is considered, it is necessary to apply the Laplace transformation (label *), so 

the function τ0nm
*
 can be determined by arranging the equation below 
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in which p is the Laplace transform parameter, and the initial condition is θ (t=0)=0.  

The transformed function has the form 
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When the following notation is introduced 
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equation (16) takes the following form 
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The inverse Laplace transform of the previous expression gives the following equation 

  
)(

1
22

2

)(

1
0

22
2

mn

tK

mn

nm
K

eK mn













.       (19) 

Finally, the inverse finite Fourier sine transforms must be applied, so the analytical equation in 

closed form for the temperature field in the middle cross section of the plate is as follows 
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4. Numerical examples 

All material characteristics related to this problem are shown in Table 1. To form a numerical 

model, the strength of the magnetic field and the frequency of the waves are defined. In induction 

heating, the field strength is around 1000 Am
-1

, and the frequency is around 25 kHz, while in welding, 

the frequency is around 25 MHz. That was the reason for selecting the field from 500 Am
-1

 to 1000 

Am
-1

, and the frequency of 1 MHz ÷ 1 GHz. Since thermal conductivity of steel is four times lower than 

thermal conductivity of aluminum, and even seven times lower than thermal conductivity of copper 

(Table 1), in order to obtain the same temperature difference range for all the materials, plates of 
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different dimensions and electromagnetic waves of different frequencies are considered. Calculation 

parameters for considered materials are shown in Table 3. 

 

Table 3 Calculation parameters (CW, K1, K2) with respect to H0 and f 

Material CW  [Wm
-2

] K1 [K/s] K2 [m
-2

] 

Al 1.66·10
-7

×H0
2
·f 0.5 

1.63·10
-6

×CW/h 6.83·10
-6

×CW/h 

Cu 1.29·10
-7

×H0
2
·f 0.5

 1.14·10
-6

×CW/h 3.38·10
-6

×CW/h 

Carbon steel 3.76·10
-6

×H0
2
·f 0.5

 1.08·10
-6

×CW/h 3.78·10
-5

×CW/h 

 

Firstly, the heating of a steel plate with dimensions a×b = 1 m×1 m was considered for different 

values of plate thickness. The field strength and wave frequency are given in the diagram from Figure 6. 

The diagram shows the change in temperature of the central point of the plate while reaching the 

stationary state. The influence of the plate thickness on its heating is not linear. 

 

 

Figure 6 Temperature change with respect to plate thickness h (a×b = 1 m×1 m) 

 

To demonstrate the influence of the change of specific electrical resistance when heated by 

electromagnetic waves, first calculations were performed for a plate with dimensions 

a×b×h=1m×1m×20mm. In this case, the temperature change is great, so that the difference of the 

calculation with factor K2 (when the change in electrical resistance is considered) or without it is 

significant. From the diagram shown in Figure 7, the difference is of the order of 30 %. 

  
a) b) 

Figure 7 Temperature change with respect to K2 for the plate thickness of a) 20 mm (a×b = 

1m×1m); b) 75mm (a×b = 1 m×1 m) 
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For plates of greater thickness, where the temperature is significantly lower, a much smaller 

difference in calculations was obtained as expected (less than 10 %), which is shown in the diagram in 

Figure 7b. 

Diagram in Figure 8 shows the temperature change along one central line of the plate, at y=500mm, 

for the plates of different thickness. 

 

 

Figure 8 Temperature change with respect to coordinate z (a×b = 1 m×1 m) 

 

Due to the thermal boundary conditions, i.e., the cooling of the plate along the side edges, for 

copper and aluminum plates with dimensions a×b=1 m×1 m, the temperature change is relatively small. 

To observe and show the significance of the change in specific electrical resistance for these materials as 

well, panels with dimensions a×b×h=2 m×2 m×20 mm were considered because, in the case of these 

dimensions, the cooling is much slower. Also, the wave frequency was raised to a value of 1 GHz. 

 

Figure 9 Temperature change with respect to K2 for the aluminum plate thickness of 20 mm (a×b 

= 2m×2m) 

 

Figures 9 and 10 illustrate the temperature change over time for a point with coordinates y=z=1 m. 

For the selected parameters and selected boundary conditions, the aluminum plate heats up much more 

easily than the copper plate. Since the wave frequency is also very high, the aluminum plate 

theoretically reaches a temperature of about 600°C. That is why the difference in the calculation results 

with and without considering the K2 factor is over 30 %. 
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For the same parameters, the copper plate is heated to a maximum temperature of about 180°C, so 

in that case the influence of the change in specific electrical resistance with respect to temperature is less 

important. 

 

Figure 10 Temperature change with respect to K2 for the copper plate thickness of 20 mm (a×b = 

2m×2m) 

 

5. Conclusion 

When high-frequency electromagnetic waves act on a plate made of electrically conductive 

material, the plate absorbs part of the energy of the waves and conduction currents appear. The absorbed 

wave energy is converted into a heat source whose power can be determined via the Poynting vector. For 

electro-conductive materials such as copper, aluminum and steel, the depth of wave penetration is very 

small, so the formed heat source can be spatially described by the Dirac function. Since the dynamic 

change of plate temperature is considered in the paper, the Heaviside function is also introduced to 

obtain the solution in an analytical form. Electrical resistivity is a characteristic of the material that 

figures in the Poynting vector, and to a significant extent depends on the temperature. It is shown that, 

during the analytical calculation, it is best to perform the appropriate linearization of the Poynting vector 

in the manner shown in the paper. By applying the technique of integral transformations, a solution is 

obtained in a closed analytical form. The importance of the influence of the change in specific electrical 

resistance is explained through appropriate numerical examples. In this paper, it is clearly shows that for 

temperature changes greater than 100 K, this dependence must be considered. 
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Nomenclature 

a, b, h [m]- plate dimensions  αt [K
-1

] - coefficient of thermal expansion  

Cε [Jkg
-1

K
-1

] - specific heat at const. deformation  αe [K
-1

] - thermal coefficient of electric resistance  

f  [Hz] - wave frequency  λ [Wm
-1

K
-1

] - thermal conductivity  

H0 [Am
-1

] - strength of the magnetic field  μ0 [Hm
-1

] - magnetic permeability 
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P [Wm
-2

]- Poynting vector  ρ [kgm
-3

] - material density  

t [s, h] - time  ρt [Ωm] - specific electric resistance  

T [K, °C] - temperature θ=T-T0 [K, °C] - temperature change  
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