
University of Belgrade
Faculty of Organizational Sciences

2020

September 07 - 09, 2020

online

SERBIA

BUSINESS
AND
ARTIFICIAL INTELLIGENCE

XVII INTERNATIONAL SYMPOSIUM



 

 

SYMORG 2020 
 

Belgrade, September 7-9, 2020 
(Online) 

 
 

 
 

XVII INTERNATIONAL SYMPOSIUM 

 

BUSINESS AND ARTIFICIAL INTELLIGENCE 

 

SYMPOSIUM PROCEEDINGS 

 

 
Editors: 

Dušan Starčević, Ph.D. 
Sanja Marinković, Ph.D. 

 
 
 
 

Belgrade, 2020 
 
 



 

 
Publisher 

University of Belgrade – Faculty of Organizational Sciences 
Jove Ilića 154, Belgrade, Serbia 

www.fon.bg.ac.rs 
 

 
Dean of Faculty of Organizational Sciences 

Milija Suknović, Ph.D. 
 
 
 

Designed by 
Marina Dobrota, Ph.D., Minja Marinović 

 
 
 

Printing 
SAJNOS DOO NOVI SAD. 

Momčila Tapavice 2, Novi Sad, SERBIA 
 

Year 
2020 

 
 

Conference Organizer 
University of Belgrade - Faculty of Organizational Sciences, Serbia 

 

______________________________________________________________________________________________ 
 
CIP - Каталогизација у публикацији 
Народна библиотека Србије, Београд 
 
005:004(082)(0.034.2) 
005.6(082)(0.034.2) 
005.8(082)(0.034.2) 
658:004(082)(0.034.2) 
004.738.5:658(082)(0.034.2) 
 
INTERNATIONAL symposium business and artificial intelligence (17 ; 2020 ; Beograd) 
    Symposium proceedings [Elektronski izvor] / XVII International Symposium Business and Artificial Intelligence , 
SYMORG Belgrade, September 7-9, 2020 ; editors Dušan Starčević, Sanja Marinković ; [conference organizer Faculty 
of organizational sciences]. - Belgrade : Faculty of organizational sciences, 2020 (Novi Sad : Sajnos). - 1 elektronski 
optički disk (CD-ROM) : tekst ; 12 cm 
 
Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovnog ekrana. - Tiraž 100. - Bibliografija uz svaki rad. 
 
ISBN 978-86-7680-385-9 
 
а) Бизнис -- Информациона технологија -- Зборници  
б) Електронско пословање -- Зборници  
в) Пројектни менаџмент -- Зборници  
г) Менаџмент људских ресурса -- Зборници  
д) Предузећа -- Пословање -- Информациона технологија -- Зборници 
 
COBISS.SR-ID 22734345 
 
______________________________________________________________________________________________ 

http://www.fon.bg.ac.rs/


A NOVEL APPROACH FOR LEARNING 
TEMPORAL POINT PROCESS 

 

Dimitrije Milenković1, Andrija Petrović*2, Uglješa Bugarić2 
1University of Belgrade Faculty of Organizational Sciences 
2 University of Belgrade Faculty of Mechanical Engineering  
*Corresponding author, e-mail: aapetrovic@mas.bg.ac.rs 

 
Abstract: In this paper, we presented a novel methodology for learning temporal point process based on the 
implementation of one-dimensional numerical integration techniques. The implementation of numerical 
methodology is used for linearizing negative maximum likelihood (neML) function to enable backpropagation 
of neML derivative. The presented approach is tested on highway toll dataset. Moreover, four different well-
known point process baseline models were compared: first-order and second-order polynomial Poisson 
inhomogeneous process and Hawkes with exponential and Gaussian kernel. The results showed that different 
numerical integration techniques influence the quality of the obtained models. 
 
Keywords: traffic prediction, temporal point process, Hawkes process, Poisson process, numerical 
integration 
 

1. INTRODUCTION 
Nowadays, one of the most popular research areas is focused on modelling event sequence. Event sequence 
has become extremely popular in a variety applications such as traffic (Ryu & Steven, 1998), epidemiology 
(Zahrieh, 2017), network activities (Liu, 2018), bioinformatics (Farajtabar et al., 2017), e-commerce etc. The 
event data carry important information about timestamps when an event occurred. Additionally, event data can 
also provide information concerning event attribute such as class of event, type, participator, etc. This type of 
point process is known as a marked point process. Compared to the time-series event occurrences are treated 
as random variables generated in an asynchronous manner, which makes them fundamentally different from 
time series where equal and fixed time intervals are considered. This property makes them useful in a wide 
variety of applications where discretizing events to fixed interval results in bad prediction performances and 
high computational cost. 
 
