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Abstract: Background: ATP-binding  cassette  super  family  G2 protein  is  an  active  ATP-binding
cassette transporter with potential to combat cancer stem cells. 

Objective: Due to the lack of potential ATP-binding cassette super family G2 inhibitors we screened
natural  inhibitors,  which  could  be  safe  source  to  control  multidrug  resistance  by  blocking  the
regulation of ATP-binding cassette super family G2 protein.

Method: Three-dimensional structure of ATP-binding cassette super family G2 protein downloaded
from the protein databank and chemical structures of selected 166 compounds of the training dataset
retrieved  from  PubChem.  Drug-likeness  and  docking  analysis  shortlisted  the  dataset  for
pharmacophore generation. LigandScout 4.1.5 used for pharmacophore-based screening of Zbc library
of ZINC database and Autodock Vina utilized for  molecular docking against  the predicted active
pocket of the target protein to evaluate potential association of protein and ligands.  Physiochemical
properties of novel compounds calculated by admetSAR respectively. 

Results: Through pharmacophore-based screening, ZINC4098704 (Rhein) was identified as a lead
compound which demonstrates least binding energy (-8.5) and highest binding affinity with the target
protein  and  showed  optimal  physiochemical  profile.  This  compound  is  highly  recommended  for
laboratory test to confirm its activity as ATP-binding cassette super family G2 inhibitors.

Conclusion: Our computer-based study systematically selected natural lead compound, which could
be effective in inhibiting ATP-binding cassette super family G2 and may be helpful in reversing the
effect  of  multidrug  resistance  in  order  to  increase  the  effectiveness  of  chemotherapy  in  cancer
treatment.
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1. INTRODUCTION

The Cancer is second most
fatal cause of mortalities in
under  developed  countries.
In  2018,  World  health
organization  reported  that
the  worldwide  cancer
patients  expected  to
increase about 18.1 million,
while  the  death  rate  of
cancer patients increased to
9.6 million [1].
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Due to  recent  advances  in
tumor research, information
of different kind of tumors
biological  characteristics  is
improving constantly,  such
as tumors growth, cause of
the  abnormal  cells
development  and  dynamic
alteration  in  the  genomic
structure of normal cells to
abnormal [2].

Most  common
treatments  of  cancer  are
surgery,  chemotherapy,
different  combination
therapies  and  laser
radiations.  These
treatments  based  on  the
improved  outset  of  the
biological  and  molecular
genetics  in  tumor
development [3]. Despite of
all  advancements  the
promising  option  for  the
cancer  handling  is  still
chemotherapy.  But
currently, 80-90% of deaths
in  the  chemotherapy  are
due to  drug  resistance  [4].
While  huge  number  of
abnormal  cells  become
resistant  to  drugs  becomes
resistant  during
chemotherapy  due  to

certain drug administration.
In this way drug resistance
appears  as  a  serious
complication  in  dealing
with  cancer  treatment  [5].
Tumor heterogeneity could
be  the  reason  to  cause
resistance,  under  unrelated
drug pressures.  It  could be
more  challenging  when
some  of  resistance
pathways lead to multidrug
resistance,  increasing
clinical  complications
which  is  difficult  to
overcome  [6].  Cancerous
drug  resistance  (DR)  is  a
complex  phenomenon.  It
could  be  subjective  to
different  reasons  like  drug
activation  [7],  drug  target
modification,  increase  or
decrease  of  drug  efflux,
inhibition  of  cell  expiry,
repair  of  deoxyribonucleic
acid  (DNA),  cell
heterogeneity,  and
epigenetic  properties  or
sometimes  all  these
mechanisms  could  be  the
combined  reasons  of  drug
resistance in cancer patients
and  the  main  obstacle  to
effectively treat cancer  [8].
It  could  be  Multidrug
resistance  (MDR),
described  as  resistance  to
physically and functionally
distinct  treatments  to  treat
cancer  cells.  MDR  is
divided into two categories;
intrinsic MDR and acquired
MDR.  Cancer
microenvironment
assortment  indicates  the
expansion  of  intrinsic
MDR,  while  acquired
resistance  is  concerned  to
controlled  chemotherapy.
The main characteristics of
MDR  include  abnormal
growth  of  cancerous  mass
vasculature,  aerobic
glycolysis, areas of hypoxia
with a small predisposition
to  cell  death.  To  attain  a
lethal  result  for  tumor
mass,  medications  are

essential  to  lesser
predisposition  of  abnormal
cells and cell death [9].

Cellular  and  molecular
process  of  MDR  with
respect to various drugs has
comprehensively  studied.
Previous  research
demonstrated  that
experiments  with  drug-
selected  model  cell  lines
proved  increased
expression  of  transporters
superfamily known as ATP-
binding  cassette  (ABC)
with  respect  to  breast
cancer  cell  lines  resistance
macromolecular  protein
(ABCG2-ATP-binding
cassette  super  family  G2)
[10],  a  most  important
reason  to  MDR.  The
increased  expressions  of
ABCG2  on  plasma
membranes cause amplified
efflux  and  reduction  of
intracellular  accumulation
of  various  discrete  anti-
cancer drugs, responsible of
MDR [11].

