Structure Analysis of Unsaturated Polymyxin E Components Based on High Performance Liquid Chromatography - Quadrupole/ Time of Flight Tandem Mass Spectrometry and Photochemical Reaction

Hanzhi Zhang ${ }^{1,2}$, Zhenhua Tian ${ }^{1}$, Hao Liu ${ }^{2}$
${ }^{1}$ Abiochem Biotechnology Co., Ltd, Shanghai 200003, China
${ }^{2}$ Department of Antibiotics and Microorganisms, Shanghai Institute for Food and Drug Control, Shanghai 201203, China

Corresponding Author

Hanzhi Zhang, Abiochem Biotechnology Co., Ltd, Shanghai, 1299 Ziyue Road, Minhang District, Shanghai 200003, China. E-mail: zhanghanzhi@abiochem.com, zzzw-123@163.com, Tel: +86 021-61453909, Fax: +86 021-61453909.

Hanzhi Zhang, ORCID id: 0000-0003-3672-7503, Email: zhanghanzhi@abiochem.com Hao Liu: ORCID id: 0000-0001-6235-0514, Email: liuhao1968@hotmail.com

[^0]fatty acyl (FA) group with lower contents is hardly to determine the structure without chromatographic preparations and NMR.

Introduction: The peptide sequences of PME components has been carried out based on high performance liquid chromatography-quadrupole / time-of-flight mass spectrometry (HPLC-Q/TOF-MS). However, the components with double bond on the FA, such as $2^{\prime}, 3^{\prime}$-dehydro PME1, were difficult to be determined or easily misjudged by MS/MS. The transformation of such unsaturated components to be epoxidized components or di-hydroxylated components can promote the acquisition of more fragmentation ions in the MS/MS, so as to assist in judging the position of double bonds on FA.

Methods: In this paper, the PME mixtures were dissolved in an equal proportion of 20\% ACN aqueous solution and 2-acetylpyridine. The above PME solution was transferred to a quartz cuvette and irradiated with the ultraviolet lamp at 254 nm for 8 h . The dehydro PME components were converted to be epoxy PMEs and dihydroxy PMEs. A fragmentation pathway of epoxidized components or di-hydroxylated components based on Q/TOF-MS/MS was proposed for the first time.

Results: According to the characteristic ions of epoxidized components and di-hydroxylated components, 2', 3'-epoxy PME1/E2 and 2', 3'-dihydroxy PME1/E2 were confirmed. It can be inferred that the double bond is located at the $2^{\prime}, 3^{\prime}$-position of FA.

Conclusion: The structure of unsaturated PME component with double bond on the FA is elucidated by HPLC-Q/TOF-MS combined with photochemical reaction. This strategy is applicable to other lipopeptides containing unsaturated FA chain.

Keywords: 2', 3'-dehydro PME; 2', 3'-epoxy PME; 2', 3'-dihydroxy PME; HPLC-Q/TOF-MS; Photochemical reaction

1. INTRODUCTION

Antibiotic resistance has become a significant threat to human health across the world [1]. Currently, the polymyxins like polymyxin E (PME, also known as Colistin) are reused in the clinical treatment and viewed as the last resort for the available therapeutic option against multidrug resistant Gram-negative bacterial infections [2-3]. Furthermore, some new polymyxin analogues were designed and showed good antibacterial effect [4-5]. However, polymyxin E is a mixture of cyclic lipodecapeptides with similar and relatively complex structures. It is necessary to be aware of the structures of each component, especially the unknown one [6-9]. The general structures of polymyxin E components are composed of a heptapeptide ring and a side-chain consisting of a tripeptide with a fatty acyl (FA) residue on the N-terminus. The structures of main components like PME1 and PME2 (shown in Fig. 1) were clearly, they differ with each other on the FA as the former owns a 6'-methyloctanoic acid (6 '-MOA, R_{1}) and the latter with a 6^{\prime} 'methylheptanoic acid (6'-MPA, R_{2}). The amino acid at position 7 of PME1 and PME2 is leucine (Leu), which is generally changed to be isoleucine (Ile) to form the PME1-I and PME2-I. This substitution of amino acid (Leu to Ile) is common in other components to judge the isomers of the known compounds.

The differences of the components in amino acid or FA (branched or straight chain) make their structural elucidation more complicated. Many attempts have been made to analyze and characterize the components in commercially available PME complex. European Pharmacopoeia (Ph. Eur.) 10.0 adopts the HPLC-UV method developed by Orwa et al. based on the nonvolatile liquid phase contained sodium sulphate solution and acetonitrile to analyze the components and related substances in PME [10]. Classical amino acid and FA analysis combined with partial hydrolysis or enzymatic hydrolysis and Edman degradation after purification of the main component were able to elucidate the peptide sequences [11-13]. In further, the
on-line HPLC-fast atom bombardment (FAB) and electrospray ionization (ESI) mass spectrometer (MS) was available to characterize the structures of PMEs [6-8, 14]. The nuclear magnetic resonance (NMR) was also used to identify the structures of PME, where the FA and the isomers of amino acids cannot be confirmed by MS [7].

