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Abstract:  Background: Acetylcholinesterase  (AChE)  is  one  of  the  most  important  targets  in  the  treatment  of

Alzheimer's disease (AD). It was claimed that novel AChE inhibitors were optimized as potential drug candidates,

designed for regional or systematic release, and created as significant inhibitors.  

Objective: In this work, molecular modeling studies including CoMFA, CoMFA-RF, CoMSIA , HQSAR and 

molecular docking and molecular dynamic simulations were used to provide a theoretical basis for finding highly 

potent anti-Alzheimer drugs. 

Methods: QSAR was used to generate models and predict the anti-Alzheimer activity using the Sybyl program (x1.2

version). pyrimidinylthiourea derivatives as AChE inhibitors were selected as our data set, which was split randomly

into training and test sets. Docking and molecular dynamic simulation were carried out using the MOE software and

the Sybyl program, respectively. Partial least square was used as QSAR model-generation method. The statistical

qualities  of  generated  models  were  justified  by  internal  and  external  validation i.e.,  cross-validated  correlation

coefficient (q2), non-cross-validated correlation coefficient () and predicted correlation coefficient (), respectively. 

Results: The CoMFA (q2, 0.775;, 0.901; 0.773), CoMFA-RF (q2, 0.629;, 0.901; 0.824), CoMSIA (q2, 0.754;, 0.919;

0.874) and HQSAR models (q2,  0.622;, 0.949; 0.854) for training and test set yielded significant statistical results.

Conclusion: These QSAR models were excellent, robust and had good predictive capability. Contour maps of the

QSAR models were generated and validated by molecular dynamic simulation-assisted molecular docking study.

The final QSAR models could be useful for design and development of novel potent AChE inhibitors in Alzheimer 's

treatment.

Graphical abstract
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1. Introduction
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Alzheimer's  disease  (AD),  the  most  common form of  dementia  among elderly people,  is  a  chronic,  fatal,  and

neurodegenerative disease in the brain which related to loss of memory and behavioral function [1-3].

It is estimated that 44 million people suffer from AD worldwide and the number is increasing annually [4, 5]. With

the growth of geriatric population, AD has become an urgent public health issue and had turned into a major social

and financial burden. Thus, more efforts are needed to explore better ways for drug discovery to treat the AD disease

and  prevent  its  development  [6-8].  Pathologically,  β-Amyloid  oligomerization,  τ-protein  aggregation,  oxidative

stress  and  low levels  of  acetylcholine  (ACh)  play  key  roles  in  the  progress  and  development  of  AD  [9-13].

Acetylcholine (ACh), a major neurotransmitter widely exiting in the brain, plays an important role in neural system

and  is  synthesized  and  hydrolyzed  by  acetylcholinetransferase  (AChT)  and  acetylcholinesterase  (AChE),

respectively [14-16]. Acetylcholinesterase (AChE) is a key target which is responsible for the metabolic breakdown

of ACh. Accordingly, the inhibition of acetylcholinesterase (AChE) enzyme has been regarded as one of the most

promising approaches for Alzheimer's treatment [17, 18]. 

The anti-AChE drugs such  as  donepezil,  galanthamine,  tacrine,  rivastigmine and  one N-methyl-D-aspartic  acid

(NMDA) antagonist  memantine  (Fig.  1)  increase  the  ACh concentration in  the synaptic  cleft,  but  with limited

success and efficiency in the current clinical therapy for AD [19-22]. 

Fig.1. Several AChE inhibitors that have been approved by FDA for the treatment of AD.
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Therefore, it is necessary the design and development of new AChE inhibitors with potential application and low

side effects for the treatment of AD. 

The x-ray crystallographic structure of AChE contains two binding sites:  the catalytic active site (CAS) at  the

bottom, and a peripheral anionic site (PAS) at the entrance of a long (20 Å) and narrow gorge [23-25]. It was proved

that the dual binding site AChE inhibitors with action on PAS and CAS were potent inhibitors compared to the

compounds that interact with only one site of the enzyme [26]. 

Quantitative structure- activity relationship (QSAR) is a technique that is used in computer-assisted rational drug

design  and  predicts  the  protein-ligand  interaction  and  to  explore  correlation  between  biological  activity  and

molecular structure [27-30]. Three-dimensional QSAR (3D-QSAR) is a broad term encompassing all those QSAR

methods which is utilized to calculate the highly specific interactions and a molecule, how far and with how much

power can be connected to the active site of an enzyme or protein [31-33]. Recently, comparative molecular field

analysis  (CoMFA),  CoMFA  region  focusing  (CoMFA-RF),  comparative  molecular  similarity  index  analysis

(CoMSIA) and hologram QSAR (HQSAR) are especially effective methods of QSAR based on statistical techniques

[34-36]. The CoMFA model proposed by Cramer et al. describes the molecular properties by steric (Lennard-Jones)

and electrostatic (Coulomb) energy fields of important regions of a set of aligned compounds that predict their

biological activity over a lattice of point [37, 38]. In CoMFA-RF model, steric and electrostatic fields are calculated

for aligned fragments by creating specific grid space at the specific lattice points [39]. In CoMSIA model, proposed

by Klebe et al., a probe atom is used to calculate similarity indices, at regularly placed grid points for the aligned

molecules. Compared to CoMFA, CoMSIA uses a Gaussian-type distance-dependent function to assess five fields of

different physicochemical properties (i.e., steric, electrostatic, hydrophobic, hydrogen binding donor and acceptor

[40]. Also, CoMSIA is differentiated by Gaussian functions and no arbitrary definitions of cut off limits should be

used. 

HQSAR study is a comparatively new 2D-QSAR method which employs the fragment fingerprints of molecular

holograms and other molecular descriptors to predict the biological activity of a series of molecules [41-43]. In these

models, all regression analyses performed in two steps using the partial least squares (PLS) method [44-47]. 

In the present study, we performed a molecular modeling study by combined 2D- and 3D-QSAR, molecular docking

and molecular dynamic (MD) simulations techniques.  2D-QSAR, using HQSAR method, and 3D-QSAR, using
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CoMFA, CoMFA-RF and CoMSIA methods, were used to identify the key structural factors influence on inhibitory

activity. Molecular docking was used to identify some key amino acid residues at the active site of AChE protein

and investigate the binding modes between AChE and the selected inhibitors. Molecular dynamic (MD) simulations

were employed to determine the detailed interactions in AChE protein and validate the rationality of docking results.