For the management of
various  cancers,  effective
combinational  therapy  is
required.  Response  to
combinational  therapy
hindered  by  MDR  in
patients.  Previous  studies
indicated  that  human
ABCG2  protein  is  major
reason of causing MDR due
to  which  many
combinations  of
chemotherapies  failed  to
manage cancer. There is an
urgent need to identify the
potential  inhibitors,  which
could inhibit  the  increased
efflux  of  ABCG2.  This
study aims to screen natural
library of drugs to identify
potential  lead  compound
based on the protein-ligand
interactions,  binding
affinities  and  toxicity
analysis  by  the
implementation  of

computer-aided drug design
(CADD) pipeline.

2.  MATERIALS  AND
METHOD

CADD scheme used in
this  study  to  screen  ATP-
binding  cassette  super
family  G  2  (ABCG2)
inhibitors  to  manage
multidrug  resistance  in
treatment of cancer disease
illustrated in Fig1.

2.1.  Target  protein
selection

ABCG2  protein  structure
determined  by  electron
microscopy  was  accessed
from  the  freely  available
protein source; Protein data
bank  [PDB  ID:  5NJ3]
having  3.78Å  resolutions
[12] shown  in  Fig  2.
Chimera  [13] is  used  for
visualization  and
determination of secondary
structural  features of target
protein.  Physiochemical
properties  of  target  protein
were  determined  by
ProtParam  sequence
analysis tool [14] (Table 1).

2.2.  Training  dataset
selection  for
pharmacophore modeling

166  ABCG2
inhibitors  against  the
ABCG2 target protein were
identified  by  the  literature
review  and  their  chemical
structures were downloaded
from  PubChem  database
shown in Table 2 [15]. Two
dimensional structures were
downloaded  and  converted
into  three  dimensional
structures  by  using
OpenBabel  chemical
toolbox  [16] for  further
calculations.  Drug-likeness
and  toxicity  analysis  was
done  by  admetSAR  [17]
and  those  compounds
which  fulfil  the  drug-like
properties and are not toxic
were  used  for  docking
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analysis. A freely available
tool  Autodock  Vina  [18]
was used for protein-ligand
docking.  Chemical
structures  and  drug-like
activities of selected top ten
ABCG2  inhibitors  along
with summary of molecular
docking  results  are  shown
in  Table  3.  These  ten  top
scored  ABCG2  inhibitors
were  selected  for
pharmacophore  modeling
[19].

2.3.  Pharmacophore
generation  and  screening
of Zbc library of  natural
compounds

Ligand-based
strategy is used to generate
3D  pharmacophore  model
and  virtual  screening  by
LigandScout  4.1.5  [20].
This  approach  is  used  to
search for common features
against each ligand set. The
training  set  consist  of  ten
ABCG2 inhibitors (ligands)
with  maximum  structural
diversity  and  possessing
inhibitory  activity  against
ABCG2  target  protein.
Pharmacophore  model  was
generated  to  analyze  the
shared  features  of  selected
ten  ABCG2  inhibitors  is
shown in Fig 3 and used for
the screening of Zbc library
of natural compounds from
ZINC  database  [21].
Pharmacophore  features  of
the selected set of ABCG2
inhibitors  with
pharmacophore fit scores is
shown in Table 4.

Table  5
demonstrates the overlay of
selected  set  of  ABCG2
inhibitors  on  the
pharmacophore  model
created  by  LigandScout
4.1.5.  Pharmacophore-
based  screening  of  26432
compounds  conducted  by
screening  module  of
LigandScout  4.1.5.  All
identified virtual hits sorted
according  to  their
pharmacophore-fit  score

and  10  virtual  hits  were
selected  for  molecular
docking  simulations.  Ten
virtual  hits  were  docked
with the target  protein and
evaluated  for  binding
energies and protein-ligand
interactions  by  Autodock
Vina  [18] and LigPlot  [22]
respectively.  Docking
results  of  top  10  scored
virtual  hits  screened  from
Zbc library shown in Table
6.  Binding  interactions  of
two  potential  virtual  hits
shown in Figure 4. An open
source database admetSAR
[17] is used to calculate the
pharmacological  properties
[23] and toxicity profile of
selected virtual hits. Table 7
shows  pharmacological
properties of top 10 scored
virtual  hits  screened  from
Zbc  library  retrieved  from
ZINC database

 2.4. Lead identification

Based  on
appropriate  protein-ligand
interactions  and  binding
affinities  with  the  special
consideration  of  binding
residues  and  in  silico
calculations  of
physicochemical
parameters  a  lead
compound  was  identified
(Fig. 4),  which could be a
potential  inhibitor  of
ABCG2  protein  for  the
treatment of cancer.

3. RESULTS

Previous  studies
suggested  that  in  cell
survival  of  ABC
transporters  in the form of
stress  inducers  might  play
additional roles that are not
ABCG2  substrates  (i.e.,
ionizing  radiation,  nutrient
deprivation,  and
rapamycin). Various studies
provide  the  evidence  of
ABCG2  inhibitors  were
more  resistant  to  stressors
in several  cancer  cell  lines
[24].  Our  CADD  scheme
broadly  used  for  potential
virtual  hits  to  lead

identification  in
pharmaceutical  science  is
presented in figure 1. Most
important  methods of  drug
design;  pharmacophore-
based  screening  and
structure-based  analysis  of
protein-ligand complex  are
used  to  identify  potential
lead  compound  possessing
the  ability  to  inhibit  the
ABCG2 protein expression
and  could  be  useful  in
treatment of cancer.