Generally, there are two types of point process models: temporal (univariate) point process and spatial-
temporal (multivariate) point process. In the case of the univariate point process, the objective is to model 
temporally correlated event occurrence, whereas in spatial-temporal point process the event occurrences are 
correlated in space and time. Multivariate point process is generally mostly used in the analysis of protein 
patterns (Jacobsen et al., 2007) and financial market predictions (Bowsher, 2007). The general formulation of 
the point process makes them available to model event occurrences continuous or discontinuous (with jumps). 
Additionally, the point process can be further generalized by stochastic differential equations to stochastic point 
process.  
 
The main idea behind different types of point process models is hidden in modelling conditional intensity 
function. Conditional intensity function can be interpreted heuristically as expected number of events that are 
going to occur in infinitesimally small timestamp (dt). This intensity function can be modelled as constant 
(homogeneous process) or function of time (inhomogeneous process). Learning intensity function (Mei & 
Eisner, 2017) from given dataset present one of the most popular subjects of research. A point process is 
extremely useful in modelling traffic congestion and traffic event occurrences (Jia, Jiang, Liu, Cui, & Shi, 2018) 
(arrival of vehicles, pedestrian movement, etc.). Simulating highway traffic and predicting highway congestion 
(Nguyen, Krishnakumari, Calvert, Vu, & Van Lint, 2019) is one of the main problems connected with point 
process modelling. In the case of highway congestion, the event occurrences can be described as the number 
of vehicles that pass highway toll.  
 
In this paper, we presented the data-driven approach for learning different types of conditional intensity 
functions used in temporal point process models. Our approach is based on implementing numerical 
integration methods to linearize negative maximum likelihood (neML) and backpropagate derivative of neML. 
Based on the dataset that consists of exact timestamps when vehicle passes the highway toll we implemented 
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provided methodology and showed that it can be successfully used for any type of conditional intensity 
function. Furthermore, we compared four different baseline models based on neML scores: first-order and 
second-order polynomial Poisson inhomogeneous process, Hawkes with exponential and Gaussian kernel.  

2. RELATED WORK 
We structure the discussion of related work onto the two broad previously mentioned categories: intensity 
approaches and intensity-free approaches. The intensity approaches present the methods where the point 
process is modelled by different functional forms of conditional intensity functions (Rasmussen, 2011). In the 
case of an intensity-free methods point process is modelled with some type of unsupervised machine learning 
algorithms. 
 
Intensity approaches present the oldest approaches in modelling point process. They rely on functional form 
that completely depends on the form of conditional intensity function. The poisson process presents the 
simplest point process where conditional intensity function has constant value (Last & Penrose, 2017). The 
more complicated variant of this process is observed when conditional intensity function is modelled as a 
product of kernels (Kirchner, 2017). Recent research proposed different variants of modelling intensity function 
by deep neural networks (Mei & Eisner, 2017; Xiao, Yan, Yang, Zha, & Chu, 2017). Xiao et al. presented an 
interesting approach of modelling intensity function by a recurrent neural network. However, in this paper 
authors assumed that integral in negative maximum likelihood is correlated only with the current timestamp. 
Even though, this strong assumption cannot be justified by theoretical properties of point process models the 
obtained results were significantly better compared to well-known baseline models. In the paper neural 
ordinary differential equations (Chen, Rubanova, Bettencourt, & Duvenaud, 2018; Zhang et al., 2019) authors 
presented an interesting approach for modelling models dynamic by deep neural networks. Moreover, the 
authors presented an interesting example where point process is modelled by differential equation and solved 
using Euler method. Besides, the authors implemented the backpropagation technique for reducing memory 
complexity during the training phase.  
 