The obtained results can apply to the further structural modification, design and development new and more potent

anti-Alzheimer drugs.  

2. Materials and Methods

2.1. Data Set

QSAR studies were performed on a set of 40 pyrimidinylthiourea derivatives as a new class of anti- Alzheimer

agents with their biological activities (IC50 values) that recently reported by Li group [48]. 

These activity values (IC50 in μM) were converted to corresponding pIC50 (-log IC50) values and used as a dependent

variable in CoMFA, CoMFA-RF, CoMSIA and HQSAR models. The data set was randomly divided into a training

set (30 compounds, 75%) for QSAR model generation and a test set (10 compounds, 25%) for external validation of

the models (Fig. 2).
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Fig. 2. Distribution of experimental inhibitory activities (pIC50) for the training and test sets compounds in the 
QSAR models.
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2.2. Molecular Modeling and Alignment

The QSAR models including CoMFA, CoMFA-RF, CoMSIA and HQSAR were performed using the SYBYL-X 1.2.

molecular modeling software (Tripos, Inc, St. Louis, MO). Before modeling with these primary methods, the 3D

structures of compounds were drawn using Chemoffice Bio 3D Ultra (version 12.0, Cambridge Soft Corporation,

Cambridge, UK, 2010). All the compounds were energy minimized using the standard molecular mechanics force

field with a distance dependent dielectric and the powell conjugate gradient algorithm with a convergence criterion

of 0.05 kcal/molÅ using the maximum iteration set to 5000 [49].  Partial  atomic charges of the compounds for

electrostatic interactions were calculated by the Gasteiger-Hückel method. Structure alignment was one of the most

important  input  variables  in  3D-QSAR analysis  and  the  accuracy  of  the  prediction  power  of  the  models  was

reliability dependent on contour maps according to the structural alignment of the molecules. In this study, rigid

body alignment of molecules in a Mol2 database was performed using maximum common substructures defined by

Distill alignment. Compound 36 was selected as template because the most active compound of data set and other

compounds were aligned according to the common structure. The structure of compound 36 with bold red common

substructure and final super imposition of compounds are shown in Fig. 3a, 3b.

Fig. 3. Compound  36 used as the template molecule for database alignment and Common substructure in Distill
alignment shown in the bold red (a) and aligned compounds in the training and test sets (b).

2.3. CoMFA and CoMSIA Analysis
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In CoMFA method, the aligned molecules in optimal orientation were located in a 3D cubic lattice with grid spacing

of 2 Å in the x, y, and z direction which extended 4.0 Å around the align molecules in all Cartesian directions. The

CoMFA steric and electrostatic fields were calculated for each molecule using a hybridized sp3 carbon probe atom

with a Vander Waals radius of 1.52 Å and a charge of +1.0. The Coulomb and Lennard-Jones potential functions

were used to estimate the electrostatic and steric interactions, respectively. The energy cut off values for both steric

and electrostatic fields were set at 30 kcal/mol. In order to reduce noise and improve efficiency, column filtering was

tested in the range of 0.0 to 2.0 kcal/mol and a threshold column filtering value of 2.0 kcal/mol. CoMFA-RF in the

“Advanced CoMFA” module is a technique of application of weight to the lattice point in a CoMFA region to

increase or decrease contribution of these points to subsequent analysis. “StDev*Coefficients” values as different

weighting  factors  were  employed in addition  to  grid spacing for  getting  the  better  models.  This  increases  the

resolution and predictive capability (q2, cross validated r2) of a followed PLS analysis.

The CoMSIA method calculates the similarity indices descriptors with the same lattice box used in CoMFA. Five

physicochemical properties of steric, electrostatic, hydrophobic, hydrogen binding donor and acceptor fields were

evaluated using a probe atom with charge +1.0, radius 1 Å, hydrophobicity +1.0, hydrogen binding donor +1.0,

hydrogen binding acceptor +1.0, attenuation factor α of 0.3 and grid spacing 2.0 Å. A distance-dependent Gaussian

type was used between the probe atom and each molecule atom [49, 50]. 

2.4. HQSAR Analysis

Hologram QSAR study is a 2D-QSAR technique which certain the relationship between the biological activity with

the  structural  fragments.  This  method  eliminates  the  need  for  3D  structure,  the  ability  to  achieve  molecular

alignment and conformational specification [51, 52] by transforming the chemical representation of a molecule into

its corresponding molecular  hologram. 2D chemical  database storage and searching technologies  rely on linear

notations that define chemical structures [Wiswesser line-formula notation (WLN), simplified molecular input line

entry system (SMILES); SLN-SYBYL line notation]. The process involves generation of fragments that are hashed

into array is called molecular hologram and bin occupancies are the descriptor variable [53-55].

The HQSAR method employs different parameters for the molecular hologram generation such as hologram length

(HL) values (53, 59, 61, 72, 83, 97, 151, 199, 257, 307, 353 and 401), fragment distinction (atom (A), bonds (B),
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connections (C), hydrogen atoms (H), chirality (Ch), and donor and acceptor (DA), and the fragment size (2-5, 3-6,

4-7, 5-8, 6-9, 7-10).

2.5. Partial Least-Square (PLS) Analysis

In  3D-QSAR studies,  PLS  method [56]  an  extension  of  multiple  regression  analysis  was  used  for  the  model

building. Calculated CoMFA and CoMSIA descriptors as independent variables were used with the pIC 50 values as

dependent variables in the PLS regression analysis, respectively. Before the PLS analysis, the CoMFA and CoMSIA

columns were filtered by using column filtering value equal to 2.0 kcal/mol. The predictive ability of the models

was evaluated by leave-one-out (LOO) and leave-ten-out (L-10-O) methods. LOO cross-validation method was used

as an internal validation to generate the optimal number of components (ONC) with the lowest standard error of

prediction (SEP) and the highest cross-validated coefficient q2 () that was calculated by Equation (1):

Whereas, Ypred, Yobs and Ymean are predicted, observed, and mean activity values of the training set, respectively [5].

The  is the predictive residual sum of squares (PRESS). 

After cross validation, the final PLS analysis was carried out using the optimal number of components with no

validation  to  generate  final  QSAR  model.  The  non-cross-validated  analysis  performed  by  the  conventional

correlation coefficient (), standard error of estimation (SEE) and F values calculated with the same column filtering

set. High q2 and r2 (q2> 0.5, r2> 0.6) values are regarded as a proof of high predictive ability of the built model and

also  for a good model should not be more than 0.3 [52].

