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Abstract: The search for alternative materials that can be used for parts of aircraft hydraulic systems
has led to the idea of applying S32750 duplex steel for this purpose. This steel is mainly used in the oil
and gas, chemical, and food industries. The reasons for this lie in this material’s exceptional welding,
mechanical, and corrosion resistance properties. In order to verify this material’s suitability for
aircraft engineering applications, it is necessary to investigate its behaviour at various temperatures
since aircrafts operate at a wide range of temperatures. For this reason, the effect of temperatures
in the range from +20 ◦C to −80 ◦C on impact toughness was investigated in the case of S32750
duplex steel and its welded joints. Testing was performed using an instrumented pendulum to obtain
force–time and energy–time diagrams, which allowed for more detailed assessment of the effect of
testing temperature on total impact energy and its components of crack initiation energy and crack
propagation energy. Testing was performed on standard Charpy specimens extracted from base metal
(BM), welded metal (WM), and the heat-affected zone (HAZ). The results of these tests indicated high
values of both crack initiation and propagation energies at room temperature for all the zones (BM,
WM, and HAZ) and sufficient levels of crack propagation and total impact energies above −50 ◦C.
In addition, fractography was conducted through optical microscopy (OM) and scanning electron
microscopy (SEM), indicating ductile vs. cleavage fracture surface areas, which corresponded well
with the impact toughness values. The results of this research confirm that the use of S32750 duplex
steel in the manufacturing of aircraft hydraulic systems has considerable potential, and future work
should confirm this.

Keywords: S32750 duplex steel; impact toughness; temperature; crack initiation energy; crack
propagation energy

1. Introduction

Impact toughness is one of the most important material properties and was defined
by Charpy more than 120 years ago as the total energy to break a notched specimen with
a single pendulum strike [1,2]. Later on, instrumented pendulums capable of recording
force vs. time enabled separation of the total energy into the energy for crack initiation
and for crack propagation, as described in [3]. One should keep in mind that materials,
especially welded joints, exhibit completely different behaviour in the case of dominant
crack initiation energy from materials with dominant crack propagation energy, even
though they have the same total energy [3].

Although not directly, the results of Charpy instrumented pendulum testing can be
used in the scope of structural integrity assessment procedures, as explained in the case
of estimating fracture toughness values, either through the master curve concept [4] or
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by micro-mechanical material modelling [5]. In addition, the application of Charpy V
instrumented testing as a tool for structural integrity assessment is presented in [2,6].

As already mentioned, welded joints are of special interest when toughness is anal-
ysed because both the energies for crack initiation and propagation vary significantly in
the case of heterogeneous material consisting of base metal (BM), welded metal (WM),
and a heat-affected zone (HAZ), including its subzones (coarse grain (CG) and fine grain
(FG)) [7–9]. The ductile–brittle transition is another important aspect of welded joints
due to their heterogeneity, as shown by 3D transient analyses of Charpy impact speci-
mens [10]. In the case of two high-temperature steels investigated in [8,11,12], detrimental
effects of complex welded joint microstructures have been shown. Two steels have been
tested—A 387 Gr. B and A387 Gr. 91—both indicating higher resistance to crack initiation
and propagation in the HAZ than in WM [8,11,12].

Here, we consider S32750 duplex stainless steel (W. 1.4410) used for dynamically
loaded components in the chemical and petrochemical industries, as well as in aeronautical
engineering more recently. It is often used in aggressive corrosion environments with
service temperature limits below 350 ◦C [13]. Duplex alloy is a descriptor of an alloy where
two phases are present in significant quantities, as in the case of basic duplex stainless steel
made of a ferritic/austenitic Fe-Cr-Ni alloy with 30–70% ferrite. During the 1980s, more
highly alloyed duplex grades were developed to withstand more aggressive environments.
The so-called superduplex grades contain about 25% Cr, 6–7% Ni, 3–4% Mo, 0.2–0.3% N,
0–2% Cu, and 0–2% W, as in the case of S32750 stainless steel designed for highly corrosive
environments [13].