3.1.  Target  protein
selection

Three dimensional
structure  of  target  protein
[PDB  ID:  5NJ3]  was
retrieve  from  the  protein
data  bank  [12] and
secondary  structural
features  were  determined
and  visualized  by  chimera
tool  [13] (Figure  2).  The
amino  acid  sequence  of
ABCG2  is  2198  residues
long  with  3.78  Å
resolutions.  The  ABCG2
structure  contains  32
helices, 10 sheets, beta-turn
85  and  gamma  turns  4
shown in the lower penal of
Figure 2. Sequence analysis
was  conducted  for
calculation  of
physiochemical  properties
of  ABCG2  protien  using
ProtParam  [14] listed  in
Table  1.  Because
physiochemical  properties
of  target  protein
understanding  is
advantageous  for  the  drug
development  and  in
laboratory  quality  control
procedure [25].

3.2.  Training  dataset
selection

By  the  literature
review,  166  ABCG2
inhibitors  identified  and
their  chemical  information
and  two-dimensional
structures  retrieved  against
the  ABCG2  target  protein
from  PubChem.  Dataset
selected  based  on  their
inhibitory effect on ABCG2

involved  in  multi-drug
resistance.  Table  2  shows
the  ABCG2  inhibitors
PubChem  identifiers  with
their  chemical  names  and
their molecular weight.

Molecular
properties of all compounds
including molecular weight
(MW),  hydrogen  bond
donors  (HBD)  and
hydrogen  bond  acceptors
(HBA),  log  P,  number  of
rings  and  rotatable  bonds
(RB),  and  polar  surface
area  (PSA)  predicted  to
fulfil  the  requirement  of
drug-likeness  [26].  Among
166 compounds, 107 failed
during Lipinski rule of five
[27] and the most important
is 59 drug-like compounds
selected  as  a  training  set
passed  toxicity  analysis.
These  59  drug-like
compounds  subjected  to
interaction  analysis  with
ABCG2 macromolecule.

3.3.  Docking  analysis  of
selected  ABCG2
inhibitors dataset

Targeted  docking
was  performed  by  using
Autodock Vina [18] to find
the  potential  interactions
between  ABCG2
macromolecule  and  ligand
molecules.  ABCG2  was
used as  a  receptor  protein.
The  selected  59  ABCG2
inhibitors were docked with
ABCG2 protein and results
of  top-scored  10
compounds  were  showed
with their binding energies
ranging  from  -9.9  to  -9.2
and  binding  interaction
with in range of 4 Å. These
ABCG2 inhibitors analyzed
through  LigPlot  to
determine  the  amino acids
involved  in  protein-ligand
binding  interactions.
Binding  cavity  of  target
protein  shows  Lys158,
Glu191,  Glu228,  Ala230,
Glu234,  Lys276,  Glu278
and Asp292 were the most
common residues  involved
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in  the  binding  interaction.
The  amino  acids  residues
Glu228,  Ala230,  Glu234,
Glu278  and  Asp292
showed  that  the  protein-
ligand complex interactions
were satisfying the binding
pockets listed in Table 3.

3.4.  Pharmacophore
generation  and  screening
of Zbc library of  natural
compounds 

Based  on  least
binding  energies,  top  10
selected  ABCG2 inhibitors
were  subjected to  generate
best pharmacophore model.
Ten pharmacophore models
were generated their scores
are  presented  in  Figure  3
along  with  the  proposed
pharmacophore  model
presenting  five  common
features; One yellow sphere
having a blue small sphere
in  it  representing
hydrophobic  region  (HR)
with an aromatic ring (AR),
two  red  spheres  represent
the two HBA and one green
sphere represents the HDB.
Library  of  natural
compounds  (Zbc)  of
biogenic  lead-like
compounds,  commercially
available  primary  and
secondary  metabolites
(natural  products)  were
downloaded  from  ZINC
database  for  virtual
screening.  After
pharmacophore  modelling,
virtual screening performed
via  LigandScout  4.1.5  to
identify the compounds that
best  align  with  respect  to
common features similar to
those  of  pharmacophore
model  shown  in  figure  3.
18859 virtual  hits  (hit  rate
71.35%) were identified out
of  26432  compounds.
Based  on  pharmacophore-
fit score, top 10 compounds
from  Zbc  library  selected
for  molecular  docking.
Table  4  presents  the
pharmacophore  features  of
the selected set of ABCG2
inhibitors  with  their

pharmacophore  features
and  pharmacophore-fit
scores for each selected set
of ABCG2 inhibitors. Table
5  presents  overlay  of
selected  set  of  ABCG2
inhibitors  upon  two-
dimensional  and  three-
dimensional
pharmacophore  models
with common features.

3.5.  Docking  analysis  of
screened virtual hits

Molecular docking
of  ABCG2  target  protein
with selected 10 virtual hits
conducted using AutoDock
Vina.  Chemical  structures
of  screened  10  virtual  hits
downloaded  from  ZINC
database.  These  potential
virtual  hits  with  the  least
binding  energies  were
identified  as  a  result  of
docking  simulations.
Protein-ligand  docked
complexes  were  visualized
by  LigPlot  and  generates
protein-ligands  interactions
diagrams  to  analyze  the
residues involve in binding
interactions.  ZINC44740
and  ZINC4098704  virtual
hits  established  least
binding  energies  of  -8.5.
Asn604,  Try91,  Gln424,
Thr607,  Lys616  are
important residues involved
in interacting  with binding
pocket  of  ABCG2  protein
(Table 6).