In our previous studies, HPLC-Q/TOF-MS/MS is used as a powerful tool for structural elucidation of components in polymyxin B and PME [9, 15-16]. A vinyl polymyxin B1 named 2', 3'-dehydro PMB1 was first characterized by chromatographic purification, high resolution MS and NMR [16]. The similar component with unsaturated FA was also found in polymyxin E to be 2', 3'-dehydro PME1 (shown in Fig. 1, the FA is R_{3}) and is also controlled in the monograph of Ph . Eur. 10.0. Besides the dehydro PMB1 and PME1, other unsaturated components like dehydro PMB2 and PME2 were also found. But those components with lower contents $(<0.1 \%)$ are hard to purify and the structures were easily to be determined wrongly without NMR [9, 15]. Xia et al developed a series of Paterno-Büchi (PB) reactions with acetone to judge the position of double bond in lipids [17-18]. It has provided a resolution to elucidate the unsaturated polymyxins by photochemical reaction without chromatographic preparations. Although the oxetane products of unsaturated PME1 reacted with acetone were detected in the MS, the ring opening ions due to the reverse reaction in the MS/MS were not found. The double bond of unsaturated PME1 was misjudged to be at position 7^{\prime} and 8^{\prime} based on the fragmentation ions contained oxetane groups [15].

In this study, the double bond positions of unsaturated PME1 and PME2 were elucidated by photochemical reaction combined with HPLC-Q/TOF-MS/MS. The epoxidized and di-hydroxylated products of unsaturated PME1 and PME2 (shown in Fig. 1, the FA is R_{4}), which were named as 2^{\prime} ', 3'-epoxy PME1/E2, 2', 3'-dihydroxy PME1/E2, were easily generated by UV irradiation at 254 nm . The characteristic ions
of epoxidized and di-hydroxylated products were analyzed by MS/MS, which proved that the double bond was located at the $2^{\prime}, 3^{\prime}$ position of FA chain.

2. MATERIALS AND METHODS

2.1. Chemicals and Reagents

Polymyxin E sulphate for injection (batch No. 190501) was provided by Shanghai SPH New Asia Pharmaceutical co., LTD. HPLC grade acetonitrile was bought from Merck co., LTD. HPLC grade trifluoroacetic acid (TFA), formic acid, 2 -acetylpyridine and acetone were purchased from Sigma reagent co., LTD. Purified water by Milli Q plus purification system from Millipore (Bradford, MA) was used during the experimental studies.

2.2. Instrumentation

HPLC-Q/TOF-MS/MS analysis was carried out on an Agilent 1260 HPLC and a 6550 Q/TOF mass spectrometer (Agilent technologies, CA, USA) equipped with a DualJet ESI source. Agilent Masshunter workstation was used to control the instrument and obtain the data. The ultraviolet analyzer (Shanghai Jingke co., LTD, Shanghai, China) was applied for photochemical reaction.

2.3. The photochemical reaction

The PME for injection were dissolved with $20 \% \mathrm{ACN}$ aqueous solution to produce a final concentration of about $2 \mathrm{mg} \mathrm{mL}^{-1}$. Besides, about 3.2 mg of PME was dissolved in an equal proportion of $20 \% \mathrm{ACN}$ aqueous solution and acetone or 2 -acetylpyridine to be $2 \mathrm{mg} \mathrm{mL}^{-1}$. All of the above PME solutions were transferred to a quartz cuvette and irradiated with the ultraviolet lamp at 254 nm for 8 h . Finally, the photochemical reaction solutions were filtered through a $0.45 \mu \mathrm{~m}$ (Jinteng, Tianjin, China) nylon membrane before HPLC-Q/TOF-MS analysis.

2.4. HPLC-Q/TOF-MS Method

Structural characterization of PMEs and the photochemical products were carried out on the Agilent 1260 HPLC-6550 Q/TOF-MS with a DualJet ESI source based on an
established method [15]. In brief, the Diamonsil Plus C_{18} column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250$ mm) was kept at $35^{\circ} \mathrm{C}$. A volatile mixture mobile phase containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{TFA}$ $\operatorname{ACN}(95: 5, v: v$, mobile phase A) and 0.1% formic acid- ACN (mobile phase B), the ratio of mobile phase B was $21 \%(v: v)$, was used for separation. The flow rate was operated at $1 \mathrm{~mL} \mathrm{~min}-1$ and a third of the flow was split into the MS. The injection volume was $20 \mu \mathrm{~L}$.

The PMEs were analyzed in the positive ion mode by applying a voltage of 3.5 kV to the ESI needle. For MS/MS investigation, doubly charged polymyxin ions were selected as the precursor ions and fragmented at 20 eV and 30 eV . The mass ranges were set at $m / z 500-1700 \mathrm{Da}$ for MS and $m / z 50-1700 \mathrm{Da}$ for MS/MS with the acquisition rate at 4 spectra/s and 2 spectra/s, respectively. The internal reference ion of fluorinated phosphazine HP-921 with $m / z 922.0098\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~F}_{24}{ }^{+}\right)$was scanned during the acquisition process.