Recently, a special issue dedicated to advances in duplex stainless steels (DSSs) [14]
presented mechanical properties and corrosion resistance in respect to composition and heat
treatment, i.e., microstructures, [15,16], including welding innovations [17,18]. Special focus
was placed on diffusive and diffusionless phase transformations due to the presence of the
metastable austenitic phase and the instability of ferrite at high temperatures, potentially
affecting corrosion resistance and mechanical properties.

Microstructures of DSS have also been analysed in respect to deformation processes,
including electro-plastic effects, [19], hot deformation, [20], and numerical simulations of
DIC-measured strains [21]. An investigation of the electro-plastic effect on four different
DSSs was performed and presented in [19], characterised by optical microscopy, X-ray
diffraction, and tensile properties (tensile strength, total elongation, uniform elongation,
and yield stress). In an investigation presented in [20], the optimum range of deformation
temperature (considering that both austenite and ferrite have different deformation be-
haviours due to their different morphological, physical, and mechanical properties) was
determined. Local strain distribution in duplex stainless steel during tension, as obtained
using the digital image correlation (DIC) technique, was presented in [21], with a finite ele-
ment inversion of nanoindentation experiments on austenitic and ferrite phases in duplex
stainless steel carried out to obtain the stress–strain response of the two phases. Further,
based on the representative volume element (RVE) and the material parameters obtained
from the finite element inversion method, the local stress and strain behavior of duplex
stainless steel at a microscale was simulated numerically [21].

Generally speaking, S32750 DSS has good weldability and high mechanical strength,
but its welded joints are still not investigated in detail, especially with respect to resistance
to cracks. As an example of such an investigation, one can take the welding of dissimilar
joints (S32750 DSS and 316L stainless steel) performed with a pulsed laser [18]. It was
shown that the heat input (between 45, 90, and 120 J/mm) did not significantly affect the
ferrite–austenite phase balance and the microhardness in the fusion zone [18].

The mechanical properties and microstructures of austenite-ferrite DSS welded joints
made by hybridization (laser and GMAW) and SAW were investigated and presented
in [22], indicating the presence of ferritic-austenitic microstructures both in the BM and
WM, as well as high tensile strength (TS) and high ductility of both the WM and HAZ.
A similar investigation was performed on laser-welded S32520 DSS, as presented in [23],
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indicating that process parameters affected tensile strength in a complex way due to the
change in heat energy efficiency with changes in parameters. It was also shown that
reducing the strength provided more ductile welded joints.

In this paper, welded joints made of S32750 DSS are tested at different temperatures
on a Charpy instrumented pendulum to evaluate the resistance to crack initiation and
propagation in BM, WM, and the HAZ. The results for the BM are already published in [24],
indicating that S32750 DSS had high total impact toughness at all the tested temperatures.
It was also shown that crack propagation energies were significantly higher than crack initi-
ation energies at all the testing temperatures, which is a favourable distribution of energies
from the point of view of structural integrity. Therefore, additional testing is performed on
welded joints, as presented in this paper, to determine the distribution of energies in the
WM and HAZ and to find out if it is also a favourable distribution. Furthermore, microg-
raphy and fractographic analyses through optical and scanning electron microscopy are
performed on all the specimens to determine the ductile vs. cleavage fracture surface areas
and to better explain the obtained values of energies for crack initiation and propagation.

2. Materials and Methods
2.1. Base Material

The material used in this work was a commercially produced duplex steel designated
UNS S32750 (W. EN 1.4410). Its composition is given in Table 1, and its properties are in
Table 2.

Table 1. Chemical composition of the base material: superduplex stainless steel (S32750) (wt. %).

C Si Mn S P Cr Ni Cu Al Mo V Ti N Co

0.02 0.49 0.88 0.0003 0.024 25.3 6.85 0.1 0.008 3.6 0.044 0.005 0.27 0.1

Table 2. Mechanical properties of S32750 superduplex steel.