Molecular docking
simulations  identified  the
important  residues
interacting  to  create
hydrophobic  and  hydrogen
bonds with ABCG2 protein.
Figure  4  demonstrates  2D
and 3D presentation of two
potential virtual hits docked
with  ABCG2  protein.  In
Figure  4  [A,  C]
ZINC44740  virtual  hit
shows two hydrogen bonds
in  the  binding  pocket  of
ABCG2  protein  with
Asn604  residue  within
distance  of  2.80  Å  and
Try91  residue  within

distance  of  3.31  Å.  While
in  Figure  4  [C,  D]
ZINC4098704  virtual  hit
shows four hydrogen bonds
with Gln424 residue within
distance of 2.93 Å, Thr607
residue  within  distance  of
3.20  Å,  Thr607  residue
within  distance  of  2.95  Å
and Lys616 residue  within
distance  of  2.79  Å.
Residues  with  the  red
projections  involves  in
hydrophobic interactions.

3.6.  Physiochemical
calculations  of  selected
virtual

Selected  virtual
hits  were  analyzed  by
passing  through  in  silico
drug-like  filtration
approach,  Lipinski  filter
and toxicity analysis. These
methods  are  very
significant  to  screen  large
database  of  drug-like
compounds  to  shortlist
highly  suitable  virtual  hits
[28].  Physiochemical
properties including Blood-
Brain  Barrier  (BBB)  [29],
Human  intestinal
absorption  (HIA)  [30],
Caco2   permeability,
CYP450  2D6,  AMES
toxicity,  and
carcinogenicity  were
predicted  to  determine
pharmacokinetics  of  the
drug.  Physiochemical
properties  and  toxicity
analysis  of  selected  nine
virtual  hits  is  shown  in
Table 7. 

3.7. Lead Identification

Among all the 161
chemical  compounds  from
literature  and  PubChem
database,  some  were
according  to  the
requirements  of  ADMET
models  and  filtering  rules
as  well  as  showing  good
binding  energies,  but  they
have  some  adverse  side
effects,  which  pose  an
obstacle in the inhibition of
ABCG2.  Therefore,
selected  lead  compounds

ZINC4098704 (Rhein)  [31]
is a natural  compound and
consider  to  be  safe  source
of medicine and it showed
least  binding  energy  and
most favorable interactions
may  be  considered  as
potential  drugs  against
MDR caused by ABCG2.

4. DISCUSSION

Natural compounds and
its  derivatives  most
commonly used since long
times are well known drugs
for  several  killing  disease
[32].  In  our  previous
studies  we  have
demonstrated  CADD
pipelines to screen potential
therapeutics  for  various
killing  diseases  [33,  34].
Computer-based  screening
of  large  database  of  drug-
like  entities  is  most
promising  and  compatible
with  different  drug  design
and  discovery  methods  to
identify new drugs  [35]. In
the drug design procedures
computer-based  screening
is mainly divided in to two
types;  molecular  docking
simulation  and  common
feature  pharmacophore
based  virtual  screening
[36].

To find potential natural
ABCG2  inhibitors  and  to
convey  the  knowledge  of
cancer  drug  design.  We
have used CADD methods
in  our  study  presented  in
Figure  1.  Docking  and
pharmacophore  approach
has applied to the selected
dataset  of  ABCG2
inhibitors to elucidate their
behavior  with  respect  to
protein  target  ABCG2.
Docking  technique  has
been  practiced  to  the
selected  dataset  of  166
ABCG2  inhibitors  and
screened  the  10  top  score
inhibitors  with  significant
binding  interactions  and
used  for  the  ligand-based
pharmacophore  modeling
to  generate  best
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pharmacophore  model
which  demonstrates  the
inhibition  of  the  over
expression  of  ABCG2
protein.  One  top  score
hypothetical  common
feature  pharmacophore
model is selected and use to
screen the library of natural
compounds  to  identify  the
potential virtual hits against
ABCG2 target  protein  and
selected  10  top  scored
virtual hits and subjected to
molecular  docking  for  the
analysis  of  its  structural
insights  with  respect  to
ABCG2  protein.
Physiochemical  properties
of  the  selected  10  virtual
hits  calculated  to  confirm
its activity with respects to
medicinal  prospective.
These  selected  10  virtual
hits could be developed in
the wet lab and confirm its
anti-cancer activity.

Structure-based
calculation is appreciated if
the  molecular structure of
protein is offered by protein
databases  [37].  In  this
CADD  pipeline,  a  typical
3D  protein  structure  PDB
ID:  5NJ3  used  for
macromolecular  interaction
analysis  [12].  Figure  2
shows that molecular target
protein  structure  showing
important  structural
features  (32  helices,  10
sheets,  beta-turn  85  and
gamma  turns  4)  generated
by  chimera  tool  [13].
Physiochemical  properties
of  target  protein  is  an
important  factor  to
understand the behavior  of
protein with respect to drug
development  in  laboratory
for further procedures  [25].
Physiochemical  properties
of  target  protein
calculations  demonstrated
in Table 1. These properties
consist  of  important
chemical  parameters  such
as  molecular  weight,
number  of  protein  atoms
and total number of amino

acid  residues  and  number
of residues with respect  to
positive  and  negative
charges, molecular formula
of  ABCG2  protein  and
theoretical isoelectric point,
aliphatic  index  and
instability index of ABCG2
protein. 