Bootstrapping analysis was performed for 100 runs to assess the statistical confidence of the derived models [37, 56-

58]. Contour maps were generated graphically after models were developed in CoMFA/CoMFA-RF and CoMSIA

using the field type “StDev*Coeff” and the contour levels were set to default values. 

In HQSAR, LOO cross-validation was applied to determine the number of components that yields a good predictive

model. PLS then yields a mathematical equation that related the molecular hologram bin values to the inhibition

activity of the compounds in the database. 

4.5. Validation of the QSAR model 

A good internal validation showed only a high q2 in the training set of compounds, but it did not indicate the high

predictive ability of the established models, therefore external validation was essential. The predictive ability of 3D-
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QSAR models were validated by calculating biological activities of the compounds which were not included in the

training set and used as a test set. Test set was marked with * in Table 1.

Table 1
Chemical Structure and the Corresponding Experimental and Predicted pIC50 Values by QSAR models.

Predicted pIC50

Compd R1, R2
Experimental

pIC50
CoMFA CoMFA-RF CoMSIA HQSAR

1 5.089 5.601 5.592 5.062 5.043

2* 4.657 5.602 4.904 5.062 5.047

3 4.630 4.602 5.108 4.963 4.299

4 5.798 5.498 5.647 5.103 5.680

5* 4.841 5.684 4.522 5.628 5.091

6 5.978 5.663 5.712 5.628 6.057

7 5.105 5.366 5.139 5.356 5.116

8 4.397 4.401 4.312 5.043 4.435
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9* 4.346 4.089 4.534 4.144 4.598

10* 4.634 5.153 5.253 4.241 4.027

11 5.486 5.457 5.356 5.613 5.526

12 4.292 4.560 4.219 4.150 4.231

13 5.059 5.448 5.610 5.075 5.020

14 4.693 4.112 4.403 4.528 4.360

15* 5.070 5.020 5.332 4.897 5.246

16 4.042 4.112 4.403 4.528 4.36

17 5.214 5.323 5.403 4.995 5.372

18 5.173 5.234 5.184 5.151 5.139

19 5.488 5.956 5.858 5.936 5.830
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20* 6.211 5.697 5.730 5.464 5.791

21* 6.011 5.805 5.871 5.568 5.672

22 6.196 5.975 5.640 5.893 6.136

23 6.019 6.080 5.971 6.402 5.899

24* 6.769 6.795 6.519 6.806 6.120

25 6.779 6.197 6.475 6.348 6.596

26 6.459 6.440 6.539 6.380 6.506

27 6.002 6.190 6.205 6.204 6.048

28 6.600 6.497 6.297 6.509 6.557
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29 6.466 6.634 6.410 6.590 6.489

30* 6.372 6.802 6.761 6.451 6.615

31 6.607 6.672 6.566 6.587 6.561

32 6.815 6.637 6.774 6.663 6.887

33 6.939 6.818 6.995 6.783 6.791

34 6.690 6.885 7.142 6.810 6.885

35 6.742 6.964 6.888 6.955 6.828
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36 7.173 6.816 7.046 7.060 6.973

37 6.954 6.959 6.962 7.014 6.999

38 6.917 6.499 6.832 7.041 6.963

39 6.517 6.874 6.352 6.625 6.378

40 6.987 6.822 6.756 6.656 7.027

*Test set

The predictive correlation coefficient  (> 0.6) [59], based on the test set was calculated using Equation (2):

SD is the sum of squared deviation between the biological activities of the test set molecules and the mean activity

of the training set molecules. PRESS is the sum of squared derivations between the predicted and actual activities of

the test set molecules.

Performance of the regression models constructed here was evaluated using the root mean squared error (RMSE),

mean absolute error (MAE) (RMSE and MAE close to zero),  Residual sum of squares (RSS) and concordance

correlation coefficient (CCC; CCC ≥ 0.85) of the training and validation sets [60]. The RMSE and the MAE are

calculated for the data set as Equations (3-6)
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                                         RMSE=     

                                        MAE=      

                                           RSS= 

                                    CCC=       

To obtain the good predictive model for test set, additional validation of model, the following

Parameters [59] were used (Equation (7)):

        or                     Eq.  (7  (

0.85  k   0.85  k´

 and are squared correlation coefficients of determination for regression lines through the origin between predicted

(y) and observed (x) activities and vice versa. The values of k and k´ are the slopes of their models, respectively. 

To further assess the models, another validation statistical parameter  and  were determined by following Equations

(8), (9):

        

 value more than 0.5 (>0.5) and <0.2 show good external predictability of the models.

2.6. Molecular Docking Study

Molecular docking as one of the most frequently methods in drug design was used to investigate the mode of

interaction of small molecules with the appropriate target binding sites. The docking study was performed using

Operation Environment (MOE) software (www.chemcomp.com) between the most and least active compounds with

AChE enzyme.  Fro the preparation of ligands prior to docking, the 2D structures of ligands were prepared by

Chemoffice ultra (version 12.0, Cambridge Soft Corporation, Cambridge, UK, 2010) and converted to 3D format by

Hyper Chem7 (Hyper cube Inc, USA) using AM1 semi-empirical method. The ligands in our data set were docked

in the active site of AChE (PDB ID: 1eve) by MOE software. The docking was performed by triangle matcher

placement algorithm in combination with London dG scoring function and force field as refinement method and the
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conformation of compounds were further analyzed by LigX module in MOE software. The best docking pose of

compound 36 was chosen for Molecular dynamic (MD) simulation. 

2.7. Molecular Dynamic Simulation

The  molecular  dynamics  (MD)  simulations,  based  on  Newton 's  second  law  or  the  equation  of  motion,  were

performed to investigate  the interaction between the receptor  and  ligand in atomic  details  using  the  dynamics

module of SYBYL [61]. The compound  36 was used as the template molecule to elucidate the MD simulations.

Energy minimization of  the docked ligand was performed with Tripos force field and Gasteiger-Huckel charge

without water using Boltzmann initial velocity.

The simulations were executed using normal temperature and volume (NTV) ensemble 300 K with coupling 100 fs.