Yield Stress
Rp0.2, MPa

Tensile Strength
Rm, MPa

Elongation at Failure
A5, %

Impact Toughness
KV at 20 ◦C, J

584 855 32 297

2.2. Welding

Welding was performed using a tungsten inert gas (TIG) procedure, which is typically
used for the welding of high-alloyed and duplex steels. TIG 22/9/3 LN wire (designation
of W 22 9 3 LN according to EN 12072 [25]) was used as a filler material due to its favourable
mechanical properties and chemical composition, which was similar to the base metal.
This filler material provided welded metal resistant to aggressive environments (especially
against corrosion), which is of great importance for the integrity of welded joints in the
chemical and oil industries, where duplex steels are mostly used. The chemical composition
and mechanical properties of the filler material are given in Tables 3 and 4, respectively.

Table 3. Chemical composition of filler metal: TIG 22/9/3 LN (wt. %).

C Si Mn Cr Ni Mo N

<0.03 0.6 1.7 22.5 9.0 3.0 0.13

Table 4. Mechanical properties of TIG 22/9/3 LN.

Yield Stress
Rp0.2, MPa

Tensile Strength
Rm, MPa

Elongation at Failure
A5, %

Impact Toughness
KV at 20 ◦C, J

>510 680–890 20 >47
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For the welding of plates with dimensions of 200 × 150 × 25 mm, a K-groove was
prepared that was 3.2 mm wide. Two different wire diameters were used: Ø2.4 mm for the
root pass and Ø3.2 mm for the fill passes. Due to the geometry of the groove and in order to
reduce residual stresses, plates were welded alternately from the upper and lower sides of
the groove. Initially, welding parameters were determined based on recommendations and
previous experience, and qualification of the suggested welding technology was performed
on test plates. Test welded joints were tested using X-ray radiography, and defects were
detected. The sample was discarded, welding parameters were changed, and qualification
welding was performed again. In this case, radiography did not detect any defects, and
this confirmed that the new welding technology was acceptable for further welding of this
material. The final welding parameters are given in Table 5. The macrostructure of the
weld joint is shown in Figure 1, indicating the WM, HAZ, and BM, as well as the root and
fill passes.

Table 5. Welding parameters for the first plate (3.2 mm K-groove).

Upper Side Lower Side

Pass Current (A) Voltage (V) Duration (min) Pass Current (A) Voltage (V) Duration (min)

Root 170 14
1 199 14 3:15 1 199 14 3:20
2 199 15 2:30 2 199 15 2:00
3 199 15.5 2:05 3 199 15.5 2:00
4 199 17 1:40 4 199 17 1:45
5 199 17.5 1:40 5 199 18 1:40
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Figure 1. (Left) Macrostructure of welded joint. (Right) Hardness measuring locations.

The macrostructure of the welded joint is shown in Figure 1. All the characteristic
zones are present: the base metal, HAZ, and welded metal. In the welded metal, all the
passes can be identified. In the base metal, some heterogeneity can be observed in the
centre of the cross-section. This heterogeneity originated during hot rolling. Plates welded
in this work were 25 mm thick. After hot rolling, the cooling rate in the centre of the
hot-rolled strip/plate was very low due to both a low heat transfer coefficient and large
weight. It is well-explained that alloying elements redistribute, leading to heterogeneity
and the formation of bands, as can be seen in Figure 1. This, in turn, makes the possibility
of forming bands with enriched or depleted zones of alloying elements [26–29]. It has been
proved that elevated contents of chromium and molybdenum can trigger the formation of
second-phase particles located near the mid-thickness of a plate, mostly sigma-phase (FeCr)
particles within the bands and a small volume fraction of chi phase (FeMoCr). These bands
are partially re-soluted during welding in the vicinity of the welded metal, indicating that
faster cooling does not allow the formation of a sigma phase [26–29].
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The occurrence of banded structures, which can be observed in Figure 1, affected only
the tensile strength, but only slightly since its orientation was along the band. However,
this effect did not significantly influence toughness since the crack was perpendicular to
the bonds. It also did not affect hardness, as can be seen from the results in Table 6.

Table 6. Hardness measurement results for all relevant welded joint regions.

