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Abstract  
 

The dynamic behavior of a structural system is characterized by its eigendata. The partial 

derivatives of eigenvalues and eigenvectors of mechanical system with respect to the design 

parameters have attracted extensive attention for the last four decades because of their various 

applications, such as optimal dynamic design, machinery failure diagnostic, parameter 

identification, model modification and automative control. A more general problem of structural 

dynamic analysis has three important aspects. Firstly, the observed physical structure is 

represented by initial finite element model. Modeling is based on numerous idealizing 

approximations within an exaggerated elaboration of details, which in essence does not 

significantly improve the accuracy of output data, especially having available powerful computers 

and appropriate software packages. Optimal alternative is to have the possibility of verifying 

outputted data that were measured on a prototype or real structure. Secondly, the dynamic 

characteristics of construction under reanalysis are analyzed. What is basically observed are 

eigenvalues and main forms of oscillations as characteristic variables that can invoke inadequate 

actual dynamic behavior. Thirdly, on the basis of the analysis of actual dynamic behavior, 

modification steps are proposed after which a modified model is obtained. Having in mind that 

mechanical structures are most often very complex, the most convenient modification steps are 

not easily obtained. The most straightforward approach for calculating the derivatives is the finite 

difference method. There mainly exist three categories in the literature: the modal method, the 

direct method and the iterative method. Several methods for the computation of eigenvector 

derivatives is analyzed with emphasis on the iterative methods.   

 

Key words: eigensensitivity, structural optimization, repeated frequencies 

 

1. INTRODUCTION 
 

Fox and Kapoor [1] derived the direct and modal methods. Nelson [2] simplified the calculation 

of the direct method. The eigenvector derivatives with repeated eigenvalues are derived by Ojalvo 

[3], Mills-Curran [4]  and Dailey [5]. Reference [6]-[17] presented reviews for the early work in 

this area. Reference [18] compared the operation counts of the modal method and the modified 

Rudisill and Chu’s iterative algorithm [19]-[20]. The relative efficiencies are surveyed in Ref [21] 

for the finite difference method, modal method, Wang’s modified modal method and Nelson’s 

direct method on the basis of central processor second. 
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Although numerical methods for computing eigenvalues and matrix exponentials have been well 

studied in the literature, there is a lack of analysis in inexact iterative methods for eigenvalue 

computation and certain variants of the Krylov subspace methods for approximating the matrix 

exponentials. Ping Zhang [22]  has proposed an inexact inverse subspace iteration method that 

generalizes the inexact inverse iteration for computing multiple and clustered eigenvalues of a 

generalized eigenvalue problem. The well-known iterative methods for solving eigenvalue 

problems are the power method (the inverse iteration), the subspace iteration, the Krylov 

subspace methods and the Jacobi-Davidson algorithm. Traditionally, if the extreme eigenvalues 

are not well separated or the eigenvalues sought are in the interior of the spectrum, a shift-and-

invert transformation (a preconditioning technique) has to be used in combination with these 

eigenvalue problem solvers. The shiftand-invert transformation requires the solution of shifted 

linear systems at each iteration. Owing to the size of the matrices, direct solution of the shifted 

matrix (i.e. factorization) may not be practical. Alternatively, iterative method (inner iterations) 

can be used to solve the shift-and-invert equation, which leads to two levels of iterations, called 

inner-outer iterations. The use of inner-outer iterations (or inexact i terations) has been studied for 

several methods, such as the Davidson and the Lanczos algorithm, the inverse iteration, the 

rational Arnoldi algorithm and truncated RQ (Rayleigh Quotient) iterations and the Jacobi-

Davidson method. 

 

2. ITERATIVE METHODS FOR DESIGN SENSITIVITY ANALYSIS (IEM) 
 

When the measured coordinates are incomplete, measured modes must be expanded for any direct 

method to be applied, which may be an erroneous procedure which jeopardizes updating. The use 

of mode expansion can be avoided by using an IEM (or similar method) where only the 

coordinates which have been measured in the test are used for updating. Collins et. al. [23] first 

introduced the IEM for model updating. Later, Chen et. al. [24] modified Collins’ method by 

proposing a matrix perturbation method to calculate the sensitivity matrix and to compute the new 

modal parameters for the parameter estimation procedure. The inverse eigensensitivity method 

uses modal parameters of an analytical model as initial values and the parameters are updated 

iteratively based on the differences between the analytical and measured values. Consider 

mathematically well-behaved functions ( 1,2,..., )if i m=  of L variables ,( 1,2,..., )jb j L= . If we 

denote b as the entire vector of values jb , then in the neighbourhood of 0b , the functions can be 

expanded in the Taylor series: 
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By neglecting terms of second and higher order, equation (1) can be approximated as: 
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or in matrix form 
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Fig. 1 