Intensity-free approaches are based on modelling point process by unsupervised learning techniques 
(Ghahramani, 2003). Compared to intensity approaches this methods can obtain better results, however, they 
are more prone to overfitting due to small datasets or large expressive powers of the model. Variational 
autoencoders (VAE) present unsupervised machine learning algorithms that are mostly used for point process 
modelling. The Action Point Process variational autoencoder (APP-VAE) presents a variational auto-encoder 
that can capture the distribution over the times and categories of action sequences (Mehrasa et al., 2019). The 
APP-VAE obtained state-of-the-art results on the MultiTHUMOS and Breakfast datasets. A declustering based 
hidden variable model that leads to an efficient inference procedure via a variational autoencoder for solving 
multivariate highly correlated point process is presented in (Yuan et al., 2020). Besides of VAE, generative 
adversarial networks (GANs) have recently been proposed as a method for describing event occurrences (Xiao 
et al., 2017). The authors proposed an intensity-free approach for point processes modelling that transforms 
nuisance processes to a target one by using Wasserstein GANs. Experiments on various synthetic and real-
world data substantiate the superiority of the proposed point process model over conventional ones. 
 
The model presented in this paper belongs to the class of intensity approaches. Compared to the standard 
intensity approaches our model has more expressive power and is less prone to overfitting compared to 
intensity-free approaches. 

3. POINT PROCESS 
In the term point process, the word point is used as a representation of the event on the timeline. Furthermore, 
it is accepted by the authors to think about the temporal point pattern as an ordered array of times when events 
occurred. Mutual to such events is that there is no information about how many there will be and when they 
will happen. Usually, there is some more complex mechanism behind them that explains their nature. To 
explain this nature and predict future events, it's convenient to use a tool for stochastic process modeling point 
patterns - a temporal point process. 
 
To describe phenomena over time, the evolutionary character is essential. Evolutionarity means that what is 
happening now only depends on what happened in the past, so the future events don’t have any impact on 
the current state. Accepting evolutionarity, the challenge to describe and predict the temporal point pattern 
comes down to finding a stochastic model for the time of the next event given the times of previous events. 
This knowledge of the times of previous events up to but not including current time t is given by history 

nt
H : 

( )0 1 2 1, , ,..., ,
nt n nH t t t t t−=
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One of the possible approaches to define a process is by finding the distribution of time length between 
subsequent events. This time is also known as interevent time. Let 

1( | )
nn tf t H+

  be the conditional density 

function of the time of the next event 
1nt +

 given the history of previous events  
nt

H . Since the density functions  

1
( | )

nn tf t H
−

specify the distributions of all interevent times, one by one, and according to the evolutionary 
character of the process, distribution of all events is given by the joint density (respecting the rule that the joint 
density for a bivariate random variable can be represented as ( , ) ( ) ( | )p x y p x p y x=  ): 

10 1 2 1( , , ,..., , ) ( | )
nn n n t

n

f t t t t t f t H
−− =

 
Another popular approach involves a conditional intensity function as a function that defines expectation that 
an event will occur in the infinitesimal interval around t given the history H at times before time t.   
 

The conditional intensity ( )t  is defined to be the expected rate at which events will tend to occur around 

time t given the 
nt

H : 

( )
( )

0

( , ) |
lim

nt

t

E N t t t H
t

t


 →

+ 
=

  
where N denotes the number of events occurred in interval (t+Δt). Previously mentioned papers mostly agreed 
that the conditional intensity function is a more convenient and intuitive way of specifying how the present 
depends on the past in an evolutionary point process.  
 

Considering the conditional density 
1( | )

nn tf t H+
 and its corresponding cumulative distribution function  

1( | )
nn tF t H+

 for any 
nt t  , the conditional intensity function is defined by Liu (2018): 

( )
1

1

1

( | )

1 ( | )

n

n

n t

n

n t

f t H
t

F t H


+

+

+

=
−

 
In other words, the conditional intensity function specifies the mean number of events in a region conditional 
on the past. It’s assumed that there are no points coincide so that there is either zero or one point in an 
infinitesimal interval. 
 
Proposition 1. A conditional intensity function ( )* t 1 uniquely defines a point process if it satisfies the 

following conditions for any point pattern ( )0 1 2 1, , ,..., ,n nt t t t t−  and any nt t  :  

1. ( )* t  is non-negative and integrable on any interval starting at 
nt  , and  

2. ( ) inf  for inf

n

t

t

s ds t → →  (Rasmussen, 2011) 

 
Different functional forms have been found helpful in concrete examples of point process modelling. In this 
paper, we aim to present a novel approach for the incorporation of well-known forms into learning models that 
describe the temporal point patterns. Four different functional forms are considered: first and second-order 
polynomial Poisson inhomogeneous processes, Hawkes with exponential and Gaussian kernels. 
 