The MD simulations were performed with a time step of 2 fs for 10000 fs and conformation snapshot at every 100 fs

to calculate RMSD values. Further, time dependent change of temperature, potential energy, kinetic energy and total

energy for inhibitor was determined and recorded as a plot.

3. Results and discussion

3.1. CoMFA and CoMFA-RF Statistical Results

The statistical results of CoMFA and CoMFA-RF models are summarized in Table 2. The CoMFA analysis was

carried out with steric and electrostatic fields at column filtering of 2.0 kcal/mol. 

Table 2
Statistical parameters of QSAR models.
Parameters CoMFA CoMFA-RF CoMSIA HQSAR
PLS analysis
q2 0.629 0.775 0.754 0.823
(L-10-O) 0.619 0.793 0.767 0.662
ONC 2 3 4 4
SEP 0.586 0.448 0.487 0.431

0.901 0.910 0.919 0.976
SEE 0.303 0.297 0.279 0.159
R pearson 0.943 0.951 0.921 0.962
F 78.639 123.076                   70.916 116.361

0.995 0.993 0.992 0.990
SEEbs 0.007 0.006 0.006 0.006
Contribution
Steric 0.844 0.641 0.261 -
Electrostatic 0.156 0.359 0.115 -
Hydrophobic - - 0.267 -
Donor - - 0.190 -
Acceptor - - 0.166 -
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q2:  cross-validated  correlation  coefficient  after  the  leave-one-out  procedure;  ONC:  optimal  number  of  principal
components;  non-cross-validated correlation coefficient; SEE: standard error of estimate; F: the value of F statistic;:
the average r2 value from a bootstrapping analysis for 100 runs; SEEbs: the average SEE value from a bootstrapping
analysis for 100 runs;  :( mean) the average rcv from ten times tenfold cross-validation.

PLS analysis of CoMFA for training set including leave-one-out (LOO) and leave-ten-out (L-10-O) cross validation

with ONC 2 showed q2 value of 0.629,   (L-10-O) value of 0.619 and SEP of 0.586. These statistical results showed

that the model had a good predictive capability. 

The non-cross-validated PLS analysis gave a  of 0.901 with standard error of estimate (SEE) of 0.303, F value of

78.639,   of  0.272  and  Rpearson of  0.943  which  supported  the  statistical  validity  of  the  developed  model.  The

contributions  from  steric  and  electrostatic  field  descriptors  explained  0.844  and  0.156  of  the  total  variance,

respectively that indicated steric effect was more important than the electrostatic fraction. 

After using region focusing, a new model of CoMFA-RF with improvement in the statistical parameters was created.

The cross-validation and non-cross-validated PLS calculation results were found better in CoMFA-RF as compared to

CoMFA. This approach showed an increase in the q2 value from 0.629 to 0.775 with ONC of 3 and  (L-10-O) from

0.619 to 0.793 and SEP of 0.448. The non-cross-validated PLS analysis resulted in high  value of 0.910 with a low

SEE value of 0.297, F value of 123.076,  value of  0.135 and Rpearson value of 0.951. The contribution of steric and

electrostatic field descriptors was 0.641 and 0.359, respectively in CoMFA-RF. 

The bootstrapped results were shown in  and  values of 0.995 and 0.007 (CoMFA) and 0.993 and 0.006 (CoMFA-RF),

respectively that suggesting a good internal consistency and the absence of systematic errors of the models within the

training data set. 

3.2. CoMSIA statistical results

The CoMSIA technique deals with direct correlation of ligand affinities to changes in molecular properties [62]. The

CoMSIA model was generated using combinations of five steric (S), electrostatic (E), hydrophobic (H), hydrogen

binding acceptor (A) and hydrogen binding donor (D) fields. The statistical parameters of CoMSIA model were

summarized in Table 2. In PLS analysis, the q2 value of 0.754 with ONC of 4, SEP of 0.487 and  (L-10-O) of 0.767

was obtained with column filtering of 2.0 kcal/mol. The non-cross-validated PLS analysis gave a value of 0.919

with SEE value of 0.279, F value of 70.916,  value of 0.165 and Rpearson value of 0.921.
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A high bootstrapped r2 value of 0.992 and of 0.006 suggest a high degree of confidence in the analysis. For CoMSIA,

the contribution of the steric,  electrostatic,  hydrophobic,  hydrogen bond donor and hydrogen bond acceptor field

descriptors were 0.261, 0.115, 0.267, 0.190, and 0.166, respectively. These molecular fields were not completely

independent of each other and could form 31 combinations (Fig. 4). 
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Fig. 4. Results of the distribution of q2,,,values that were obtained from 31 combinations of CoMSIA fields. s, steric;
e, electrostatic; h, hydrophobic; d, H-bond donor; a, H-bond acceptor.

Among these, combination of steric, electrostatic and hydrogen bond donor (SED) was found to be the best. CoMSIA

(SED) combination gave q2 value of 0.820,  of 0.907,  of 0.597 and  of 0.986. In the model CoMSIA, this combination

shared the large part and indicated that internal prediction of SED combination was good. 

3.3. HQSAR Statistical Results

The HQSAR is a technique of QSAR analysis that is useful in exploring the combination of each molecule under

study to the biological activity and eliminates the need of alignment, generation of 3D structures and putative binding

conformation. The performance of the HQSAR model was affected by three parameters, including the fragment size,

the fragment type (fragment distinction) and hologram length. The HQSAR models with statistical parameters are

showed in Table 2. 
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The best statistical results of HQSAR model were obtained with q2 value of 0.823, ONC of 4, SEP of 0.431 and  (L-

10-O) of 0.662,  of 0.976 with SEE of 0.159, F value of 116.361,  of 0.153,  of 0.990 with  of 0.006 and Rpearson of

0.962 using a relevant hologram length (HL)  of 307,  fragment distinction (atom (A), chirality (Ch), and donor and

acceptor (DA), and the fragment size of 4-7 (Table 3-4). All the results demonstrated that the HQSAR model was also

highly predictive.

