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Abstract: In the paper the behavior of thin elastic metallic partially fixed plate produced by 
electromagnet with constant flux is considered. Plate is simply supported along three edges and 
fixed along the fourth one. As nonstationary electromagnetic field in one part of the plate varies 
with time, conducting currents appear. Distribution of the power of eddy-current losses is obtained 
by using complex calculation. The power of the volume heat source (Joule’s heat) depends of 
permeability and conductivity of the plate and frequency of the alternative-current in 
electromagnet. Characteristics of the electromagnet are described by using Pulsation, Heaviside 
and similar functions. Differential equation governing temperature field is solved using by integral 
transform technique. The mathematical form of the transversal vibrations is obtained in analytical 
way using only simple finite Fourier transforms because the differential equation describing 
transverse vibrations is adapted to form which enabling very easy simulation of the bending 
moments along the fixed edges. Vibrations and stress in the middle surface of the plate are 
calculated by using program package KOMIPS, based on the finite element method. 
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1. Introduction 
 
Vibrations of the thin metallic plates from soft ferromagnetic materials are described using four 

coupled systems of differential equations. The first system is a system of Maxwell’s equations (with the 
relations for slowly moving media and modified Ohm’s low) [5]: 
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where the following notation is applied: H-magnetic intensity vector, K-electric intensity vector, B-vector of 
magnetic induction, D- vector of electric induction and J-current density vector. 

Temperature field in thin plates can be described using two values: τ0 - temperature in the middle 
surface and τ1 – the rate of temperature across the plate thickness [7]. So, second system of equations is 
consisted of two partial differential equations (1.2), where κ is coefficient of thermal intensity, η* is 
representing the coupling between the temperature and the deformation fields, ε’ is deformation in the middle 
surface of the plate, h is the plate thickness, λ0 is heat conduction coefficient, σ is electric conductivity and  
is Laplace operator [2]: 
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)Losses in a plate  are consisted of three factors: volume heat source intensity, hysterisis losses 

and Joule’s heat (eddy-current losses).  
( txxxW 321 ,,,

In the consideration of the vibrations of the plate, the assumption that the longitudinal vibrations are 
independent of the transverse vibrations is taken. Transverse vibrations can be obtained using by next 
differential equation [2] 
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where w denotes deflection of the plate in x3-direction, ν is Poisson ratio, αt is coefficient of thermal expansion, 
D is flexural rigidity of the plate, E is modulus of elasticity, Xi and fi are the components of mechanical force 
and Lorenz force, σij and Tij are mechanical and magnetic stress tensors (+ on the upper and – on the lower side 
of the plate) and ρ is plate density.   

Vibrations in the middle surface of the plate are defined by the equation 
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where F is Airy-s Stress function. Forces Nij can be expressed as [7]  
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Presented system of equations has to be added with an appropriate boundary and initial conditions.  
 
2. Electromagnet with constant flux 

 
As a result of time-changing magnetic induction, in one part of the plate (d×c×h) conducting currents 

appear. The calculation of the Joule’s heat intensity is done by using local coordinate system (x,y,z) with next 
approximations (Fig. 2.1): component of the magnetic induction By is zero; component Bz is minor compared to 
the component Bx. So, Hx and Ky components can describe electromagnetic field in the plate, which are 
simplified Maxwell’s equations (1.1). As the changes in x and y directions are minor, differential equation is [6] 
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where µ is magnetic permeability of the plate material and ω is angular frequency of the magnetic field. 
 

 

 
                           Fig. 2.1 Electromagnet with constant flux 
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 The solution can be represented in the form ,eCeCH z
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Conducted currents and Joule’s heat are defined by [2] 
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3. Temperature field 
 
 Let the initial and the boundary conditions are  
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Appropriate values of the power of the heat source from equation (1.2) are  
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The position of electromagnet is presented on figure 3.1 and described by the relation ⎟
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Fig. 3.1 Position of electromagnet Fig 3.2 Position of mechanical forces 
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Differential equations describing temperature field have the next form  
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 Subjected to the boundary conditions (3.1) the equation (3.3) can be solved by using the integral-transform 
technique. Applying double Fourier finite-sine transform and Laplace transform we arrive to the next solution  
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Numerical example is given for the steel rectangular plate dimension 45×24×0.1cm; position of 
electromagnet is defined with parameters: e=15cm, f=7.5cm, c=6cm, d=9cm, S=18cm2 (Figure 4.1). Material 
constants are: λo=0.5W/cmK, σ=107S/m and µr=1000. Electromagnetic field parameters in the plate are: 
H0=2000A/m (B0=2.5T) and f=100Hz.   

