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Abstract: In this research paper a isogeometric laminated composite plate finite element formulation based on third order 
shear deformation theory is presented. Numerical examples illustrate natural frequencies and free vibration mode shapes of 
elliptical laminated composite plates. Obtained numerical results are presented and then compared to other available 
numerical results. 
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1. INTRODUCTION 

Since the creation of glass fibers in the ‘30s, first fiberglass 
boats in the ‘40s and their introduction in aircraft industry 
(Boeing 707 in the 1950s had 2% of the structure made from 
composites) composite materials slowly became ubiquitous 
in marine, automotive and aerospace industry. Today, 
Boeing 787 Dreamliner is the first airliner with composite 
wings and fuselage (50% of all aircraft is composite), and 
new Airbus A350XWB is 53% made of composites. The 
main advantages of composites are their strength and 
lightness which lead to improved fuel efficiency and more 
cost-effective products.  

This increase in composites usage was followed by great 
research effort by scientific community. Laminated 
composite plates (laminates) generated particularly large 
interest because of their industrial applications. In classic 
book on the subject [1] different plate theories applied to 
laminated plates and shells as well as appropriate analytical 
and finite element models and solutions are covered.  

Analytical solutions to governing differential equations are 
generally available only for simple geometries, focus of the 
scientific community was the development of computational 
methods that can threat complex geometries with 
satisfactory accuracy. In this regard, Finite element method 
(FEM) became standard tool for treatment of stress analysis 
problems. FEM seeks solution to the weak (integral) form of 
differential equations through use of low order (mostly 
linear or quadratic) polynomial basis functions. One of the 
main shortcomings of FEM is the necessity to build new 

finite element model (mesh) in order to run analysis. This 
procedure can take up to 80% of the total time required for 
analysis [2]. Novel method generally known as 
Isogeometric analysis (IGA) [2,3] is proposed in order to 
integrate geometrical design and numerical analysis. 
Isogeometric finite element method uses NURBS basis 
functions for approximation of unknown fields, same as 
almost every CAD or CAM package. NURBS offer general 
mathematical representation of both analytical geometric 
objects and freeform geometry. Application of IGA to plate 
and shell analysis is presented in [4-8] for isotropic plates 
and shells and [9-15] for composite plate and shell analysis.  

In this paper free vibration analysis of elliptical composite 
plates based on TSDT of Reddy [1] is presented. Natural 
frequencies and mode shapes are calculated and compared 
to other solutions. 

2. NURBS PRELIMINARIES 

In this section only brief recall of Non-uniform rational B-
Spline (NURBS) technology is given. Classic textbooks 
[16,17] provide more details on the subject. 

NURBS are mathematical representations of 1D, 2D or 3D 
objects. They are capable of representing analytical shapes 
(e.g. conics) as well as free-form shapes with mathematical 
exactness and offer easy manipulation and control of shape 
and smoothness to the user.  

A pth-degree NURBS curve is defined as 
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where the {Pi} are the control points, the {wi} are the 
weights and the {Ni,p(u)} are the pth-degree B-spline basis 
functions defined as 
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Multivariate NURBS basis functions are defined through 
tensor product. A NURBS surface of degree p in the u 
direction and degree q in the v direction is a bivariate 
vector-valued piecewise rational function of the form 
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where the{Pi,j} are the control points, the {wi,j} are the 
weights and {Ni,p(u)} and {Nj,q(u)} are the pth-degree and 
qth-degree B-spline basis functions defined on the 
nonuniform knot vectors 
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where r=n+p+1 and s=m+q+1.     

3. EQUATIONS OF MOTION 

In third order shear deformation theory (TSDT) of Reddy 
displacement field is defined as: 
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where u0, v0, w0 represent linear displacements of the 
midplane,ψx, ψy, are the rotations of normals to the midplane 
about the y and x-axes respectively and h denotes the total 
thickness of the laminate.  

In-plane strains {εxx εyy γxy}T are given as 

 3
0 1 3p z z= + +ε ε ε ε  (9) 
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and cross plane components γp={ γyz γxz}T as 

 2
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Constitutive relations between stresses and strains in the kth 
lamina in the case of plane stress state, for local coordinate 
system of the principle material coordinates (x1,x2,x3) where 
x1 is fibre direction, x2 in-plane normal to fibre and x3 
normal to lamina plane, are given by 
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The quantities Qij are called the plane reduced stiffness 
components and are given in terms of material properties of 
each layer as 
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E1
(k), E2

(k) are Young moduli, ν12
(k), ν21

(k) are Poisson 
coefficients and G12

(k), G13
(k), G32

(k) are shear moduli of the 
lamina. 

Composite laminates are usually made of several orthotropic 
layers of different orientation. In order to express 
constitutive relations in referent laminate (x,y,z) coordinate 
system (Pic.3.) lamina constitutive relations are transformed 
as 
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where elements of the matrix in eq.(18) are layer plane-
stress-reduced stiffnesses in the laminate coordinate 
system[1]. 