Table 3
HQSAR analysis for various fragment distinctions on the key statistical parameters using fragment size (4-7)

model
Fragment
distinction

q2SEPr2SEEHLN

1-1A0.7630.4680.9170.278973
1-2A/B0.7860.4630.9640.1893535
1-3A/C0.7310.5200.9750.1592575
1-4A/H0.7020.5470.9150.2922575
1-5A/Ch0.7810.4680.9650.187975
1-6A/DA0.8100.4470.9750.1633076
1-7A/B/C0.7750.4660.9660.1814014
1-8A/B/H0.7490.5120.9610.2032576
1-9A/B/Ch0.7340.4970.9160.2801513
1-10A/B/DA0.7590.4920.9470.231975
1-11A/C/H0.7060.5550.9610.203596
1-12A/C/Ch0.7310.5200.9750.1592575
1-13A/C/DA0.7940.4650.9840.1303536
1-14A/H/Ch0.6980.5400.8740.349974
1-15A/H/DA0.6700.5760.9180.2871515
1-16A/Ch/DA0.8230.4310.9760.1593074
1-17A/B/C/H0.7150.5470.9430.245716
1-18A/B/C/Ch0.7750.4660.9660.1814014
1-19A/B/C/DA0.7600.4910.9730.1664014
1-20A/B/H/Ch0.7700.4910.9410.248976
1-21A /B/H/DA0.7310.5310.9220.286536
1-22A/B/Ch/DA0.7500.4900.9430.2331994
1-23A/C/H/Ch0.7060.5550.9610.203596
1-24A/H/Ch/DA0.6920.5560.9140.2931515
1-25A/C/H/DA0.6640.5810.9110.2994015
1-26A/C/H/Ch/DA0.6740.5610.8670.3571994
1-27A/B/H/Ch/DA0.7180.5210.8910.324534
1-28A/B/C/Ch/DA0.7430.5190.9760.1591996
1-29A/B/C/H/DA0.7380.5240.9520.225616
1-30A/B/C/H/Ch0.7150.5470.9430.245716
1-31A/B/C/H/Ch/DA0.6940.5660.9570.2123076

q2,  cross-validated  correlation coefficient;  r2,  non-cross-validated  correlation coefficient;  SEE,  standard  estimated
error;  HL,  hologram  length;  N,  optimal  number  of  components.  Fragment  distinction:  A,  atom;  B,  bond;  C,
connections; H, hydrogen atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.

Table 4
Statistical results of QSAR model using the model 1-16 (including fragments A/Ch/DA) with different fragment sizes

modelFragment sizeq2SEPr2SEEHLN
2-11-40.7450.5170.9400.2522576
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2-22-50.8110.4450.9720.1703076
2-33-60.8220.4310.9720.1713076
2-44-70.8230.4310.9760.1593074
2-55-80.8380.4120.9660.188616
2-66-90.7830.4570.9460.2994014
2-77-100.8110.4360.9630.1941515
2-88-110.8420.4070.9720.172616
2-99-120.7490.4820.9010.303593

q2,  cross-validated  correlation coefficient;  r2,  non-cross-validated  correlation coefficient;  SEE,  standard  estimated
error;  HL,  hologram  length;  N,  optimal  number  of  components.  Fragment  distinction:  A,  atom;  B,  bond;  C,
connections; H, hydrogen atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.

3.4. Validation of QSAR models 

The predictive abilities of the QSAR models were externally validated using the independent test set that was not

used for the model generation [59]. q2 and r2 parameters, obtained from internal validation, were used for confirm

the  stability  and  the  predictive  ability  of  the  models.  The  QSAR  models  for  the  whole  test  set  including

compounds10 gave the  and  values of 0.773 and 0.560 (CoMFA), 0.824 and 0.580 (CoMFA-RF), 0.874 and 0.606

(CoMSIA), and  0.854 and 0.658 (HQSAR) and high slope regression lines with k and k ´ values of 1.026 and 0.967

(CoMFA),  0.990 and 1.004 (CoMFA-RF), 1.012 and 0.983, and  0.976 and 1.018 (HQSAR, respectively.   and

values of 0.667 and 0.704 (CoMFA), 0.719 and 0.735 (CoMFA-RF), 0.755 and 0.823 (CoMSIA), and  0.766 and

0.794 (HQSAR), respectively were used to calculate the relationship between ,  and  that (r2-)/r2 and (r2-)/r2 values of

0.065 and 0.013 (CoMFA),  0.038 and 0.015 (CoMFA-RF),  0.086 and 0.014 (CoMSIA),  and  0.037 and 0.003

(HQSAR), respectively were obtained. 

The QSAR models yielded RMSE, MAE and CCC values of 0.244, 0.170, 0.948; 0.247, 0.095, 851 (CoMFA);

0.245, 0.165, 0.948; 0.217, 0.090, 0.861 (CoMFA-RF); 0.224, 0.148, 0.958; 0.183, 0.084, 0.892 (CoMSIA); 0.140,

0.079, 0.988; 0.197, 0.091, 0.882 (HQSAR) for Training and test set, respectively. 

From the values of the performance criteria parameters yielded by the QSARs in training and test data (Table 5), it is

evident that all of the models yielded considerably low RMSE and MAE values and high CCC values which show

that models built by training set could be used for the prediction of these chemotypes.  

The results of external validation parameters are listed in Table 5. These results confirm that the QSAR models

could be used to predict the biological activities of new compounds and their derivatives. 

Table 5

21

Rev
iew

 Vers
ion



Statistical Parameters of Validation Method for QSAR Models.
ParametersCoMFACoMFA-RFCoMSIAHQSAR

0.7730.8240.8740.854
0.6670.7190.7550.766
0.7040.7350.7230.794

(r2-)/r20.0650.0380.0860.037
(r2-)/r20.0130.0150.0140.003
k1.0260.9901.0120.976
k´0.9671.0040.9831.018

0.5600.5800.6060.658
0.6450.6070.6420.510
0.0850.0270.0360.148

RMSEtrain0.2440.2450.2240.140
RMSEtest0.2470.2170.1830.197
MAEtrain0.1700.1650.1480.079
MAEtest0.0950.0900.0840.091
RSStrain2.3832.3921.8130.584
RSStest2.4321.881.3411.560
CCCtrain0.9480.9480.9580.988
CCCtest0.8510.8610.8920.882

predicted  correlation  coefficient  for  the  test  set  of  compounds;  
:  correlation  coefficient  for  regression  through  the  origin  for  predicted  versus  observed  activities  (test  set);  
:  correlation  coefficient  for  regression  through  origin  for  observed  versus  predicted  activities  (test  set);  
: modified squared correlation coefficient (test set); RMSE: root mean squared error;  MAE: mean absolute error ;
RSS: residual sum of squares; CCC: concordance correlation coefficient.