Layer Measurement No.

Hardness HV 10

Zone (from Left to Right)

WM 1 HAZ 1 FL 1 WM FL 2 HAZ 2 WM 2

I

1 437 435 437 433 435 433 435
2 437 434 437 433 439 435 437
3 435 433 437 431 437 433 437
4 433
5 433
6 433

II

1 437 435 437 435 441 437 435
2 437 435 439 437 441 437 437
3 435 435 437 437 439 437 437
4 439
5 435

III

1 437 435 437 435 437 435 435
2 437 435 437 433 434 435 437
3 437 435 437 433 435 437 437
4 433
5 433
6 435

2.3. Microstructure and Fractography

The microstructures were characterised with a Leitz optical microscope. To reveal the
grain structure, the samples were etched in mix of hydrochloric and nitric acid for 15 s. A
scanning electron microscope (SEM, Jeol JSM 6610LV, Tokyo, Japan) was used to investigate
the fracture surfaces of impact toughness specimens.

2.4. Impact Toughness Testing

Impact testing was performed according to the standard of SRPS EN ISO 148-1:2017 [30]
using specimens according to SRPS EN ISO 9016:2013 [31], as shown in Figure 1.

Testing was performed on a SCHENCK TREBELL 150/300 J instrumented Charpy
pendulum at room temperature (i.e., 20 ◦C) and at lower temperatures down to −80 ◦C for
the BM, WM, and HAZ. Three specimens were extracted from each characteristic zone, with
the crack tip positioned in the BM, WM, and HAZ. In the case of the HAZ, the specimen tip
was located as close to the WM as possible (Figure 2), i.e., in the CGHAZ, as a representative
of the lowest toughness in the HAZ. In the case of the WM specimen, the tip was located
close to the centre line.
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Welded plates were 25 mm thick, and after welding, they were cut in half along the
thickness using a water jet to avoid additional heat input, which could lead to further
microstructural transformations (cut line shown in Figure 3). Specimens for Charpy testing
were extracted from the two halves of the plate, and notches were made from both sides
(upper and lower).
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Figure 3. Welded joint Charpy specimen tip positioning with heat-affected zone thickness ranging
from 3.5 to 4 mm in width.

Since the tests were performed using an instrumented Charpy pendulum, it was
possible to separate the crack initiation and propagation energies and to evaluate the effect
of the notch location on the impact properties. In this way, it was possible to determine
the energies for initiating and propagating a crack, enabling a better understanding of the
crack resistance of the tested material. Energy separation was performed according to the
force maximum value so that the area to the left represented the energy for crack initiation,
Ai, and the area to the right the energy for crack propagation, Ap (Figure 4). Acquisition
measuring methods were used according to standard SRPS EN ISO 14556:2020 [32].
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3. Results
3.1. Microstructure

The microstructure of the base metal is shown in Figure 5a. It consisted of austenite
(white) and ferrite (dark) phases. The austenite was present as laths inside the ferrite
matrix. The microstructure in the centre of the weld showed austenite in the form of
Widmannstätten plates, as depicted in Figure 5b. Austenite nucleated on the grain boundary
of randomly oriented ferrite. The heat-affected zone showed slight microstructural changes
(Figure 5c,d). The austenite grains were slightly coarser.
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3.2. Charpy Testing

The results of the Charpy instrumented pendulum testing are shown in Tables 7–9
(BM, WM, and HAZ, respectively) and in the F–T diagrams (Figures 6–8 for BM, WM,
and HAZ, respectively), indicating the total energy and crack initiation and propagation
energies at room and lower temperatures down to −80 ◦C. This temperature was selected
as the transition temperature for the selected material based on previous experiments that
were performed at temperatures up to −196 ◦C.

Table 7. Results for impact energies (average values and deviations) for BM.

Temperature, ◦C Total Impact Energy
Etot, J

Crack Initiation
Energy, EI, J

Crack Propagation
Energy, EP, J

−80 82 ± 6 17 ± 1 65 ± 5
−60 125 ± 11 25 ± 2 100 ± 9
−40 201 ± 11 45 ± 1 156 ± 10
+20 297 ± 3 52 ± 1 245 ± 3
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Table 8. Results for impact energies (average values and deviations) for WM.