The flowchart of the inverse iteration method 
Fig. 2 

The flowchart for the model updating method 

For a structure under study, the parameters b are to be identified and 0b  are the corresponding 

values used in the initial analysis. If the updated mass and stiffness matrices are written as in 

equation 
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where ja   and jd are correction factors to be determined and [ ]
j

M  and [ ]
j

K are submatrices of 

system matrices such as: sub element matrices, finite element matrices and macro element 

matrices. The number of unknowns becomes 1L  and 2L . Functions ( )if b  represent the measured 

modal parameters and 0( )if b are the corresponding modal parameters obtained from the initial 

model. Equation (3) can be written as: 
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or 
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The elements of the sensitivity matrix can be expressed as 
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where rζ  and { }
r

q  are eigenvalues and eigenvectors, where 
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If the number of measured modes m  is greater than 1 2( ) / ( 1)L L n+ + , equation (7) becomes 

overdetermined and the unknown vector { }b∆  can be calculated by premultiplying equation (7) 

by [ ]S
+

 

 { } [ ] { }b S
+

∆ = ∆     (10) 

where „+“ is the Moore-Penrose generalized inverse. The corrections ate than added to the 

solution vector 

 { } [ ] { }
new old

b b b= + ∆     (11) 

and the process is repeated iteratively to the convergence because equation (6) is formulated 

based on the first-order approximation. The flowchart of the whole procedure could be seen in 

Fig. 1. Iterative methods or the sensitivity methods, which concern of reducing an objective 

function that is generally a non-linear function of selected updating parameters, are carried out by 

either using eigendata or frequency response function (FRF) data. Therefore it provides wider 

choice of parameters for updating. These methods considered as capable of overcoming the 

limitations of the direct methods. It also has been applied successfully to large-scale industrial 

problems.  A brief explanation and tutorial on this sensitivity method in finite element model 

updating is provided by Mottershead, Link and Friswell [25]. Example of model updating of a 

helicopter airframe is also showed in the paper. The sensitivity method is based upon linearization 

of the generally non-linear relationship between the measurable outputs such as natural 

frequencies, mode shapes or displacement responses, of the model’s parameters in need of 

emendation. The most important quality is to define an error function of modal data obtained 
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from computer simulation and experimental. The estimated parameters are attained by 

minimizing the error function with respect to the updating parameters.  

The simplified flow diagram for the model updating method is shown in figure 2. 

 

3. ITERATIVE METHOD BASED ON THE RAYLEIGH QUOTIENT 

APPROXIMATION 
 

The relationship of a natural frequency or corresponding eigenvalue to its associated eigenvector 

and the system’s stiffness and mass is expressed by Rayleigh’s quotient 
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where the modal strain energy pE  and the modal kinetic energy kE  are the sum of the strain and 

kinetic energy, respectively, from each of the elements [26]-[30]. 

 

4. EXAMPLE 
 

Iterative method based on using Rayleigh’s quotient is presented on the following example.  

Consider a cantilever beam with one joint of length 1 m, rectangular cross-section, 100 mm and 

50 mm, divided into 5 finite elements (Fig. 3). In designations, in the tables and diagrams, the 

beam is referred to as the original or initial beam.  

Table 1. Few initial eigenvalues for the original cantilever beam and the modified one, where the height, as 

a construction variable, is increased by 10% 

 

Initial beam 

Height increased by 10% 

across the entire length 

Modified shape, I, II,III,IV,V 

Δh[%], using Mat Lab:  

15.17  -0.47   6.34   8.55   2.03 

Frequencies, 

f0i[Hz] 
Eigenvalues, ζi Frequencies 

f0i[Hz] 
Eigenvalues, ζi Frequencies 

f0i[Hz] 
Eigenvalues, ζi 

1243.79    61073360.50 1368.17 73898766.21 1318.61 68642050.36 

591.37    13806531.28 650.51 16705902.85 633.17 15826955.55 

182.05     1308456.41 200.26 1583232.26 202.34 1616377.13 

 Δζ1  = 21 %,   Δf01  =  10 %  

 

For the analysis of sensitivity to changes, the original beam is modified across the entire length, 

with small modifications
1
. That beam is called a modified cantilever beam (Fig. 4). In this case, 

the chosen construction variable b is the height of the rectangular cross-section h.  Calculations 

are performed with the software package MatLab that possesses the function for calculating 

eigenvalues and eigenvectors. The lowest frequencies are always of the utmost interest for 

analysis. The Table 1 shows a few initial eigenvalues for the original beam and the modified one, 

where the height, as a construction variable, is increased by 10%.    