The correlation plots between the predicted and experimental activities are shown in Fig. 5. Most of the compounds

were located on or near to the trend line in the QSAR models and these results confirm that these models had good

predictive ability for new compounds.
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Fig. 5. The plot of predicted pIC50versus experimental pIC50 values for training and test sets compounds by QSAR 
models.

The residual values of the QSAR models are shown in Fig. 6. The CoMSIA and HQSAR models showed smaller

residuals than the CoMFA and CoMFA-RF models and were the better models.
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Fig. 6. Residual plots between experimental and predicted values foe QSAR models.

3.5. Evaluation of the Y -randomization test and application Domain (AD) of model

The QSAR models were further validated by applying the Y-randomization test to assess the robustness of the

models and to avoid chance correlation [63, 64]. Thus, foe every original model, several random shuffles of the

dependent variable (biological activity) were performed and a new QSAR model was developed using the original

independent variable matrix and the results are shown in Table 6. The low q2 and  values (q2< 0.5 and < 0.6) show

that  the  good results  obtained

in the formulation of  the  final

models  were  not by chance.

                           Table 6 
                             q2 and  values 
after several Y- randomization 
tests.
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CoMFACoMSIA
Y-random
Iteration

q2q2

1-0.2040.364-0.3460.218
2-0.3160.432-0.2120.334
3-0.1820.325-0.1560.295
4-0.1730.317-0.1360.323
5-0.0810.347-0.1750.341
6-0.1120.311-0.1410.163
7-0.1080.321-0.7150.388
8-0.2370.375-0.2060.275
9-0.1950.336-0.1630.320
10-0.1000.326-0.0970.169
11-0.2430.361-0.2410.355
12-0.2550.374-0.1880.298
13-0.1880.324-0.1950.338
14-0.1780.305-0.1790.343
15-0.1920.343-0.2410.361
16-0.2710.367-0.2300.388
17-0.2340.353-0.2150.337
18-0.2470.362-0.2530.373
19-0.2110.327-0.2220.386
20-0.2530.361-0.1050.321

Non-Random0.6290.9010.7540.919
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For a new compound with no experimental data, a predicted value of QSAR models without an idea of reliability of

the  value  is  not  useful.  Therefore,  for  evaluating  new  compounds,  a  very  important  step  in  QSAR  model

development is the definition of the applicability domain of regression or classification models [65]. 

The Williams plot, the plot of the standardized residuals (δ) vs. leverage values (h i),  was used to illustrate the

prediction and express the applicability domain of the models for each chemical compound [66-68]. 

The standardized residuals (δ) value is calculated by Equation (10) [69:[

Where  are the observed and predicted values for i-th compound, respectively, n is the number of compounds and A

is the number of descriptors. Also, the leverage value (hi) is defined by Equation (11):

hi=(X)-1   (i=1,…, n)            Eq. (11(

where xi is the descriptor-row vector of the i-th compound,  is the transpose of xi, X is the descriptor matrix of the 

training set compounds and is the transpose of X.

The warning leverage value (h*), as a prediction tool, is expressed as:

where k is the number of model descriptors and n is the number of training compounds. 

The Williams plot illustrates the distribution of data and its restricting rang termed cutoff lines which all data should

be between ±3 units ( horizontal dotted line) for standardized residuals and the leverage value (h i) should be less

than warning leverage (hi< h*). The Williams plot for the training set is used to identify molecules with the greatest

structural influence (hi< h*) in developing the QSAR models. Molecules with h i> h* are evaluated to be unreliably

predicted by the models due to substantial extrapolation.

Cook's  distance is used to estimate the influence of  a  single observation to the model  [70],  and is  defined by

Equation (12):
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 Where  is the standard residual of the i-th compound, p is the number of descriptors, and  is the leverage value of

the i-th compound. The cutoff of the Cook's distance is defined as , and the compounds with Cook 's distance higher

than the cutoff value are marked as highly influential points of the model. 

In this work, for CoMFA and CoMSIA models, most of the compounds fall into their corresponding application

domain.  These  results  indicated  that  our  QSAR  models  had  achieved  a  reliable  activity  prediction  for  the

compounds.

As shown in the Williams plot of CoMFA model for data set (Fig. 7a), only one compound ( 16) of training set had

greater value than the warning leverage (h*) value of 0.3. This compound had low standard residual value and could

be considered as influential  in fitting the model performance but not necessarily outlier to be deleted from the

training set. The test compounds were within the applicability domain (AD) indicating that their predicted activity

values were reliable.  Also, at  the Cook's plot  of CoMFA model (Fig. 7b);  there was not any highly influential

compound for training and test  set. In addition, the histogram of the residuals distribution was confirmed with

histogram plot as shown in Fig. 7c.
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Fig. 7. Williams plot describing the applicability domain of the CoMFA model for the training and test sets (h* = 
0.30) (a); Cook’s distance plot (b) and Histogram of model CoMFA residuals (c).

Also, at the Williams plot of CoMSIA model for data set (Fig. 8a); there was not any outlier compound for training

and test set. Otherwise, according to the Cook's distances (cutoff=0.166) of the compounds in the data set, one

highly  influential  compound may slightly  distort  the  regression  (Fig.  8b),  also,  the  histogram of  the  residuals

distribution was confirmed with histogram plot as shown in Fig. 8cand prediction of CoMSIA model is reliable.
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Regression Standardized Residual
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Fig. 8. Williams plot describing the applicability domain of the CoMSIA model for the training and test sets (h* = 
0.60) (a), Cook’s distance plot (b) and Histogram of model CoMSIA residuals (c).

3.6. Interpretation of CoMFA and CoMSIA contour maps 

The QSAR contour maps were used as an informative tool to visualize the effects of the different fields on the target

compound 3D grid orientation of models. The CoMFA and CoMSIA results were graphically interpreted by field

contribution maps using the standard deviation (StDev) at each grid point and the coefficient from the PLS analysis

(StDev*Coefficients). 

The CoMFA contour maps of the steric and electrostatic fields for the best anti-Alzheimer agent (compound 36) are

shown  in  Fig.  9a,  9b.  The  field  steric  is  shown  by  favorable  groups  (80%  contribution)  in  green  color  and

unfavorable ones (20% contribution) in yellow where the introduction of bulky groups may enhance or diminish the

activity.
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(a)                                                                                     (b)

Fig. 9. CoMFAStDev*coeff. Contour plots with the combination of compound 36. (a) Steric contour maps: Green
contours indicate regions where bulky groups increase activity and yellow contours indicate regions where bulky
groups decrease activity.  (b)  Electrostatic contour maps:  Blue contours  indicate regions where positive charges
increase activity and red contours indicate regions where negative charges increase activity.