By the literature review,
166  ABCG2  inhibitors
based  on  their  drug-
likeness and their chemical
information  and  two-
dimensional  structures
retrieved  against  the
ABCG2 target protein from
PubChem. Selected dataset
has shown inhibitory effect
on  ABCG2  protein
involved  in  multi-drug
resistance.  Inhibitors
identifiers  with  their
chemical  names  and  their
molecular  weight is shown
in  Table  2.  Despite  of  all
molecular and experimental
information  of  cancerous
drugs,  still  certain  drugs
could  not  fulfil  the
requirement  of  cancer
treatment  [38] and
production  of  an  effective
drug is very expensive and
time-consuming  procedure
and when subjected  to  the
clinical trials fails due to its
efficiency  [39].  So
physiochemical  properties
of  all  inhibitors  calculated
very  carefully,  out  of  166
compounds  107  failed
during  Lipinski  filtrations
and toxicity predictions. 59
ABCG2 inhibitors fulfil the
drug-like  properties  and
subjected  to  molecular
docking  for  interaction
analysis  with  the  ABCG2
protein.  Mode  of  binding
interactions in the cavity of
ABCG2  protein  was
performed  by  Autodock
Vina  [18].  The  selected
ABCG2  inhibitors  docked
with  ABCG2  and  resulted
with  significant  binding
energies  ranging  -9.9  to
-9.2.  Docked  complexes
visualized  by  LigPlot  to

determine  the  protein-
ligand interactions. Lys158,
Glu191,  Glu228,  Ala230,
Glu234,  Lys276,  Glu278
and  Asp292  residues  were
involved in interacting with
the  target  protein.  The
amino  acids  residues
Glu228,  Ala230,  Glu234,
Glu278 and Asp292 are the
important residues involved
in inhibiting the expression
of  ABCG2  protein  shown
in Table 3. From the result
of  docking  simulations  10
top  score  inhibitors  were
selected for pharmacophore
modeling. 

Development  of
pharmacophore  model  is  a
significant  idea  in  drug
design/discovery  and
various  studies  proved  the
success  rate  of
pharmacophore  modeling
in  the  design/discovery  of
potential drugs  [40]. Based
on  least  binding  energies
and  significant  binding
interactions with the target
protein,  a  hypothetical
pharmacophore  model
generated by 10 top-scored
ABCG2  inhibitors.  All
inhibitors  aligned  together
and  generated  ten
pharmacophore  models.
Pharmacophore  features  of
the selected set of ABCG2
inhibitors  with  their
pharmacophore  fit  scores
shown  in  table  4.
Pharmacophore model with
the best score was used for
screening of Zbc library of
natural  compounds  which
shared  five  common
features; one yellow sphere
having a blue small  sphere
in it  representing  HR with
an  AR,  two  red  spheres
represent the two HBA and
one green sphere represents
the  HBD shown in  Figure
3. Overlay of selected set of
ABCG2 inhibitors upon the
pharmacophore  model
generated,  tabulated  in
Table  5.  After
pharmacophore  modelling,

virtual screening performed
to  identify  the  compounds
that have common features
to those of pharmacophore
model  generated  by
ABCG2  inhibitors  dataset.
18859 virtual  hits  with hit
rate  of  71.35%  were
acknowledged  with  the
similar  features  out  of
26432  compounds.  Based
on  pharmacophore-fit
score,  10  virtual  hits
selected  for  molecular
docking  to  evaluate  its
behavior  with  ABCG2
protein.  Chemical
structures  of  screened
virtual  hits  retrieved  via
ZINC  database.
ZINC44740  and
ZINC4098704  revealed
with  the  least  binding
energies  of  -8.5.  Asn604,
Try91,  Gln424,  Thr607,
Lys616  are  important
residues  involved  in
interacting  with  binding
pocket  of  ABCG2  protein
(Table 6).

Evaluation  of  ADMET
(Absorption,  Distribution,
Metabolism, Excretion and
Toxicity) properties is very
important  in  the  selection
of suitable lead compound.
The selected 10 virtual hits
pass  through  Lipinski  rule
of  five  and  the  predicted
values  of  the  ADMET
calculations  are  suitable
shown in table 7. 

The  merit  of  natural
drugs  has  demonstrated  in
certain  fatal  diseases  [33].
The  selected  lead
compounds  ZINC4098704
is a natural compound with
anti-cancerous  properties
also known as Rhein. Rhein
is  an  extensively  used
medicinal  herb  possessing
anti-cancerous properties, it
inhibit the proliferation and
metastasis  in  human  cells
[31].  Hence,  it  has  proved
our  CADD  pipelines
successfully  identified  a
lead  compound  with
remarkable  properties  to
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inhibit  the ABCG2 protein
to  control  MDR in  cancer
cell lines.

