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Abstract. The sandwich beam can be considered as the multi-layered 
structure with a symmetrical cross-section. In this paper is assumed that the 
structure is created by periodical repetition of a unit cell. The influence of 
its size on the beam's static behavior in bending was analyzed. The 
variation of the unit cells number affects the size of the cell, so the static 
analysis was performed – the flexural stiffness and the beam's deflection 
were determined as functions of the unit cells number. The two 
configurations of the sandwich beams were considered: the beam with the 
constant cross-section along its length and the beam with the periodically 
variable cross-section. The graphs of the beam's flexural stiffness and 
deflection variations in terms of the unit cells number were obtained. It 
was concluded that after a certain number of the cells, the core's density 
does not further influence the behavior of the sandwich beam, under the 
given loading conditions. The conclusion from comparison of the two 
configurations is that the sandwich beam with the variable cross-section 
behaves somewhat better than the beam with the constant cross-section. 
The FEM analysis has verified all the conclusions from the analytical 
solution about the sandwich beams behavior when subjected to bending. 

1 Introduction 

Sandwich structures are the laminar structures that usually consist of the two thin, rigid 
plates – faces, which are separated by the softer layer – the core. The core material can be 
homogeneous isotropic foam, which contributes to the exceptionally small weight of the 
sandwich structure. Sometimes the core material is reinforced by the lateral fibers or the 
core consists of the thin-walled layers in the form of honeycomb or a truss. 

Lightweight sandwich structures were studied by numerous investigators: Allen (1969) 
has set basics of the sandwich structures' design and analysis. Evans et al. (1998) have 
performed a survey of research on mechanical and thermal characteristics of the metal 
cellular systems. Brittain et al. (2001) have analyzed mechanical properties of the micro 
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plates with the truss core and proposed a new method for their manufacturing. Wicks and 
Hutchinson (2001) concluded that characteristics of the optimized sandwich plates with the 
truss core are superior to characteristics of plates with the honeycomb core or the stringer-
stiffened plates. Wicks and Hutchinson (2004) have further extended their analysis to 
sandwich plates with truss core subjected to fracture straining and combination of the 
bending moment and transversal force. Valdevit et al. (2004) were conducting the structural 
optimization of the sandwich plates with the truss core. 

Sandwich structures have a wide application in different branches of industry, like the 
optical, biomechanical, microelectronics and highly resistant components, due to their high 
stiffness, superior strength, heat conductivity and small mass. To analyze the functionality 
and advantages of the sandwich structures, one should first comprehend the geometrical 
and mechanical factors, which influence the behavior of these structures. 

The sandwich beam can be considered as the multi-layered structure with symmetrical 
cross-section. In this paper is assumed that the sandwich structure is created in such a way 
that a unit cell is periodically repeated. The attention is devoted to influence of the unit cell 
size, namely the number of the unit cells in the cross-section, on the static behavior of a 
beam in the bending loading conditions. The variation of the unit cells number affects the 
size of the cell, so the static analysis was performed – the flexural stiffness and the beam's 
deflection were determined as functions of the unit cells number, i.e. the core's density.  

The two configurations of the sandwich beams were considered for the sake of 
comparison of their behavior under the same loading conditions: (i) the sandwich beam 
with the cross-section that is constant along the beam's length, which consists of the two 
faces while the core is made of the unit cell with the two square openings and (ii) the 
sandwich beams with the cross-section that changes periodically along the beam's length –
one cross section is full, while the other has square openings. 

2 Analytical solution of the problem  
In Figures 1 and 2 are shown the two considered configurations of the sandwich beam: in 
Figure 1 the sandwich beam with a cross section which is constant along the beam's length 
L and in Figure 2 the sandwich beam with variable cross-section. The cross section of the 
former beam consists of the two flat plates, the beam's faces, upper and lower, of thickness 
tf and width b. The beam's core, of height HC, is made of a unit cell with two square holes 
of size a. This is a sandwich structure with n = 1, where n represents a number of unit cells, 
i.e. the core's density. As can be seen in Figure 1 the structure with n = 2 has eight square 
holes. If the structure could be built with sufficient (arbitrary) number of holes, n could be 
practically limitless (n = �). The cross section of the latter beam is periodically changing 
along its length. In the A-A section, the beam has the solid cross section, while in the B-B
section the cross section has the square holes. The upper and the lower beam faces have the 
same thickness, tf, while the beam's core height is HC.

The faces and the core are made of different materials, so the elastic characteristics of 
the materials, the Young modulus and the Poisson's ratio, have indices 1 for the faces' 
material and 2 for the core's material, i.e. E1 and ν1, and E2 and ν2, respectively.  

