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Abstract  
 

One approach to the optimization of a thin walled cantilever I-beam subjected to constrained torsion is 
considered. The aim of this paper is the determination of the minimum mass i.e. minimum cross sectional 
area of structural thin-walled I-beam elements for given loads, material and geometrical characteristics. 
That is why the area of the cross section is assumed to be the objective function. The displacement 
constraints are introduced: allowable angle of twist and allowable angle of twist per unit length. The 
starting points during the formulation of the basic mathematical model are the assumptions of the thin-
walled beam theory from one side and the basic assumptions of the optimum design from the other. 
Applying the Lagrange multiplier method, the equation of the second order, which solutions represent the 
optimal values of the ratios of the parts of the chosen cross section, is formed. The obtained results are used 
for numerical calculation applying The Finite Element Method. 
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1. Introduction 
 

In most structures, it is possible to find the elements in which, depending on loading cases 
and the way of their introductions, the effect of constrained torsion is present and its 
consequences are particularly evident in the case of thin-walled profiles. Thin-walled open 
section beams are widely applied due to their low weight in many structures. Thin walled beams 
have a specific behavior and because of that, their optimization represents a particular problem. 
During the process of dimensioning of a structure, beside requested dimensions which are 
necessary to permit to the particular part of the structure to support the applied loads, it is also 
often very important to find the optimal values of the dimensions. Very often used types of cross 
sections, particularly in steel structures are the I-sections.  
 
2. Definition of the problem 
 

The considered cantilever beam, of the length l is subjected to the constrained torsion because 
of the fact that its one end is fixed and the other free end is loaded by a concentrated torsion 
moment M. The cross section (Fig. 1) is supposed to have flanges of mutually equal widths and 
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thicknesses b1= b3, t1= t3. The aim of the paper is to determine the minimal mass of the beam or, 
in another way, to find the minimal cross-sectional area 
 

minAA =           (1) 
 
for the given loads and material and geometrical properties of the considered beam. 

In the considered problem the cross sectional area will be treated as an objective function and 
it is obvious from the Fig. 1 that 

1,2,3i    == ∑ ,tbA ii                    (2) 
 
where bi and ti are widths and thicknesses of the parts of the considered cross section. 
 

 
Fig. 1. I - cross section 

 
3. Constraints 
 

Only the displacement constraints will be taken into account in the calculations that follow. 
The ratio  
 

12 bbz =                                                                                                                                  (3) 
 
will be the optimal relation of the dimensions of the considered cross section. 

The considered displacement constraints are allowable angle of twist and allowable angle of 
twist per unit length, denoted by θ0 and θ0

` respectively.  
The flexural-torsion cross section characteristic [2, 4] is given by the expression 

 

ωEIGIk t=                       (4) 
where: 
-  It - torsion constant, 
-  Iω - sectorial moment of inertia, 
-  E - modulus of elasticity and 
-  G - shear modulus. 
 
3.1 Displacement constraint - allowable angle of twist 
 

In the case when the allowable angle of twist 0θ  is taken as the constraint, the constrained 
function can be written in the form (5) [2, 4] 
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or in the form (6) 
 

001 ≤−−= θϕ
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3.2 Displacement constraint - allowable angle of twist per unit length 
 

If the allowable angle of twist per unit length θ0
` is taken as the constraint, the constrained 

function can be written in the form (7) [2, 4] 
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4. Lagrange multiplier method 
 

Lagrange’s Multiplier Method [1, 3, 5-9] is the clasical approach to constraint optimization. 
Lagrange multiplier, which is labeled as λ, measures the change of the objective function with 
aspect to the constraint. Applying this method to the vector depending on two parameters ib , (i = 
1, 2), the system of equations (9) of the form ( ) ,bi 0=ϕ  (i = 1, 2), 

( ) 1,2,i    0 ==+
∂

∂
,A

bi
λϕ            (9) 

will be obtained and after the elimination of the multiplier λ, it will become (10) 
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5. Analytical approach  
 

The torsion constant and the sectorial moment of inertia for the considered I-section [2, 4] are 
given by the expressions (11) and (12) respectively 

( )ztbIt
33

11 2
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ψ+=                                                                                                    (11) 
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2
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3
1