CONCLUSION

By using computational
techniques,  we  have
successfully  identified  a
natural  virtual  lead
compound  ZINC4098704
also  known  as  Rhein
(Rheum  rhabarbarum).
Selected  virtual  lead
compound  demonstrates
suitable  binding
interactions  with  the
ABCG2 target  protein  and
acceptable ADMET profile.
It  is  highly  recommended
to  test  this  compound  in
laboratory  to  confirm  its
activity  as  a  potential
ABCG2  inhibitor,  which
could  control  over
expression  of  ABCG2
protein  and  helpful  in
dealing  with  multidrug
resistance  in  order  to
increase  the  effectiveness
of chemotherapy for cancer
patients.
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Table 1. Physiochemical properties of ATP-binding cassette super family G 2 protein 

calculated by ProtParam

Properties Values
No. of amino acids 2198
No. of atoms 33907
Molecular Weight 241349.72
Theoretical PI 8.61
Negatively charged Residues 178
Positively Charged Residues 200
Aliphatic index 85.07
Instability index 34.30
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Table 2. Selected ATP-binding cassette super family G2 inhibitors set with PubChem CID (Identifiers) with 

their chemical names and molecular weight.

PubChem
CID

Chemical Names Molecular
Weight

PubChem
CID

Chemical Names Molecular
Weight

2367622
5

Equilin sodium sulfate 370.39 60956 Lurtotecan 518.57

3488 Glyburide 494.00 9955286 ME3277 448.45
11625818 Idelalisib 415.43 126941 Methotrexate 454.45
5351188 NSC73306 395.25 24466 Metoprine 269.13
9808844 Telatinib 409.83 4212 Mitoxantrone 444.49
6918316 Symadex 441.35 11667893 Motesanib 373.46
3054 (Z,E)-Diethylstilbestrol 268.36 9832912 Moxidectin 639.83
454858 1. (+)-FTC 247.24 5281078 Mycophenolate mofetil 433.50
17732 1. 4-HppH 268.27 439246 Naringenin 272.26
60863 5-amino orotate 500.51 9915861 NB-506 562.49
3385 5-Fluorouracil 130.08 64143 Nelfinavir 567.79
72271 7-Hydroxystaurosporine 482.54 4474 Nicardipine 479.53
72402 9-Aminocamptothecin 363.37 4485 Nifedipine 346.34
1018465
3

Afatinib 485.94 644241 Nilotinib 529.53

83969 Albendazole sulfoxide 281.33 4507 Nitrendipine 360.37
4980672
0

Alectinib 482.63 6604200 Nitrofurantoin 238.16

5287969 Alvocidib 401.84 4539 Norfloxacin 319.36
101524 Becatecarin 669.56 54675769 Novobiocin 612.63
60824 Befloxatone 349.31 4583 Ofloxacin 361.37
6456014 Belotecan 433.51 130881 Olmesartan medoxomil 558.59
68740 Zoledronic acid 272.09 4594 Omeprazole 345.42
9874592 Berubicin 633.65 71496458 Osimertinib 499.62
5351322 Bisantrene 398.47 40854 Oxfendazole 315.35
1798982
0

Boc-5-aminolevulinic acid 231.25 4679 Pantoprazole 383.37

644073 Buprenorphine 467.65 10113978 Pazopanib 437.52
6076 CAMP 329.20 16741 Phenethyl isothiocyanate 163.24
24360 Camptothecin 348.36 5323510 Pheophorbide a 592.70
156414 Canertinib 485.94 5480977 Phytoporphyrin 534.66
38904 Carboplatin 373.27 636397 Pirarubicin 627.64
446156 Cerivastatin 459.56 54369 Piritrexim 325.37
5479494 Chlorin e6 596.69 5282452 Pitavastatin 421.47
5997 Cholesterol 386.66 10205 Plumbagin 188.18
2756 Cimetidine 252.34 24826799 Ponatinib 532.57
2764 Ciprofloxacin 331.35 12594 Prasterone sulfate 368.49
20279 Cladribine 285.69 54687 Pravastatin 424.53
119182 Clofarabine 303.68 4893 Prazosin 383.41
1622209
6