The form of the homogeneous Poisson process describes a completely random process independent of 
history. Such a conditional intensity function is equal to conditional density function: 

( )t b const = =
 

The common way to introduce a dependency to a model is to turn into a polynomial form. First and second-
order forms are presented as: 

( )t a b t = + 
 

 
1 Notation * is used for stating that the function   depends on the history 

nt
H  
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and equivalently 

( ) 2t a b t c t = +  + 
 

where 0,  0 and c 0a b    are learnable coefficients. 
 
On the other hand, Hawkes suggests the one possible solution for the clustered point process (Hawkes, 1971). 
A significant number of real phenomena have clustered nature. The process of a car arriving on the highway 
and the process of a customer arriving at a store, both have such a nature. The clustered nature explains that 
observation of a few points in the recent past increases the chance that there will be new points soon. In other 
words, the probability of seeing a new event increases due to previous events. 

( ) ( )( )exp
i

i

t t

t t t  


= +  − −
 

where , 0   . 
 
The Hawkes form emphasizes that each time a new point arrives in this process, the conditional intensity 
grows by   and then decreases exponentially back towards  . Hawkes process gives a felicitous form for 
conditional intensity function that can be used as a foundation for adapting to a specific problem. The standard 
form is given by: 

( ) ( )
i

i

t t

t t t   


= +  −
 

where    represents the kernel function that can be replaced to better suit specific problems. The base form 
of Hawkes uses an exponential kernel. We are considering another form where the kernel is represented as a 
sum of Gaussian basis functions (Zha & EDU): 

( ) ( )
2

1
2

2
2 exp

2
it t

t
t    



−



 −
= +      

 


 

3.1. Likelihood function – learning point process 

For the observed point pattern ( )0 1 2 1, , ,..., ,n nt t t t t−  on  0,T  for some given 0T  , a likelihood function is 
given by: 

( ) ( )( )* *

1

n

i

i

L t exp T
=

=  −
 

where ( )* T  stands for integrated conditional intensity function, given by: 

( ) ( )* *

0

T

T s ds = 
 

The *  function should be selected concerning Proposition 1 and the integral is going to be solvable.  
 
In order to fit the parameters of the point process to the observed event data, it is necessary to define a loss 
function. The loss function can be defined as a negative log-likelihood: 

( ) ( )* *

1 0

log log

tN

i

i

L t t dt 
=

= − 
 

( ) ( )* *

1 0

log log

tN

i

i

loss L t t dt 
=

= − = − + 
 

This provides the right and powerful instrument to be able to optimize the parameters of the defined function 
*  intending to maximize negative loss.  
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Since the function *  can take any functional form, it’s expected that many of them will not have an analytic 
solution of the integral. Although integration would be possible, it is often not feasible due to a computational 
limitation. For the Hawkes form of the conditional intensity function, given the previous equation, loss have the 
following form: 

( ) ( ) ( ) ( )* * *

1 10 0

log log log exp
i

t tN N

i i i

i i t t

loss L t t dt t t t t dt    
= = 

 
= − = − + = − −  +  − 

 
   

 

In the example, the ( )* t  has an analytical solution, but it quickly tends to fall into the trap of overflowing the 
memory space of float numbers. Given the behavior of the exponential function and the constraints of float 
numbers in Python, for each 92t  , ( )* t will tend to infinity. 
 
In this paper, we offer an alternative solution to avoid the problem explained, whether integration is not possible 
due to a non-integrable function or due to an overflow problem. We introduce the utilization of a numerical 
approximation of a one-dimensional integration in a previously defined loss function. There are several widely 
accepted approximations of solutions of a one-dimensional integral. 
 
In this paper, we are going to present the result of using a Trapezoid and Simpson’s rule, Euler method, and 
Gaussian quadrature rules based on interpolating functions. The trapezoidal rule is a technique for 
approximating the definite one-dimensional integral. It works by approximating the region under the graph of 
the function as a trapezoid and calculating its area. Applied to conditional intensity function, it takes the 
following form: 

( ) ( )
( ) ( )2

1

1 2

2 1
2

t

t

f t f t
t dt t t

+
 − 

 
Euler's Method is another technique, which uses the idea of local linearity or linear approximation, where the 
small tangent lines over a short distance are used to approximate the solution to an initial-value problem. 
Simpson’s rule is the approximation for n+1 values bounding n equally spaced subdivisions. Gaussian 
quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of 
function values at specified points within the domain of integration, named after a mathematician Carl Friedrich 
Gauss. 

