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Abstract 

Colon cancer is one of the most common tumors and have a has a 

high fatality rate in United States. Both genetic and epigenetic factors 

contribute to colon cancer. Nowadays, gene expression profiles with 

microarrays of colon cancer are emerging in GEO database and TCGA 

database. Though some studies have revealed promising colorectal 

carcinoma-associated genes or gene signatures, the results of these data 

may have discrepancies due to sample size or heterogeneity. Robust rank 

aggregation (RRA) is an unbiased bioinformatics method to integrate 

individual microarray profiles and can reveal a relatively accurate gene 

expression signatures based on individual microarray profiles. In the 

present studies, we performed RRA to integrate microarray profiles of 

colon cancer in GEO database. We found 105 differentially expressed 

genes between colon cancer tissue and normal adjacent mucosa. The 

results of GO function and KEGG pathways enrichment analysis showed 

that IL-17 signaling and TNF signaling pathway are the most 

upreguluated pathways during colonic carcinogenesis. PPI network 



analysis of top 20 differentially expressed genes indicated that 

upregulated genes MS4A12, CLCA4, GUCA2B and downregulated 

genes GDF15, CXCL8 and MMPs played a significant role in colonic 

carcinogenesis. Our study would pave a way to explore therapeutic target 

genes and genetic mechanism of colon cancer. 

Colorectal cancer is the third leading morbidity of all cases of cancer 

in United States in both sexes and lists top three in cases of malignant 

tumor death[1, 2]. To date, surgery, radiotherapy and chemotherapy are the 

predominant modalities to treat colon cancer. However, some patients 

presented in advanced stage disease at the time of initial diagnosis and 

were not sensitive to radiotherapy and chemotherapy[3-7]. Moreover, high 

rate of relapse and metastasis challenging the therapy of colon cancer. 

Colon cancer results from both genetic and epigenetic factors. Nowadays, 

gene expression analysis by microarray has been popularized to explore 

the abnormal alterations of genes in colon cancer. Gene expression 

profiles with microarrays of colon cancer are emerging in GEO database 

and TCGA database and some studies have revealed promising colorectal 

carcinoma-associated genes or gene signatures. However, there are 

discrepancies in these profiles and some gene expression signatures have 

shown thousands of abnormal alterations of genes due to a small sample 

size. Thus, the obtained results from individual microarray assays 

correspondingly lack credibility. In order to overcome these limitations, 



we performed a robust rank aggregation (RRA) approach to integrate 

individual microarray profiles of colon cancer in GEO database[8]. RRA is 

an unbiased integrated bioinformatics method to obtain a relatively 

accurate gene expression signatures based on individual microarray 

profiles. Our study would help to unravel novel therapeutic target genes 

in colon cancer and prioritize the putative targets for genome research of 

the development of colon cancer. 

Materials and Methods 

GEO database was searched for human colon cancer gene 

expression profiling studies by microarrays which data had been 

uploaded prior to February 10st,2019. We screened the studies which 

analyzed the comparison between human colon primary cancer tissues 

and paired normal adjacent mucosa. The studies profiled cell lines or 

preselected candidate genes only were excluded. Nonhuman studies were 

also excluded. In the targeted datasets, gene names were normalized by 

gene symbols. First, we use GEO2R, an online tool designed by GEO 

database, to perform the gene expression comparisons in individual 

datasets. All genes expression fold changes and adjust p value by 

Bonferroni correction were listed in a new table for nest analysis. A gene 

with absolute value of logଶ FC  >1 and adjust p value <0.05 was 

considered differentially expressed gene. 



Datasets construction and statistical analysis 

The extracted genes were ranked based on fold changes (FC) value. 

The absolute value of logଶ FC >1 was considered as upregulated and 

downregulated gene. The upregulated and downregulated gene data were 

analyzed separately. We conducted the RRA approach using an R package 

RobustRankAggreg to rank the genes consistently. The RRA approach 

normalized upregulated and downregulated matrixes on the robust rank 

aggregation algorithm. Acquired p values of each gene from each dataset 

were averaged and exported adjust p values by Bonferroni correction. 

The adjust p values of genes in the normalized matrixes less than 0.05 

were considered statistically significant and listed to a new table with a 

rank of maximal possibility. The results were visualized as a heatmap. 