Cobimetinib 531.32 4971 Protoporphyrin IX 562.67

969516 Curcumin 368.38 4993 Pyrimethamine 248.71
4446276
0

Dabrafenib 519.56 6918492 Pyropheophorbide a methyl ester 548.69

107971 Daidzin 416.38 5280343 Quercetin 302.24
5664014
6

Dasabuvir 493.58 5029 Rabeprazole 359.44

3062316 Dasatinib 488.01 104758 Raltitrexed 458.49
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30323 Daunorubicin 527.53 11167602 Regorafenib 482.82
30323 Daunorubicin 527.53 65217 Rhodamine 123 380.83
3033 Diclofenac 296.15 493570 Riboflavin 376.37
219023 Diflomotecan 398.37 6451164 Rilpivirine 366.43
3108 Dipyridamole 504.64 5070 Riluzole 234.20
5484207 D-Luciferin 280.32 11304743 Riociguat 422.42
16078 Dronabinol 314.47 10311306 Rolapitant 500.48
443293 E3040 sulfate 379.45 446157 Rosuvastatin 481.54
9808998 Edotecarin 608.56 131682 Safinamide 302.35
119373 Elacridar 563.65 104842 SN 38 lactone 392.41
71188 Enrofloxacin 359.40 443154 SN-38 Glucuronide 568.53
41867 Epirubicin 543.52 45375808 SOFOSBUVIR 529.46
176870 Erlotinib 393.44 216239 Sorafenib 464.83
5757 Estradiol 272.39 216239 Sorafenib 464.83
5870 Estrone 270.37 5359476 Sulfasalazine 398.39
36462 Etoposide 588.56 5358 Sumatriptan 295.40
151115 Exatecan 435.45 5329102 Sunitinib 398.48
150311 Ezetimibe 409.43 2733526 Tamoxifen 371.52
3385 Fluorouracil 130.08 3038522 Tandutinib 562.71
6037 Folic acid 441.40 148201 Tariquidar 646.74
403923 Fumitremorgin C 379.46 6675 TAUROCHOLIC ACID 515.71
3454 Ganciclovir 255.23 65999 Telmisartan 514.63
123631 Gefitinib 446.98 452548 Teniposide 656.65
5280961 Genistein 270.24 54684141 Teriflunomide 270.21
9577124 Gimatecan 447.49 6013 Testosterone 288.43
5281887 Glucuronosylestradiol 448.51 60700 Topotecan 421.45
124886 Glutathione 307.32 5583 Trimetrexate 369.42
72474 Grepafloxacin 359.40 23696199 Troglitazone Sulfate Sodium 543.58
72281 Hesperetin 302.28 124225 Ulifloxacin 349.38
1066634
6

Homocamptothecin 362.38 1175 Uric acid 168.11

5754 Hydrocortisone 362.47 3081361 Vandetanib 475.36
5291 Imatinib 493.61 42611257 Vemurafenib 489.92
60838 Irinotecan 586.69 5656 Venlafaxine 277.41
5330790 JNJ7706621 394.36 2520 VERAPAMIL 454.61
5280863 Kaempferol 286.24 24776445 Vismodegib 421.29
1032245
0

Ko 143 469.58 4055 Vitamin K3 172.18

60825 Lamivudine 229.25 1188 Xanthine 152.11
3883 Lansoprazole 369.36 5717 Zafirlukast 575.68
208908 Lapatinib 581.06 35370 Zidovudine 267.24
3899 Leflunomide 270.21 3035010 Benzo(a)pyrene-3-O-glucuronide 444.50
9823820 Lenvatinib 426.86 10095558
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Table 3. Docking results summary with chemical structures and drug-like activities of selected top ten ATP-
binding cassette super family G 2 inhibitors.

PubChem
CID

Chemical structure Physiochemical
Properties

BE Hydrogen Bonding Interactions

No. of
Bonds

Interactions Distance

11937 MW:193.25
HBD:1
HBA:1
RB: 0

TPSA:26

-9.8 1 O1-Thr421:N 2.87

3035010 MW:444.44
HBD:4
HBA:7
RB:3

TPSA:116

-9.5 1 O2-Lys417:NZ 3.04

6037 MW:441.40
HBD:6
HBA:9
RB:9

TPSA:209

-9.6 2 O-Ser563:OG
OE1-Lys417:NZ

2.81
3.05

5291 MW:493.61
HBD:2
HBA:7
RB:7

TPSA:86.3

-9.6 2 N4-Thr94:OG1
N4-Thr94:O

3.27
3.12
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644241 MW:529.53
HBD:2
HBA:9
RB:6

TPSA:97.6

-9.8 3 N1-Thr94:OG1
O-Lys417:N2

N7-Trp92:NE1

3.10
2.83
3.26

24826799 MW:532.57
HBD:1
HBA:8
RB:6

TPSA:65.8

-9.9 1 O-Ser93:OG 3.11

11167602 MW:482.82
HBD:3
HBA:8
RB:5

TPSA:92.4

-9.9 3 N2-Thr559:N2
O3-Asn604:ND2
N4-Asn604:OD1

3.06
3.14
3.27

216239 MW:464.83
HBD:3
HBA:7
RB:5

TPSA:92.7

-9.9 7 F2-Tyr28:N
N2-Val615:O

N2-Thr359:OG1
N1-Lys616:O

O1-Trp92:NE1
N4-Trp92:O
N4-Tyr91:O

3.06
2.92
3.12
3.22
3.18
2.87
3.19

6013 MW:288.43
HBD:1
HBA:2
RB: 0

TPSA:37.3

-9.5 3 O1-Lys616:NZ
O1-Thr607:OG1

O1-Tyr605:O

3.16
2.70
2.93
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148201 MW:646.74
HBD:2
HBA:8
RB:11

TPSA:111

-9.7 3 O4-Lys417:N2
N3-Thr94:O

O3-Lys628:NZ

3.08
2.49
3.16

*(BE:  Binding  Energies,  MW:  Molecular  Weight  (g/mol),  HBD:  hydrogen  bond  donor,  HBA:  hydrogen  bond
acceptor, RB: rotabable bonds, TPSA: Topological polar surface area)
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Table 4. Pharmacophore features of the selected set of ATP-binding cassette super family G 2 inhibitors with 
their pharmacophore fit scores.