4. EXPERIMENTAL SETUP 
The presented approach was successfully tested on highway toll dataset and four different well known point 
process models were compared. The sequence of cars arriving at the ramp toll on the E 75 highway was taken 
as a concrete example of interest. Highway European route E 75 is part of the International E-road network, 
which is a series of main roads in Europe. The E 75 starts at the town of Vardø in Norway, goes through seven 
countries and ends at town Sitia in Greece, after about 4,380 kilometres. The observed part connects two large 
Serbian cities, Belgrade and Niš. More precisely, we decided that the goal of the modelling was the process 
of arrivals in Niš from the direction of Belgrade on the busiest ramp toll, marked number 3. The average time 
between two passes in one day is about 20 seconds. Figures 1 and 2 show that there is a correlation between 
the number of cars and hours of the day, but no significant correlation with a minute of hours. 
 

 
Figure 1: Number of cars that crossed the toll by hour 

 
Figure 2: Number of cars that crossed the toll by minute 

 
The implementation of numerical methodology is used for linearizing the neML function to enable 
backpropagation of neML derivatives. We have trained four different forms of the conditional intensity function 

331



with five different numerical approximations of the integral part and an analytical solution where possible. In 
total, we present the results of 23 models. All models were trained in 50 epochs and with a constant learning 
rate of 0.001. As an optimization method, Adam stochastic optimization was used. Adam is an algorithm for 
first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-
order moments. All defined models are implemented in Pytorch (Paszke et al., 2019), an optimized tensor 
library for deep learning using GPUs and CPUs implemented in Python. 
 
The obtained results are presented in Table 1. The best results are obtained using the Hawkes baseline with 
the sum of the Gaussians kernel. We hereby confirm that the process of the car arriving at the ramp toll is most 
likely a clustered point process, so Hawkes' models proved to be significantly better. Using the sum of 
Gaussians kernels, the dependence on time is emphasized in a sophisticated way, so this leads to the best 
results. On the other hand, polynomial forms let down, since they don’t hold the information about any clustered 
pattern. In terms of execution time, polynomial models take less time than Hawkes models due to their 
derivation complexity and the number of parameters being learned. 
 
However, with all models used, we have shown that the functions can be optimized following the given goal. 
 
Table 1. Results  

Model name Integration scheme Loss 
Poisson Polynomial Second Order Euler 1.03E+13 
Poisson Polynomial Second Order Implicit Euler 1.03E+13 
Poisson Polynomial Second Order Trapezoid 9.55E+12 
Poisson Polynomial Second Order Simpsons 8.77E+12 
Poisson Polynomial Second Order Gaussian_Q 7.99E+12 
Poisson Polynomial Second Order Analytical 8.77E+12 

Poisson Polynomial First Order Euler 2.18E+08 
Poisson Polynomial First Order Implicit Euler 2.18E+08 
Poisson Polynomial First Order Trapezoid 1.87E+08 
Poisson Polynomial First Order Simpsons 1.55E+08 
Poisson Polynomial First Order Gaussian_Q 1.24E+08 
Poisson Polynomial First Order Analytical 1.55E+08 

Hawkes Euler 57141.27 
Hawkes Implicit Euler 58971.43 
Hawkes Trapezoid 55488.9 
Hawkes Simpsons 52010.85 
Hawkes Gaussian_Q 48537.86 
Hawkes Analytical 50361.51 

Hawkes Sum Gaussians Euler 27313.95 
HawkesSumGaussians Implicit Euler 29099.78 
HawkesSumGaussians Trapezoid 26773.55 
HawkesSumGaussians Simpsons 24525.94 
HawkesSumGaussians Gaussian_Q 22345.78 

5. CONCLUSION 
In this paper, we presented a novel methodology for learning temporal point process based on the 
implementation of one-dimensional numerical integration techniques. The likelihood function of intensity point 
process has integral of conditional intensity function given in the limits of data observation. Bearing in mind 
that conditional intensity function can take any kind of mathematical form, in many cases this integral is 
analytically intractable. Due to this, in this paper, we presented a possibility to linearize integral with standard 
numerical techniques and to backpropagate derivative through it. The presented approach was successfully 
tested on highway toll dataset and four different well known point process models were compared. In addition, 
we presented that different numerical techniques for integration can be successfully implemented in automatic 
differentiation package such as Pytorch. Further studies should address using deep neural networks (feed-
forward and recurrent networks) as a conditional intensity function to better capture dependencies between 
event occurrences. 
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