The differential equation of the beam's elastic (deflection) line reads: 

2
( )

2

( ) ( )n
d u x

B M x

dx

� ,                                                    (1)

where B(n) is the bending stiffness, u(x) is the deflection and M(x) is the bending moment 
for the cross section defined by coordinate x. 
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Fig. 1. Schematic presentation of the sandwich beam with the constant cross section.  

Fig. 2. Schematic presentation of the sandwich beam with the variable cross-section.  

For the beam whose cross section is constant along its length, the bending stiffness is 
calculated as: 
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while for the beam whose cross section is variable along its length the bending stiffness is 
calculated as: 
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where l is the period's length. 
For the loading conditions of beams presented in Figures 1 and 2, the largest deflection 

is obtained at the beams' free ends, i.e. for x = L, and can be calculated as: 

3
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For the beam configuration presented in Figure 1 – the beam with the square cross 
section with the square holes, which does not vary along the beam's length, the bending 
stiffness in terms of the core's density is obtained as: 
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For the beam configuration presented in Figure 2 – the beam with the square cross 
section with the square holes, which is varying along the beam's length, the bending 
stiffness in terms of the core's density is obtained as: 
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In Figure 3 is presented variation of the flexural stiffness in terms of the core density for 
both beam configurations and for the same loading conditions. Results were obtained 
according to equations (5) and (6) by application of the Mathematica

® programming 
routine.  

In Figure 4 is presented variation of the beam's free-end deflection in terms of the core 
density for both beam configurations and for the same loading conditions. Results were 
obtained according to equations (4), (5) and (6) by application of the Mathematica

®

programming routine.  
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                                        (a)                                                                                (b) 

Fig. 3. Beam flexural stiffness in terms of the core density n for the beam: (a) with the cross-section 
that is constant along the length; (b) with the cross-section that is variable along the length.  

From Figure 3 one can notice that the flexural stiffness decreases with the core's density 
increase. It can also be noticed that after reaching the value of n > 5, the stiffness remains 
almost constant. From Figure 4 one can notice that the value of the beam's free-end 
increases with increase of the beam's core density. Same as for the flexural stiffness, after 
reaching the value of n > 5, the deflection also remains constant. From that one can 
conclude that further increase of the core density does not influence the behavior of the 
sandwich beam in the given loading conditions. 

                                          (a)                                                                               (b) 

Fig. 4. The free-end deflection in terms of the core density n for the beam: (a) with the cross-section 
that is constant along the length; (b) with the cross-section that is variable along the length. 

3 Finite Element Analysis of the problem 

For the purpose of verification of the analytical results, the FME analysis of the two beams' 
behavior was also preformed. In Figure 5 is presented the beam's free-end deflection, for 
both beam configurations, for three different values of the core's density. The ANSYS 
program was used for analysis within the package AutoDesk Invertor. 

If one compares the flexural stiffness and the beam's free-end deflection for the two 
beam configurations, i.e. considers Figures 3, 4 and 5, one can conclude that the sandwich 
beam configuration with the variable cross-section is better than the configuration with the 
constant cross-section, for the same loading conditions. 

  
 

  
DOI: 10.1051/, 0100 (2016)MATEC Web of Conferences matecconf/201686 8601002

IPICSE-2016 

2 

5



 (a) 

 (a) 

 (b) 

  
 

  
DOI: 10.1051/, 0100 (2016)MATEC Web of Conferences matecconf/201686 8601002

IPICSE-2016 

2 

6



 (b) 

 (c)   

 (c) 

Fig. 5. The free-end deflection in terms of the core density n for various core densities, for the beam 
with the constant cross-section (up) and for the beam with the variable cross-section (below):  
(a) n = 1, (b) n = 3 and (c) n = 5. 
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4 Conclusion 
In the paper is analyzed the influence of the core density on behavior of the two sandwich 
beam configurations subjected to bending. The two sandwich beams were considered as the 
laminar structures with the symmetrical cross-sections. The static analysis was performed 
to establish the influence of the core's unit cell size on the sandwich beams flexural 
stiffness and the beam's free-end deflection. 

From results obtained both by analytical calculations and by the FME numerical analysis 
it was concluded that the core density does influence the sandwich beam behavior, but only 
until the number of the unit cells reaches the value of 5. The further increase of the core's 
density (above n = 5) seems to have no effect on behavior of the sandwich beams subjected 
to bending by the lateral force. 

From comparison of the two beams' configurations behavior, it was also concluded that 
the sandwich beam with the variable cross-section exhibits better behavior than the 
sandwich beam with the constant cross-section, under the same loading conditions.  
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