PubChem
CID

HR AR HBA HBD Number of
Confirmations

Common Pharmacophore
Feature

Pharmacophore
Fit Score

148201 1 6 7 2 25 5 41.86
216239 1 3 6 3 25 5 50.84
644241 1 5 8 2 25 5 50.85

24826799 1 5 6 1 25 5 51.33
5291 1 5 4 2 25 5 51.03
6013 1 4 2 1 1 2 26.02
6037 1 3 9 4 25 5 51.40
11937 1 3 0 1 1 2 34.47

3035010 1 6 7 3 25 4 42.40
11167602 1 3 7 3 25 5 52.14
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Table 5. Overlay of selected set of ATP-binding cassette super family G 2 inhibitors upon the Pharmacophore 
model generated by LigandScout 4.1.5.

PubChe
m CID

2D Pharmacophore 3D Pharmacophore PubChe
m CID

2D Pharmacophore 3D Pharmacophore

148201

6013

216239

6037

644241

11937

2482679
9

3035010

5291

1116760
2
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Table 6. Docking results of top 10 scored virtual hits screened from Zbc library of ZINC database. 

ZINC ID’s Binding energies Hydrogen bonding interactions
No. of bonds Interactions Distance

44740 -8.5 2 O1-Asn604:ND2
N1-Try91: O

2.80
3.31

2125703 -7.3 2 N1-Thr607:OG1
O4-Thr607:OG1

3.34
3.10

4037390 -8.1 2 N1-Asp419:OD1
N1-Try51:OH

3.07
3.05

4098704 -8.5 4 O6-Gln424:N
O2-Thr607:OG1
O3-Thr607:OG1
O4-Lys616:NZ

2.93
3.20
2.95
2.79

4260210 -7.6 2 N1-Ser420: O
O1-Thr607:OG1

3.00
2.75

4270937 -8.3 6 O1-Lys616:NZ
O1-Thr607:OG1

O3-Gln424:N
N4-Ser420: O

O4-Thr607:OG1
O4-Lys616:NZ

3.11
2.78
2.98
3.17
2.73
3.10

15674632 -8.4 2 O2-Lys616:NZ
O2-Tyr605: O

3.08
3.05

20412614 -8 2 O3-Lys616:NZ
O5-Gln424:N

3.06
3.21

31159138 -8.4 4 O2-Asp419:OD2
O2-Thr94:OG1

O3-Thr94:N
O3-Trp92: O

2.72
3.09
3.26
2.94

68606591 7.8 No No No
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Table  7.  Pharmacological  properties  of  top  10  scored  virtual  hits  screened  from  Zbc  library  of  ZINC

database.

ZINC ID’s /

Properties

44740 2125703 4037390 4098704 4260210 4270937 15674632 20412614 31159138 68606591

BBB 0.8978 0.8672 0.8541 0.7589 0.8382 0.8775 0.5493 0.6000 0.5933 0.7436

HIA 0.5139 0.6296 0.9584 0.7279 1.0000 0.9766 0.9723 0.6179 0.9843 0.9348

Caco-2 0.9287 0.9533 0.7685 0.5328 0.9029 0.5722 0.366 0.5182 0.3121 0.5274

CYP450 2D6
substrate

0.8111 0.7289 0.8389 0.9134 0.7376 0.8098 0.7632 0.7271 0.8671 0.8448

AMES-Tox 0.6258 0.6294 0.5592 0.6259 0.5868 0.5969 0.5566 0.7421 0.6523 0.8631

Carcinogenic 0.9287 0.9017 0.8137 0.9037 0.9395 0.9235 0.9235 0.9411 0.9467 0.6314

MW 341.36 332.3 304.26 283.21 294.35 318.33 337.4 332.33 344.36 315.26

LogP -0.87 -0.85 1.9 -1.53 -0.38 -0.13 0.24 -0.77 0.51 -0.31
HBD 2 1 2 2 1 2 2 2 4 1

HBA 4 5 4 6 3 4 5 5 6 6

RB 8 9 2 3 3 3 6 9 5 6

Rings 3 2 4 3 3 3 4 2 4 2

PSA 107.18 108.67 117.32 114.73 72.96 90.98 75.28 119.67 115.06 130.27

*(BBB: Blood Brain Barrier, HIA: Human Intestinal Absorption, Caco2: Caco-2 Permeability, MW: Molecular 
Weight, HBD: Hydrogen Bond Donors, HBA: H-Bond Acceptors, RB: Rotatable Bonds, PSA: Polar Surface Area)
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Figure 1. Computer-aided drug design scheme used to screen ATP-binding cassette super family 
G 2 inhibitors to control multidrug resistance in treatment of cancer
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Figure 2. Three-dimensional structure of ATP-binding cassette super family G 2 protein with its 
structural features generated by chimera tool
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Figure 3. Lower panel shows ten pharmacophore models scores of selected ATP-binding 
cassette super family G2 inhibitors generated by LigandScout 4.1.5. Upper panel shows the 
proposed pharmacophore model shows five common features to generate the best 
pharmacophore model contains two red spheres (hydrogen bond acceptors), one green sphere 
( hydrogen bond donor), a yellow sphere having a blue small sphere (hydrophobic region with an
aromatic ring).
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Figure 4. Binding interactions of ZINC4098704 [A, B] and ZINC44740 [C, D] with ATP-
binding cassette super family G 2 protein [PDB ID: 5NJ3], [A] and [C] demonstrates two 
dimensional plots while [B] and [D] demonstrates the ligands interactions in three dimensional 
binding cavity of target protein [23].
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