Temperature, ◦C Total Impact
Energy, Etot, J

Crack Initiation
Energy, EI, J

Crack Propagation
Energy, EP, J

−80 26.5 ± 7.3 8.5 ± 4.4 18.0 ± 2.0
−60 34.1 ± 1 7.2 ± 2.9 26.9 ± 1.9
−40 112.4 ± 11.6 39.8 ± 10.7 67.6 ± 27.3
+20 229.3 ± 5.6 99.0 ± 3.3 130.3 ± 2.4

Table 9. Results for impact energies (average value and deviation) for the HAZ.

Temperature,
◦C

Total Impact
Energy, Etot, J

Crack Initiation
Energy, EI, J

Crack Propagation
Energy, EP, J

−80 17.6 ± 1.3 5.1 ± 0.9 12.5 ± 2.1
−60 20.3 ± 0.8 5.5 ± 0.7 14.8 ± 0.1
−40 32.3 ± 1.3 11.2 ± 1.6 21.1 ± 0.9
+20 87.7 ± 22.9 48.5± 22.0 39.2 ± 0.9
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Figure 6. Relationships of force vs. time and energy vs. time for BM specimens. 
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The results are presented as average values and deviations.
Based on these results, one can now determine the null ductility (transition) temper-

ature (ND(T)T) corresponding to the total impact energy of 27 J, as shown in Figure 9,
where total impact energy is plotted against temperature. As one can see from Figure 9, the
ND(T)T was Tp = −110 ◦C for BM, while that for WM was −80 ◦C and HAZ was −50 ◦C.
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3.3. Fractography

Macroscopic views of the surfaces of fractured specimens are given in Figures 10–12
for the BM, WM, and HAZ, respectively, for all the tested temperatures. The results of the
fractographic analysis are shown in the same way in Figures 13–15.
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−80 ◦C.

Base metal: The fracture surfaces of impact test specimens in the temperature range
from +20 ◦C to −80 ◦C are shown in Figure 10. Macroscopic observation showed extensive
shear lips on both sides of the base metal specimens tested at +20 ◦C. Shear lips were also
observed in all the specimens, even on the specimen tested at −80 ◦C, but they narrowed
with decreasing temperature. Fracture areas covered by dimples were observed at all
temperatures. Delamination in the centre of the specimen firstly occurred at −40 ◦C, while
it was more pronounced at lower temperatures (−60 ◦C and −80 ◦C). It was noted that
delamination was initiated on the notch tip (Figure 10c,d) and grew perpendicularly to the
main crack. The same specimen’s notch tip area exhibited both ductile dimples (Figure 13a)
and some triangular areas of mostly transgranular cleavage fracture (indicated by arrows
in Figure 10c,d and Figure 13b,c at higher magnification). The latter feature was more
pronounced at −80 ◦C (Figure 10d).

Welded metal: The fracture surfaces of impact test specimens at a temperature range
from +20 ◦C to −80 ◦C are shown in Figure 11. Macroscopic observation showed shear lips
at all temperatures. SEM observation showed that the fracture surface tested at +20 ◦C was
covered by ductile dimples. Samples tested at −80 ◦C showed mixed-mode fractures, i.e.,
both dimples and cleavage (Figure 14).

Shear lips were also observed in specimens where notch tips were positioned in
the HAZ, and the width decreased with decreasing temperature. Delamination was pro-
nounced from −40 ◦C to −80 ◦C (Figure 12). A mixture of cleavage fracture and ductile
dimple fracture was observed in the propagation zone at all temperatures (Figure 15). The
fraction of cleavage fractures increased with decrease in the temperature.