In the CoMFA steric maps, there was a green contour covering the pyrrolidine group at C-4 position of imidazole

ring. The bulky groups at this position of compound improved anti-Alzheimer activity and had the highest activity.

The compounds 21-35 and 37-40 with bulky substituents (e.g. , , ,  ,

Cl and Br) at this region exhibited more potency, while compounds 3, 13 and 17-18 due to the absence of this group

had  relatively  low activity.  Substituting  the  morpholine  and  benzyl  amine  at  6  position  of  pyrimidine  ring  in

compounds  10 and  12 decreased activity because these substituents were located at disfavored yellow contours.

Therefore, this position of pyrimidine ring should be occupied by the steric moderate and low crowed substituents. 

In CoMFA electrostatic contour maps (Fig. 9b), the blue region (80% contribution) are favorable for electropositive

groups and red regions (20% contribution) are favorable for electronegative groups. The blue contour on the 6

position of pyrimidine ring of compound  36 indicated the introduction of electropositive groups in this position

could improve the biological activity. Besides, a red contour in the C-4 position of imidazole ring showed that the

electronegative substituent was beneficial to activity (compounds 19<27<21<23<22<20<24<21). 

In CoMSIA model, the steric and electrostatic, hydrophobic, hydrogen binding (H-bond) donor and acceptor contour

maps of compound 36 are shown in Fig. 10. The CoMSIA steric and electrostatic contours were nearly similar to

that  of  CoMFA contours,  so the hydrophobic interaction and hydrogen bond fields were described here.  In the

hydrophobic contour map, the yellow region is favorable (80% contribution) for hydrophobic group while white

region (20% contribution) is favorable for the hydrophilic group.
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(a)                                                                     (b)

                                              (c)                                                                       (d)

                                                                                          (e)
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Fig. 10. CoMSIAStDev*Coeff contour plots with the combination of compound 36. (a) Steric contour maps: Green
contours indicate regions where bulky groups increase activity; yellow contours indicate regions where bulky groups
decrease activity; (b)Electrostatic contour maps:  Blue contours indicate regions where positive charges increase
activity; red contours indicate regions where negative charges increase activity. (c)  Hydrophobic contour maps:
yellow contours indicate regions where hydrophobic substituents enhance activity; white contours indicate regions
where  hydrophobic  groups  decrease  activity.  (d)  Hydrogen  bond donor  contour  maps:  Cyan contours  indicate
regions where H-bond donor groups increase  activity  and purple  contours  indicate  the  unfavorable regions for
hydrogen bond donor substituents. (e) H-bond acceptor contour maps: Magenta contours indicate regions where H-
bond acceptor substituents increase activity; red contours indicate the disfavor regions for H-bond acceptor groups.

A white region near C-2 and C-4 positions of imidazole ring showed that the introduction of hydrophilic groups into

these positions might be beneficial for inhibitory activity (Fig. 10c). The yellow contour in C-4 position of imidazole

ring indicated that hydrophobic groups such as aryl and heterocyclic in this region could be increased the activity of

compounds. The compounds  31,  35,  37-38 and  40 with hydrophobic substituent (e.g. , ,

)  at  this region  exhibited  more  potency,  while  compounds  8-16 due  to  the  absence  of  this

hydrophobic group, had relatively lower activity.

These results confirm that the yellow contour of hydrophobic map was in agreement with green contour of steric

map.

The CoMSIA H-bond donor and acceptor contour maps correlated with hydrogen bind interactions of ligand with

target. The cyan and purple contour maps of H-bond donor indicated favorable (80% contribution) and unfavorable

(20% contribution) interactions and the magenta and red contour maps indicated favorable (80% contribution) and

unfavorable (20% contribution) H-bond acceptor groups (Fig. 10d). However, no unfavorable purple contour was

observed. There were two cyan contours near to C-5 and C-6 positions of pyrimidine ring and C-4 position of

imidazole ring that  the H-bond donor might improve anti-Alzheimer activity (compounds  28-30).  Changing the

position of N atom in the pyrimidine ring and introducing substituents on this ring (compounds 13-14) had relatively

lower activity relative to compound 36.  

There was a magenta contour in N atom of pyrrolidine ring in C-4 position of imidazole ring which was favorable

for H-bond acceptor (compounds 31-33 and 37-40). However, the red contours over carbon positions of pyrrolidine

ring were unfavorable for H-bond acceptor interactions (Fig. 10e). 

3.7. Interpretation of HQSAR contribution map 
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HQSAR calculations are based  on the contributions of  molecular  fragments  to  the  biological  activity  for  each

molecule. Results of the HQSAR contribution maps can be graphically shown as a color-coded structure diagram

which the color of each atom reflects its contribution to the molecule 's overall activity. The red end of the spectrum

(red, red orange and orange) reflects negative contribution to the activity, while the green end (yellow, blue, green-

blue and green) represents positive effect and intermediate contributions are colored in white. The individual atomic

contributions of the most active anti-Alzheimer analogues (compound 36) were displayed in Fig. 11.

Fig. 11. The HQSAR contribution map of the most active compound (30). The colors in yellow, blue, green-blue or
green indicate positive contributions, while colors with red, red-orange or orange represent negative contributions
and intermediate contributions are colored in white.

The pyrimidine scaffold as  maximal common structural  fragment represented by green and yellow color codes

because it was common fragment to all molecules and contributed in the same way to all inhibitors. The amino

methyl derivatives in C-4 position of imidazole ring were highlighted in yellow color, indicating the importance of

these fragments to biological activity. C-2 position of imidazole ring was colored in green that positive contribution

to inhibitory activity. The atoms of thiourea moiety was colored in yellow and made a positive contribution to

increase activity. But, replacement of the thiourea group with a similar urea group was not tolerated and a decrease

in  potency  of  anti-Alzheimer  compounds  was  observed.  Finally,  the  structure-activity  relationship  and  binding

features obtained by present QSAR models and molecular docking analysis are summarized in Fig. 12.
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Fig. 12. Structure-activity relationship revealed by 3D- and 2D-QSARand docking studies.