Fig. 5 displays the diagram of potential,  pE , and kinetic, kE , energy distributions, and their 

mutual difference, pE - kE , initial cantilever beam for all elements in a row, for the first 

                                                 
1
 In the literature dealing with dynamic reanalysis it is stressed that modifications should be small, so that 

the chosen modification process converges to the desired eigenvalues of the pairs, however it is not easy to 

determine what is ’small’;  
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oscillation mode, where the first eigenfrequency is f01 = 182.05Hz, and the first eigenvalue is  

ζ 1=1308456.41s
-2

. 

 

 

Fig. 3 Initial beam, ρ=7833kg/m3, E=206840000000 

N/m2; 

b=0.1m, h=0.05m, l=1m 

Fig 8  Diagram of potential and kinetic energy 

growth rate distributions and their mutual difference 

for the modified cantilever beam  after the first 

iterative step, and the original cantilever beam [J]. 

 

Fig. 4 Modified beam, b1=b,    h1=1.1h 

Fig. 7 Modified beam after the first iterative step 

 
Fig. 5  Diagram of potential and kinetic energy 

distributions and their mutual difference for the 

original cantilever beam [J]. 

 
Fig. 6 Diagram of potential and kinetic energy 

growth rate distributions and their mutual difference 

for modified and original cantilever beam [J]. 

 

Fig. 6 shows a diagram of potential, pE∆ , and kinetic, kE∆ , energy growth rates and their 

difference pE∆ - kE∆  for the increased height across the entire beam length, by 10 %, for the first 

oscillation mode. The first frequency of a modified cantilever beam  is  f’01 = 200.26Hz,  while 

the first eigenvalue is  '
1ζ ’1=1583232.26s

-2
. It is noticeable that the first eigenvalue growth rate is  

Δλ1  =  +21 %, and the corresponding eigenfrequency growth rate is   Δf01  = f’01 - f01 = +10 % 

Fig. 8 displays a diagram of potential, pE∆ , and kinetic, kE∆ , energy growth rates and their 

difference pE∆ - kE∆  for the modified cantilever beam after the first iterative step (Fig. 7) for the 

first oscillation mode. The aim of modification is to increase the frequency by 10 %. Note the 
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convergence compared to the previous diagram, which is evidenced by reduced ’columns’ 

characterizing the change in potential and kinetic energy growth rates. Also, a significant 

conclusion related to the cantilever beam cross-section modification is that stiffness, i.e. cross-

section height, should be increased in the fixed-point zone.  
 

Tab. 2 Differences in potential and kinetic energy growth rates as well cantilever cross-section heights 

after the iteration procedure 

Element 1 Element 2 Element 3 Element 4 Element 5 

ΔEpk1 ΔEpk2 ΔEpk3 ΔEpk4 ΔEpk5 

145033.92 -4498.74 60599.49 81700.29 19418.48 

1 1.1517h h=  2 0.9953h h=  3 1.0634h h=  4 1.0855h h=  5 1.0203h h=  

 
Differences in potential and kinetic energy growth rates as well cantilever cross-section heights 

after the iteration procedure are shown in the table 2. 

 

5. CONCLUDING REMARKS 
 

Studying the dynamic behavior of a construction can predict its response to change in shape, 

changes in size of its elements or change in materials used. Generally, the aim of system 

modification with respect to improvements in dynamic behavior is to increase eigenfrequencies 

and widen the distance between two neighboring frequencies. The specific importance lies in 

lowest frequencies and those close to the system exciting frequencies. The resulting Rayleigh 

Quotient Approximation has the important and unique characteristic. Although the numerical 

examples were simple, the theory itself does not share their limitations. The example presented 

here and similar examples in the literature did demonstrate that Rayleigh Quotient Approximation 

based on the distribution kinetic and potential energy should be especially important for complex 

structures. When groups suitable for reanalysis are located, a detailed (fine) analysis of a 

separated subgroup is undertaken. Most often it is necessary to make a modified model which is 

used for comparison to the original one, and on the basis of Rayleigh Quotient, new guidelines 

are reached. There are clear, mathematically expressed, unambiguous guidelines for further 

conducting the modification procedure. 
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