24

1
tbbI =ω ,                   (12) 

where: 
12 tt=ψ                 (13) 

is the ratio of thicknesses of the parts of the cross section. 
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Applying the Lagrange multiplier method, after the differentiation of the expression (10) with 
respect to the variables b1 and b2, the expressions (6) and (8) take the form (14) and (15), 
respectively: 
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In the considered case when the I-beam is the object of the optimization, the equations (14) 
and (15), combined with (6) and (8), are reduced to the equation (16). The equation of the second 
order is obtained and its solutions represent the optimal ratios of the cross sectional dimensions 
for the chosen shape 

∑
=

=
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0
0

i

i
i zc ,           (16) 

where the coefficients ci are given in the form (17) - if the constraint is allowable angle of twist:  
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i.e. in the form (16) - if the constraint is allowable angle of twist per unit length: 
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5.1 The results obtained by analytical approach 
 

The following expressions will be introduced 
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The length of the considered cantilever beam is taken as 25 ≤ l ≤ 200 (cm).  The values (kl) are 

calculated using data for standard profiles and the ratio (13) is taken as ψ = 0.5; 0.75; 1. The 
results for the ratios (3) z=b2  / b1 obtained from the equations (10) are given in Tables 1 and 2: 
 

ψ 1 0.75 0.5 
D 0 0.22 0.44 0.88 3.94 0.38 0.75 1.5 6.76
z 1.33 1.78 1.60 1.32 0.55 2.67 2.19 1.56 0.52

 
Table 1: Displacement constraint θ0 (Fig. 2a) 

 
ψ 1 0.75 0.5 
D1 0 0.22 0.44 0.58 437.5 0.38 0.75 1 750
z 1.33 1.78 1.60 1.50 0 2.67 2.19 1.94 0 

 
Table 2: Displacement constraint θ0

' (Fig. 2b) 
 
The results are presented also graphically in Fig. 2a and 2b: 
 

 
         a                                                         b 
Fig. 2. The optimal ratios z for a) θ0, b) θ0

’ 
 

It is possible to draw the following conclusions (Tables 2 and 3 and Figure 2): when the 
values of ψ  decrease (i.e. the values for D i D1 increase) the value z decreases. Based on the 
performed calculation, the regions of optimal dimension values of the considered cantilever beam 
are defined: 
 
• For displacement constraint θ0: 

- ψ  =1 ⇒ D = 0 ⇒ z = const = 1.33, 
- ψ  =0.75 ⇒ 0.22 ≤ D ≤  3.94 ⇒ 1.78 ≥ z ≥ 0.55, 
- ψ  =0.5 ⇒ 0.38 ≤ D ≤  6.76 ⇒ 2.67 ≥ z ≥ 0.52. 
 

• For displacement constraint θ0
’:  

- ψ  =1 ⇒ D1 = 0 ⇒ z = const = 1.33, 
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- ψ =0.75 ⇒ 0.22 ≤ D1 ≤ 437.5 ⇒ 1.78 ≥ z ≥ 0,  
- ψ  =0.5 ⇒ 0.38 ≤ D1 ≤ 750  ⇒ 2.67 ≥ z ≥ 0. 

 
The calculation shows that the optimal values of z obtained by using the criterion ´

0θ  are very 
small for the lengts cml 100> . Because of that it is possible to say that the application of this 
criterion makes sense for following lengths: 
- for ψ =0.75:  cml 95≈ 450.z ≥⇒  and 
- for ψ  =0.5:    cml 90≈ 510.z ≥⇒ . 
 
6. Application of the finite element method 
 

Using the optimal values of z, obtained in the previous chapter by the θ0
’ criterion, the 

numerical calculation applying The Finite Element Method was done. 
As the numerical example the I - section cantilever beam having the length l=100 cm, fixed at 

one end and subjected to the concentrated torsion moment M = 10 kNcm at its free end (Fig. 3), 
will be considered by The Finite Element Method (FEM) using the software programme 
KOMIPS [10].  

 
Fig. 3. I- beam – Middle surface, load, supports 

 
6.1 The results obtained by Finite Element Method 
 

As the example of the numerical calculation, the standard I - section I 10 (JUS C.B3.131) is 
considered. The problem is analyzed in three different ways: 

a) Taking into account the initial dimensions of the standard I 10 - section: b1initial = b3initial = 5 
cm, b2initial  = 9,32 cm, t1 = 0,68 cm, t2 = 0,45 cm (it represents the initial model), the initial ratio 
zinitial = 1,86 is obtained. 