Enrichment analysis 

Enrichment analyses for KEGG pathways and Gene Ontology terms 

were carried out with R package Colorspace, Stringi and Bioclite.  

Analysis of protein–protein interaction (PPI) network  

To determine the function of the proteins that differentially 

expressed genes encoded, PPI network of these genes were conducted by 

an online tool (String, https://string-db.org/) and visualized by Cytoscape 

software. The PPI network identified for the differentially expressed 

genes was screened at a genome-wide scale, with both end nodes having 



these genes. The network construction using methods based on genomic 

context and structure information. 

Results 

Selection of microarray datasets 

  We selected four microarray datasets retrieved in GEO database 

according to our methods, including GSE74604, GSE10950, GSE41328, 

GSE44861. The 4 datasets provided the gene expression profiles on both 

human colon primary cancer tissues and paired normal adjacent mucosa. 

The details of 4 selected datasets are shown in Table 1. Thus, there are 

total 120 colon cancer tissues and 119 normal adjacent colon tissues 

included in the integrative analysis. 

Table1 Characteristic of included microarray datasets 

GSE ID Platform Cancer Normal Sample 

GSE10950 GPL6104 24 24 Tissue 

GSE41328 GPL570 10 10 Tissue 

GSE44861 GPL3921 56 55 Tissue 

GSE74604 GPL6104 30 30 Tissue 

 



Identification of differentially expressed genes for the 4 datasets 

The gene names in 4 matrixes are all named by gene symbols. The 

details of analysis of differentially expressed genes in 4 datasets are 

shown in Table 2. There are great disparities in the analysis results of 4 

datasets. After RRA analysis, there are 54 upregulated and 51 

downregulated differentially expressed genes depending on adjust p value 

and FC level (Table 3). The expression data of top 20 upregulated and 

downregulated genes are visualized by heatmap (Fig. 1).  

 

Table2 Analysis of differentially expressed genes in 4 datasets 

GSE ID Total  downregulated upregulated 

GSE10950 4256 2108 2148 

GSE41328 1090 500 590 

GSE44861 345 199 146 

GSE74604 1523 850 673 

 