 
Picture 1. Local and global coordinate systems of a 

laminate  

The dynamic form of the principle of virtual work in matrix 
form is given by 
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4. ISOGEOMETRIC FINITE ELEMENT 
MODEL OF TSDT PLATE  

In isogeometric formulation of TSDT plates, the field 
variables are inplane displacements, transverse 
displacements and rotations at control points.  

 { }0 0 0
T

x yu v w ψ ψ=u  (22) 

Same NURBS basis functions that are used to describe plate 
geometry are used for the interpolation of field variables 

 
1

nxm

I I
I=

=∑u N q  (23) 

where n×m is the number of control points (basis functions), 
NI are the rational basis functions and qI the degrees of 
freedom associated with the control point I 
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The in-plane strains and shear strains are obtained using eq. 
(3.2),(3.3) and (4.1) as 
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N,x and N,y denote the first and N,xx, N,yy, N,xy second 
derivatives of N with respect to x and y. 

For the free vibration analysis dynamic form of the principle 
of virtual work reduces to 
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K is the global stiffness matrix defined as 
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The global mass matrix M is given by 
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5. NUMERICAL EXAMPLE 

In this section, the performance of the proposed 
isogeometric method is considered.  

Dynamic response of elliptical plate with major radius equal 
to 5 and minor radius equal to 2.5 was considered (Pic.2.). 
We used cubic basis functions in all examples and 11×11 
control point net (Pic.3.). Boundary conditions are set to 
fully clamped. Plate is made of [0°/90°/0°] composite 

laminate with following material properties: 

E11=2.45·E22  G12=G13=0.48·E22 G23=0.2·E22 

ν12=0.23 ρ=1. 

This problem was also solved by Chen et al.[18] using 
element free Galerkin method (EFG) and classical plate 
theory (CPT). For thicker plates (a/h<100) results are 
compared with Thai et al. who used plate elements based on 
isogeometric formulation of layerwise deformation theory 
(LDT) [12] and inverse trigonometric shear deformation 
theory (ITSDT) [13]. Obtained results are presented in table 
1. and they are in good agreement with other ones. Pic. 4 
illustrate first six mode shapes of a moderately thick plate 
(a/h=10). 

 

 

Picture 2. Elliptical plate geometry and assosiated mesh  

 

 

Picture 3. Control points  

 



ISOGEOMETRIC ANALYSIS OF FREE VIBRATION OF ELLIPTICAL LAMINATED COMPOSITE PLATES USING THIRD ORDER SHEAR …  OTEH 2016
 

534 

Table 1. A non-dimensional frequencies parameter of a [0°/90°/0°] clamped laminated elliptical plate. Frequency 
parameter is non-dimensionalized as ( )( )1/22

0/a h Dω ω ρ=  with 3
0 11 12 21/12(1 )D E h ν ν= − [18] 

Modes a/h Method 1 2 3 4 5 6 
IGA LDT [12] 14.157 19.976 27.143 28.862 34.955 35.162 

IGA ITSDT [13] 14.6407 20.7582 28.1961 30.4532 36.4321 36.8598 5 
IGA TSDT (present) 14.4230 20.3827 27.8591 29.6258 35.5606 36.2486 

IGA LDT [12] 17.184 25.714 36.982 39.196 49.148 50.259 
IGA ITSDT [13] 17.4003 26.1718 37.7157 39.9878 50.3411 51.2958 10 

IGA TSDT (present) 17.2878 25.9383 37.5323 39.5681 49.7803 50.8396 
IGA LDT [12] 18.329 28.280 42.255 44.321 57.090 59.827 

IGA ITSDT [13] 18.4305 28.5333 42.6563 44.6033 57.6329 60.3551 20 
 IGA TSDT (present) 18.3787 28.4142 42.4677 44.4904 57.3234 60.1597 

EFG CPT [18] 18.81 29.58 44.99 46.72 61.34 65.14 
IGA CPT [12] 18.793 29.428 44.848 46.642 60.959 64.930 
IGA LDT [12] 18.755 29.332 44.792 46.508 60.792 65.623 

IGA ITSDT [13] 18.8113 29.4718 44.8216 46.5445 60.9286 64.7845 
100 

IGA TSDT (present) 18.7910 29.3921 44.8050 46.5328 60.8958 65.0696 
 

       

       
 

Picture 4. First six mode shapes of a cubic [0°/90°/0°] clamped laminated elliptical plate with a/h=10  

6. CONCLUSION 

This paper presented isogeometric formulation of plate 
element based on TSDT theory of Reddy. Main focus was 
on the implementation of presented method for analysis of 
dynamic response of composite plates. As shown through 
the example of elliptical plate proposed method can be 
successfully used for frequency analysis of composite 
plates.  

IGA offers many advantages of which most important one is 
absence of meshing in classical sense. Since its introduction 
10 years ago IGA continues to prove itself as efficient, 
accurate and robust method but industrial application 
through integration in commercial CAE packages is absent. 
This is due to problems such as mesh refinement, treatment 
of irregular NURBS geometries (e.g. trimmed surfaces). It is 
our opinion that if the scientific interest in the subject 
continue to grow, these obstacles will be overcome. 
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