For the initial values t1 and t2 the optimal relation zoptimal = 1.65 is obtained from the 
expressions derived in this paper. 

b) The optimal dimensions of the cross section b1optimal and b2optimal are obtained by equalizing 
initial and optimal areas (Аinitial = Аoptimal) and by using the calculated optimal relation zoptimal = 
1.65 (it represents the optimal model no. 1), 

c) The optimal dimensions of the cross section b1optimal and b2optimal are obtained with the 
assumption b2optimal = b2initial and by using the calculated optimal ratio zoptimal = 1.65 (it represents 
the optimal model no. 3). 

For each model the cross sectional area is calculated and the results are given in Table 3: 
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Model z A (cm2) θ0
’ (°⁄m) 

Initial 1.86 10.99 5.05 
Optimal no. 1 1.65 10.99 4.79 
Optimal no. 2 1.65 11.88 3.64 

 
Table 3: Cross sectional areas and angles of twist per unit length θ0

` 
 

Applying the FEM, the angle of twist per unit length θ0
` is calculated for each model and the 

results obtained for the cantilever I - beam of the length l = 100 cm (Fig. 4), are also presented in 
Table 3. 

 
 a         b 

Fig. 4. Deformations (fmax=0.4cm): (a) isometric view, (b) xy – plane 
 

Results obtained by applying KOMIPS program correspond to analytically obtained values 
for the initial model of 100 cm length: θ0

’
analytical  = 5.15 o⁄m and θ0

’
KOMIPS = 5.05 o⁄m. 

 
7. Conclusions 
 

In this paper, one approach to the optimization of the thin-walled open channel section 
beams, using the Lagrange multiplier method is presented. Accepting the cross sectional area for 
the objective function and displacement constrains for the constrained functions, it is possible to 
find the optimal relation between the dimensions of the web and the flanges of the considered 
cross section. At first, the analytical calculation is made, and the obtained results are used for the 
calculations applying The Finite Element Method. 

Based on the obtained results (17, 18), it can be seen that some differences exist between 
coefficients ci calculated using criteria θ0 or θ0

’, and minimum disagreement between obtained 
values for z is observed. Optimal values z obtained by using the criterion θ0, are slightly higher 
than the values obtained by the θ0

’ criterion (Tables 1 and 2). 
Results obtained by the Finite Element Method show that the initial and optimal model no. 1 

(Table 4) have the same mass, but the optimal model no. 1 is better because the angle of twist per 
unit length θ0

` has the lower value. Optimal model no. 2 has the lowest value of the θ0
`, but this is 

the optimum model with the highest mass. This model is the best regarding the displacement 
constraints, but it is also the heaviest one. As the conclusion it is possible to say that all optimal 
models are better than the initial one. 

On the basis of the proposed optimization procedure it is possible to calculate the optimal 

ratios between the parts of the considered thinwalled profiles in a simple way. 
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Abstract 
  If the structure is moving then it is possible to reduce the dynamic problem to a static one by 
applying D’Alembert’s principle of dynamic equilibrium in which an inertia force equal to the product of 
the mass and the acceleration is assumed to act on the structure in the direction of negative acceleration. For 
free vibration, the system is vibrating in a normal mode, and it is possible to transform equilibrium equation 
into a standard eigenvalue problem. Various schemes have been developed for solving eigenvalue 
equations such as the one by Bishop et al. [2]. In this paper finite strip method is used in analysis of natural 
frequencies and mode shapes of rectangular bending bridge plates. Point of our analysis was to calculate the 
lowest natural frequencies of different types of ribbed reinforced plates, so that we could compare them and 
determine which one of them is optimal. Optimal means that plate has lowest natural frequency for the 
given lenght. 
 
The finite strip displacement functions in the problem of bending 
 

Let us observe the problem of bending of a finite strip presented in Fig. 1. The 
approximative function must satisfy the partial differential equation of the 4th  order 

.0),( =∆∆ yxw                        (1) 
If both ends simply supported, the function of deflection will be presented in the form 

1
m

m
w( x, y ) w ( x )sin( m y / a ),π

∞

=
= ∑                     (2) 

where m represents series term, or number of the harmonic. For any single series term we can 
anticipate the following polynome to represent the displacement amplitude w(x): 

2 3
1 2 3 4w( x ) C C x C x C x ,= + + +                      (3) 

where C1-C4 represent generalized displacements. This approximation enables the establishment 
of the compatibility of displacement w and first derivates dw/dx in the nodal lines of the 
discretizated structure presented in Fig. 1. 

Using the condition: dxdw /=ϕ , after writing the polynome (3) for the nodal lines 1 
and 2 with the coordinates x=0 and x=b respectively, we obtain 