Table3 Total differentially expressed genes by RRA analysis 

Down gene adjPvalue logFC Up gene adjPvalue logFC 



AQP8 4.57E-08 4.72720943 CDH3 3.58E-08 -3.67986752 

GUCA2B 1.53E-07 4.421364355 MMP1 4.57E-08 -3.748842023 

MS4A12 6.49E-07 4.353688153 CEMIP 8.75E-08 -4.130847765 

CA4 1.14E-06 3.880860245 MMP7 1.06E-07 -3.691066865 

GUCA2A 1.15E-06 4.30961205 REG1A 9.19E-07 -3.436978545 

CLCA4 2.45E-06 4.194705725 COL11A1 7.57E-06 -3.289600543 

ABCA8 1.55E-05 3.027552125 CXCL8 9.17E-06 -3.50585515 

VIP 0.000156227 3.25807052 DPEP1 1.17E-05 -3.27317428 

MT1M 0.000204194 3.239553328 REG1B 2.13E-05 -2.880870738 

ZG16 0.000247505 3.37732275 NFE2L3 4.84E-05 -2.439834425 

CHGA 0.00033234 3.323546673 MMP3 5.25E-05 -3.232301755 

CHP2 0.000392983 3.230416283 SLCO4A1 5.92E-05 -2.43565447 

CA2 0.000451822 3.023311263 NEBL 7.44E-05 -2.46451018 

C7 0.000524849 3.100203123 TRIB3 0.000121178 -2.554282583 

HSD17B2 0.000586543 2.628305953 FOXQ1 0.000143249 -3.6556851 

SRPX 0.000774801 2.072468748 GDF15 0.000198381 -2.178515845 

KRT24 0.001147198 2.62911698 CLDN1 0.000208512 -3.767214238 

STMN2 0.001147198 2.09422074 SERPINB5 0.000269605 -2.286883628 

CD177 0.00178474 2.750098913 RNF43 0.000435733 -2.120888255 

AKR1B10 0.001978663 2.87357106 VSNL1 0.000456856 -2.327361893 

SLC26A3 0.002003198 2.464498488 CXCL1 0.000501395 -2.771952085 

SCNN1B 0.002864129 2.702405648 TESC 0.000574214 -2.55776469 

CEACAM7 0.003141314 2.626836815 KRT6B 0.001235405 -2.090268745 



SLC26A2 0.003370948 2.452674105 ASCL2 0.001524251 -2.899765445 

SCGN 0.003459233 2.341081023 MMP11 0.002003198 -2.46003824 

ANPEP 0.005298331 2.818059513 KRT23 0.002148091 -3.088601435 

LRRC19 0.006673337 1.755399385 TCN1 0.002538314 -2.58469684 

SPIB 0.007930513 2.05418281 CLDN2 0.003370948 -2.568057325 

TMEM100 0.008022327 1.9262158 PHLDA1 0.00713921 -2.347639063 

MYOT 0.01164761 2.244524825 CEL 0.007659795 -1.91199531 

CCDC69 0.013315938 1.771146475 CKAP2 0.008114936 -1.768637828 

PYY 0.013587683 2.143855983 GTF2IRD1 0.009085758 -1.819794498 

ITM2A 0.015157376 1.632515515 MMP10 0.009923106 -2.245710883 

TUBAL3 0.015158313 2.127066783 PUS7 0.011526124 -1.732081048 

DPT 0.018355172 2.442392265 ENC1 0.013725105 -1.828605248 

LGALS2 0.020688916 2.442078413 CXCL2 0.013914152 -2.08948386 

ADTRP 0.021643267 2.11327697 LCN2 0.014003073 -1.71664808 

TNFRSF17 0.02263026 2.088488285 LRP8 0.017512367 -2.089614165 

CWH43 0.022831641 2.133663915 CCL20 0.017512367 -1.958783235 

CLEC3B 0.028842817 2.29524777 IL11 0.022231499 -1.697978553 

CHGB 0.029769525 1.67734968 SOX9 0.024279186 -2.141384858 

GCG 0.030901285 2.149127873 COL10A1 0.026922705 -2.518080643 

NXPE4 0.032312537 2.426322073 COL1A1 0.027871751 -1.765750748 

SCARA5 0.032952304 2.355340375 LY6G6D 0.029836154 -1.91370104 

BCHE 0.036142253 2.321360205 SLC7A5 0.029836154 -1.984627793 

DHRS11 0.036277938 2.017980565 SLC12A2 0.03051606 -1.74024574 



MT1E 0.039994177 2.378484588 INHBA 0.030901285 -1.64504031 

PLAC8 0.0410497 2.335502728 GGH 0.041554743 -1.527724548 

MT1H 0.041239039 1.737616973 FABP6 0.045148419 -2.119505288 

TSPAN1 0.042304596 1.417806193 MYC 0.047204188 -1.810236035 

ADAMTS1 0.043160539 1.41711367 PPAT 0.049690431 -1.559291 

CFD 0.043584777 2.52026848    

BEST2 0.044890493 2.134921558    

FABP1 0.044890493 1.629451835    

 



 

 

 

 

Functional annotation and KEGG pathway for differentially expressed 

Figure 1 Top 20 differentially expressed genes in 4 datasets 



genes 

 

To understand the roles of these genes further, we performed GO 

function enrichment and KEGG pathway enrichment of all differentially 

expressed genes. The results are shown in Figure 2 and Figure 3. In 

downregulated genes, enriched GO terms mainly include hormone related 

activities, transmembrane transporter activities and energy metabolism. 

Enriched KEGG pathways in downregulated genes cover mineral 

absorption, nitrogen metabolism, proximal tubule bicarbonate 

reclamation, pancreatic secretion. In upregulated genes, enriched GO 

terms mainly include the cytokine, chemokine and growth factor 

activities and their receptor binding, metallopeptidase and 

metalloendopeptidase activities, serine involved activities, and 

extracellular matrix structural constituent conferring tensile strength. 

Enriched KEGG pathways in upregulated genes include IL-17 signaling 

pathway, cytokine-cytokine receptor interaction, bladder cancer, TNF 

signaling pathway, protein digestion and absorption, chemokine signaling 

pathway. 