 On diagram in Figure 3.3 the maximal value of the temperature τ0 in the middle surface of the plate is 
presented as a function of time t. Figure 3.4 shows distribution of the isotherm lines in the middle surface for 
the stationary state.  

 

 

 

 

Fig. 3.3. Maximal temperature in the plate τ0 
as a function of time t 

Fig. 3.4. Isotherm lines in the middle surface 
of the plate, τ0 = 0÷10 (step 1°C) 
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4. Vibrations. Stress field 
 
4.1 Transversal vibrations 
 

The solution of the transversal vibrations is founded in analytical form for the plate simply supported 
along three edges (x1=a, x2=0,b) and fixed along the fourth one (x1=0) (Fig. 4.1). Boundary conditions have the 
form [4] 
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Initial conditions are responsible to the natural 
undeformed state 
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Fig. 4.1 Boundary conditions  
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The position of the appropriate mechanical forces is shown on figure 3.2. If Bv and Hv are magnetic 

induction and magnetic field in air gaps, p0 Maxwell stress and S  surface of one air gap, mechanical forces can 
be represented (using Impulsive Dirac functions δ) by the following relations  
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 Using differential equation (1.3) we can form the appropriate equation for the stationary problem (t→∞) by 
simulated moment along the edge x1=0 throw the stress σ13 on the next way 
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By using relation (3.4), double Fourier finite-sine transform and the relation for the first derivative of  
δ function 
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the solution for transversal vibrations can be represented in the form 
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Using the boundary condition for the edge x1=0 we can calculate the “moment stress” σ13(x2) as 
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 The solution is consisted of two parts: the influence of the rate of temperature across the plate thickness 

and the influence of the mechanical forces.  
 
4.2 Deformation in the middle surface  

 
Vibrations and stress in the middle surface of the plate can be obtained in analytical form by using 

differential equation (1.4) and appropriate boundary conditions. In this paper it is done for presented numerical 
example by using finite element method, Program package KOMIPS [1] author T. Maneski. Input file was 
done on the analytical solution for the temperature in the middle surface of the plate (3.4).  

 
4.3 Numerical example 
 

For numerical values presented in section 3 of this paper, the solutions for the deformation and stress 
fields are presented on figures 4.2 to 4.5. Total deformation is presented on figure 4.2. Maximal calculated 
deformation is 0.281mm.  

Figures 4.3, 4.4 and 4.5 show appropriate stress field. Maximal temperature in the plate for the 
stationary state is θ = 10.3°C and maximal stress value in the total case of loading, calculated by finite element 
method, is 1.354 kN/cm2.  
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Table 4.1 Maximal deformation and maximal stress  
 Loading 
 Temperature Mechanical Total 
Maximal deformation fmax [mm] 0.014 0.280 0.281 
Maximal stress σmax  [kN/cm2] 1.242 0.693 1.354 
 

 For the presented numerical example temperature gradient across the plate thickness can be neglected. 
Analytical results for the transversal vibrations agree with the numerical results. 
 

Fig. 4.2. Total deformation Fig. 4.3. Total Stress field, σ = 0.7÷1.3/0.1 kN/cm2 
 

  
Fig. 4.4. Mechanical loading. Stress field 

σ = 0.35÷0.65/0.05 kN/cm2 
Fig. 4.5. Temperature loading. Stress field 

σ = 0.3÷1.2/0.1 kN/cm2 
 
5. Conclusion 
 
 Magneto-thermoelasticity has received considerable attention because of the possible applications in 
detection of flaws in ferrous metals, optical acoustics, levitation by superconductors, magnetic fusion and many 
other electro-mechanical devices. 

The problem of the influence of electromagnet with constant flux on the behaviour of thin metallic 
plate can be described in analytical form throw four systems of differential equation. In that case, the influence 
on the stress field has two factors: increasing the temperature (appearance of volume heat source in one part of 
the plate) and mechanical forces (Maxwell stress) placed in air gaps surfaces.  

Very suitable method for solving temperature field and transversal vibrations in analytical form, as it 
was shown in the paper, is integral transform technique. But for membrane case of loading, dynamic and 
geometrical complicated problems with non homogeneous boundary conditions it is very difficult to find 
vibrations and stress in analytical form. So, finite element method has been involved in calculation.  
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