3.8. Molecular Docking Studies

In this study, the MOE program was run to explore the possible binding modes of the anti-Alzheimer agents. To

confirm the validity of used docking parameters, the co-crystallized ligand E2020 was re-docked into the active site

of AChE enzyme. The re-docking result and the cognate ligand (green) were almost completely superimposed and

the RMSD value (0.86 A) guaranteed the reliability of the docking procedure (Fig. 13).
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Fig. 13. Re-docking result of the co-crystallized ligand E2020 (green) into the binding of AChE and the cognate
ligand (red) from the protein (PDB: 1eve). The catalytic site (CS), catalytic anionic subsite (CAS) and peripheral
anionic site (PAS) were shown in the receptor.

In order to gain functional and structural insight into the binding mode of the most potent (compound 36) and lest

potent (compound 16) inhibitors and AChE enzyme and also, to validate the results of QSAR contour maps, docking

studies were carried out using MOE software (Fig. 13a, 13b). 
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Fig. 13. (a) The 2D representation of the interaction between compound 36 (the most active compound) (b)The 2D
representation of the interaction between compound 16 (the least active compound) in the crystal structure of AChE
(PDB ID: 1eve) using LigX in MOE.

Analysis of docking results revealed a high docking score (-13.30 kcal/mol) for the most active compound  36 in

comparison to that of the least active compound 16 (-10.66 kcal/mol). The compound 16 bound with less numbering

of active site residues of enzyme and had less interaction with AChE compared to compound 36.

The compound 36 was well stabilized in the active site of AChE and had significant interactions with the key amino

acid residues of CAS and PAS (Fig. 14).

Fig. 14. 3D representation of docked ligand 36 into binding site of AChE.

Regarding the docking studies, three types of interactions, hydrophobic π-π interaction, π-cation interaction and

hydrophobic were involved in the attachment of compound 36 to active site of receptor. With few exceptions, the

binding mode of best-scored ligands with AChE by LigX of MOE suggested that the compounds were oriented

towards  the  gorge  of  the  enzyme.  The  ethyl  thiourea  moiety  was  caged  into  the  PAS,  while  pyrimidine  and

substituted imidazole rings were embedded into CAS. In the PAS region, the ethyl thiourea moiety was well fitted in

the hydrophobic pocket composed by Tyr 121, Phe 288, Trp 279, and Ike 287. The pyrimidine ring was placed in the

mid gorge of AChE active site in parallel with phenyl rings of Tyr 334 and Phe 331 and made two π-π stacking

interactions with these residues. In addition to, imidazole ring could form another π-π stacking interaction with Phe

330 in CAS and the quaternary nitrogen of the pyrrolidine ring on imidazole moiety was caged into catalytic site

(CS) at the bottom of gorge through a π-cation interaction with six member ring of Trp 84. Therefore, the higher
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potency of the compounds with substituted imidazole moiety could be due to the more favorable interactions of

compounds with target. These docking results validated the contour maps of QSAR models.

3.9. Molecular Dynamic Simulation

The molecular dynamic simulation has been done to elucidate behavior of AChE enzyme upon binding to ligand and

stability and interaction of ligand-protein throughout simulation. This ligand-protein complex was simulated from 0

to 10,000 fs with respect to temperature, potential energy, kinetic energy and total energy, respectively (Fig. 15). The

compound 36 formed a stable complex with AChE enzyme when simulated up to or beyond 1 ns with respect to

temperature (TEMP) (at  or above 298.3145 K), potential  energy (PE) (at  or  above 1808.372 kcal/mol),  kinetic

energy (KE) (at or above 3820.903 kcal/mol) and total energy (TOT-ENG) (at or above 5629.275). 

Fig. 15. Graph representing change in temperature,  potential  energy, kinetic energy, and total energy of AChE-
ligand complex as a function of molecular dynamic simulation time.

The  overall  simulation  convergence  and  ligand-protein  equilibration  were  determined  with  root-mean-square

deviation (RMSD) of backbone atoms (Cα, C, and N) that is a measure of the stability of the structures. The RMSD

vs. Time is shown in Fig. 16.
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Fig. 16. RMSD between AChE with ligand.

This plot indicated that The RMSD of complex with average 2.08 Å was stable after 0.2 ns of simulation. Also, this

conformation of compound 36 with AChE showed a new hydrogen bonding interaction with amino acid residue of

Asp 72.The simulation results showed that the final structure and initial docked structure were in the same binding

pocket and ligand-protein conformation was stable. The 2D representation of the interaction between compound 36

after 10 ns simulation has been depicted in Fig. 17.
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Fig. 17. A diagrammatic representation of interactions between compound 36 and AChE at the active site after 10ns
molecular dynamic simulations.

4. Conclusion

The 2D- (HQSAR) and 3D-QSAR (CoMFA, CoMFA-RF and CoMSIA) methods were employed to study a series of

pyrimidinylthiourea derivatives as anti-Alzheimer agents. The CoMFA, CoMFA-RF, CoMSIA and HQSAR models

provided statistically significant results for internal and external validations including q2 Values of 0.629, 0.775,

0.754, and 0.622,  values of 0.910, 0.910, 0.919, and 0.949, values of 0.773, 0.824, 0.874, and 0.854 and  values of

0.560, 0.580, 0.606, and 0.658, respectively.  The CoMFA andCoMSIAcontour maps and the HQSAR fragment

contribution  map  were  explained  structure-activity  relationship  of  this  series  of  anti-Alzheimer  agents.  Also,
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molecular docking and molecular dynamic simulations studies were carried out to confirm the rationality of the

derived models. The pyrimidine group as scaffold and the bulk groups in the heterocyclic moiety as a hydrophobic

part were key factors to improve inhibitory activity of AChE. These results showed good predictive models for the

rational design of novel acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.

Abbreviations:  AChE,  Acetylcholinesterase;  AD,  Alzheimer's  disease;  AChT,  Acetylcholinetransferase;  AChE,

Acetylcholinesterase;  CAS,  catalytic  active  site;  PAS,   peripheral  anionic  site;  QSAR,  Quantitative  structure-

activity  relationship;  3D-QSAR,  Three-dimensional  QSAR;  CoMFA,  Comparative  molecular  field  analysis;

CoMFA-RF,  CoMFA region  focusing;  CoMSIA,  Comparative  molecular  similarity  index  analysis;  HQSAR,

Hologram QSAR;MD, Molecular dynamic; AD, Aplication Domain.
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