PPI network analysis of differentially expressed genes 

The PPI network for the total and top 20 differentially expressed 

genes with significant interaction relation are shown in Figure 4 and 



Figure 5, respectively. The downregulated and upregulated genes are 

marked by blue and yellow color orderly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A）downregulated genes 

B）upregulated genes 

Figure 2 GO function enrichment of differentially expressed genes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A）downregulated genes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 downregulated genes upregulated genes 

Figure 4 PPI network of total differentially expressed genes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 downregulated genes upregulated genes 

Figure 5 PPI network of top 20 differentially expressed genes 



 

 

 

Discussion 

There are huge discrepancies between the results from analysis of 

single microarray profile. Generally, the differentially expressed genes 

from a large samples dataset are more persuasive. Thus, integrative 

analysis of microarray profiles is a easy and significant approach to 

enlarge samples. In our results, the number of differentially expressed 

genes are more less than individual analysis, and it make easier to further 

analysis. 51 up-regulated genes and 54 down-regulated are extracted from 

the integrative analysis. In the heatmap, expression of top 20 

differentially genes are shown in all datasets. Except FOXQ1 and ZG16 

in GSE44861, expression of the other genes are consistent in the 4 

datasets. Therefore our approach and result of integrative analysis is 

credible. These differentially expressed genes involved in various 

biological processes and pathways according to the GO function and 

KEGG pathways enrichment analysis. Totally, these genes indicate a 

hyperactivity of proliferation and hypoactivity of reabsorption of 

nutrients. In the results, we found that IL-17 signaling and TNF signaling 

pathway are the most upreguluated pathways during colonic 



carcinogenesis. In many tumors, IL-17 and TNF-α are co-expressed by T 

helper 17 (TH17) cells. TNF-α can enhance mRNA and protein of PD-L1 

in colon cancer cell lines, and IL-17 also increases the expression level of 

PD-L1 in colon cancer cell lines[9]. PD-L1 plays a significant role in 

tumor immune escape. To know these genes better, we conduct PPI 

network analysis. The results in top 20 differentially expressed genes 

indicated that upregulated genes MS4A12, CLCA4, GUCA2B and 

downregulated genes GDF15, CXCL8 and MMPs played a significant 

role in colonic carcinogenesis.  

 In colonic carcinogenesis, MS4A12, as a colon-specific gene, 

participates in proliferation and chemotaxis mediated by epidermal 

growth factor (EGF)[10, 11] and regulate the differentiation[10, 12]. Decreased 

expression of MS4A12 inhibits differentiation and indicates a poor 

survival in colon cancer[12, 13]. CLCA4 is a member of the calcium 

sensitive chloride conductance family of proteins. CLCA4 can inhibit cell 

proliferation, migration, and invasion in many cancer through suppressing 

PI3K/AKT signaling[14-17]. There is a lack of evidence of the effect of 

CLCA4 on colon cancer. According to studies of CLCA4, we can infer 

that decreased expression of CLCA4 is a promoting factor in colonic 

carcinogenesis. GUCA2B encodes uroguanylin and regulates 

proliferation, metabolism and barrier function in colon via binding and 

activating GUCY2C [18]. A lower expression GUCA2B may also promote 



colon cancer. Overexpression GDF15 was proved to promote EMT and 

metastasis in colorectal cancer via TGFβ/Smad2,3 signaling[19]. Increased 

expression of CXCL8 can enhance cell proliferation, migration and 

invasion of colon cancer through PI3K/Akt/NF-κB signaling[20]. MMPs 

(MMP1, MMP3, MMP7) can also promote colonic carcinogenesis[21-31]. 

These results demonstrated the crucial function of the differentially 

expressed genes in colonic carcinogenesis.  

In summary, our integrative analysis provided a useful method to 

mine the data from GEO database and revealed a well understanding of 

the molecular mechanism in colonic carcinogenesis. The pathways and 

genes we shown may be potential therapeutic targets and paved a way for 

further studies of colon cancer. However, the molecular mechanisms of 

cancer are complicated and there are some limits in our method. 

Therefore further studies remain necessary to reveal the molecular 

mechanism of colonic carcinogenesis. 
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