4. Discussion

As one can see from Table 6, the total impact energy for the BM was well above the
critical value, taken here as 27 J. Actually, the ND(T)T for the BM was −110 ◦C, as shown in
Figure 9. In the case of the WM and HAZ, the ND(T)T amounts were significantly higher
at −80 ◦C and −50 ◦C, respectively, indicating that welded joints made of S32750 duplex
steel could operate safely at temperatures above −50 ◦C.

When considering crack initiation and propagation energies, one can see that, in all
cases (BM, WM, and HAZ), the latter one dominated, providing relatively good resistance
to crack propagation for the whole welded joint. Once again, the critical zone was the HAZ,
with a crack propagation energy of only 21 J at −40 ◦C, while the WM had sufficient crack
propagation energy above −60 ◦C. It is important to notice that dominant propagation
energy is a better option for welded joints since one should not rely on crack initiation
energy in the WM and HAZ because one should never take for granted that they are free of
crack-like defects.
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If the BM is compared with the WM and HAZ, not only were significant reductions
in all the energy values obvious, especially in the HAZ, but also large deviations from
the average values were evident in a few cases. Although this clearly indicated the effect
of heterogeneous microstructures, it did not affect the minimum required toughness in
any case.

From the BM fracture surfaces, one can see extensive shear lips on the specimens
tested at +20 ◦C. Shear lips were also observed in other BM specimens, even those tested
at −80 ◦C, but they narrowed with decreasing temperature. Fracture areas covered by
dimples were observed at all the temperatures. Delamination in the centre of the specimens
firstly occurred at −40 ◦C, while it was more pronounced at lower temperatures (−60 ◦C
and −80 ◦C). Typically, delamination was initiated at the notch tip (Figure 10c,d) and grew
perpendicularly to the main crack. As shown in Figure 13, the notch tip area of the BM
specimens tested at −80 ◦C exhibited both ductile dimples (Figure 13a) and dominantly
transgranular cleavage fractures at the delamination and triangular areas (Figure 13b–d).
Delamination phenomena were also presented in [33].

Welded metal macroscopic observation showed shear lips at all temperatures that
were less and less expressed as the temperature was reduced, as shown in Figure 11a–d.
This observation was supported by SEM, indicating that the fracture surface tested at
+20 ◦C was covered by ductile dimples, whereas samples tested at −40 ◦C, −60 ◦C, and
−80 ◦C showed mixed-mode fractures, i.e., both dimples and cleavage (Figure 14).

Shear lips were also observed in specimens where notch tips were positioned in the
HAZ, which also became smaller with decreasing temperature, as shown in
Figure 12a–d. Delamination was pronounced from −40 ◦C to −80 ◦C (Figure 12b–d).
A mixture of cleavage fractures and ductile dimple fractures was observed in the propaga-
tion zone at all temperatures (Figure 15). The fraction of cleavage fractures increased with
decrease in temperature.

It is clear that fractographic features closely followed temperature effects on impact
energies for all the welded joint zones since more and more cleavage fractures were present
as temperatures became lower and lower.

5. Conclusions

Based on the presented results, one can conclude the following:

• The base material had a very high toughness at all the tested temperatures, from 297 J
(+20 ◦C) to 82 J (−80 ◦C). Contrary to this, the total impact energy was significantly
affected by WM and HAZ heterogeneity since it reduced from 229.3 (WM at +20 ◦C)
to 26.5 J (WM at −80 ◦C) and from 87.7 (HAZ at +20 ◦C) to 17.6 J (HAZ at −80 ◦C).

• The transition temperature for BM was very low at −110 ◦C, but it was significantly
higher for the WM and HAZ at −80 ◦C and −50 ◦C, respectively, indicating that
welded joints made of S32750 duplex steel can operate safely only at temperatures
above −50 ◦C.

• The distribution of energies was favourable since crack propagation was significantly
higher than initiation energy.

The results of this research showed that welded joints made with S32750 duplex steel
maintained satisfactory levels of toughness at temperatures as low as −50 ◦C. This suggests
that the selected material is suitable for applications in the aircraft industry, specifically
for hydraulic systems. Further research into this matter (including but not limited to the
effects of fatigue, corrosion, etc.) should be conducted in order to completely verify this.
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