3. RESULTS AND DISCUSSION

Eleven known components such as PME4, PME2-Val, PME6, PME2-I, PME2, PME3, PME1-Nva, PME1-I, 2', 3'-dehydro PME1, PME1 and PME1-7MOA are described in Ph. Eur 10.0. The structures of homologous PME components are slightly different in FA and amino acid residues. The sequences of PME1, PME2 and other known components have been studied thoroughly, so the high resolution TOF mass data and the diagnostic ions could be used as references for the structure elucidation of unknown related substances. Fragmentation pathways for PME were summarized by Govaerts et al. [8] with two series of characteristic ions and Zhang et al. with three series in our lab [15]. These structural strategies were able to analyze the peptide sequences, but failed to determine the position of the double bond on the unsaturated FA residue. The total ion chromatography (TIC) with peaks of PME1, PME2, 2', 3'-dehydro PME1 and 2', 3'-dehydro PME2 of commercial PME was shown in supporting information (SI) Fig. S1. The MS of 2', 3'-dehydro PME2 with m / z
$577.3727\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$ and 2^{\prime}, 3'-dehydro PME1 with $m / z 584.3802\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$ were shown in SI Fig. S2A and S2B, respectively. Even though the oxetane products of unsaturated PME1 with acetone are obtained by PB reaction, the structure of unsaturated PME1 was still misjudged due to the less characteristic ions. As in the previous report, we mistakenly inferred $2^{\prime}, 3^{\prime}$ '-dehydro PME1 as $7^{\prime}, 8^{\prime}$-dehydro PME1 [15].

In this study, it has been focused on the structures of the components contained unsaturated FA residue, such as 2', 3'-dehydro PME1 and 2', 3'-dehydro PME2. The position of the double bond was elucidated by epoxidized and di-hydroxylated products generated from photochemical reactions combined with HPLC-Q/TOF-MS/MS.

3.1. Structure elucidation of 2', 3'-epoxy PME1 and $\mathbf{2 '}^{\prime}, \mathbf{3}^{\prime}$-dihydroxy PME1

The PMEs dissolved in 20\% acetonitrile without 2-acetylpyridine or acetone did not get any oxidative products. The molecular weight of the oxetane product formed by the reaction of unsaturated PME with acetone is 58 Da higher than that of unsaturated PME [16]. In the initial assumption of the experiment, 2-acetylpyridine was used as the carbonyl reagent of PB reaction instead of acetone to react with the unsaturated PME. The oxetane products with positive charge were supposed to fragment easily during the $\mathrm{MS} / \mathrm{MS}$ procedure. However, the expecting oxetane product with the molecular weight of 121.14 Da more than that of the unsaturated PME were not detected. Instead, the 2', 3'-epoxy PME1 and 2', 3'-dihydroxy PME1 were obtained, which were synthesized from 2', 3'-dehydro PME1 under photochemical reaction's condition, shown in Fig. 2. It is speculated that epoxidized compounds are obtained by adding an oxygen atom to the α, β-unsaturated carbonyl FA through radical reaction (the reaction mechanism is uncertain), and then $\mathrm{H}_{2} \mathrm{O}$ attacks the epoxy group to form dihydroxy compound. In further, the stereoscopic configuration of epoxidized
and di-hydroxylated products, which could not be determined by MS, are not indicated in the following structure analysis.

The TIC of the photochemical products was shown in Fig. 3. There were two components in peak 2. The quasi-molecular ions of one of the components (the MS shown in Fig. 4A) with $m / z 592.3789\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right), 1183.7493\left([\mathrm{M}+\mathrm{H}]^{+}\right)$and $1205.7304\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$were 16 Da higher than the $m / z 1167.7494\left([\mathrm{M}+\mathrm{H}]^{+}\right)$of 2^{\prime}, 3'-dehydro PME1 (SI Fig. S2B). It means that an oxygen atom is added to 2', 3'-dehydro PME1. This component was referred to be 2', 3'-epoxy PME1. For MS/MS (Fig. 4B) investigation, the doubly protonated ion ($\mathrm{m} / \mathrm{z} 592.3789$) which was the most abundant ion was chosen as the precursor ion with the optimized collision voltage of 20 eV . The structure analysis strategy for PME has been established including three series of characteristic ions. The formation and characterization of the Series I and Series III ions with peaks displayed in SI Fig. S3 were shown in SI Fig. S4. These two series ions were almost the same as the ions as PME1 [16]. The Series I product ions are formed by losses of the FA moiety together with the α, γ-diaminobutyric acid (Dab) to obtain an ion with m / z 929.5910, and subsequent losing one of the Dabs in the cyclo-peptide (probably the Dab at position 6) to gain ion with $m / z 829.5278$, then breaking down the adjacent amino acid residues to obtain the ions of the oligopeptide. The Series III ions come into being as a result of firstly lost of ring amino acid (position 6, 7 and 8), then lost FA, Dab and threonine (Thr, position 2) residue of the linear part to obtain a series of peptide ions like $m / z 603.3551$, 402.2446, 302.1822, 202.1193 and 101.0710.

The Series II ions (Fig. 4B) such as m / z 857.5254, 757.4549, 456.2896, 255.1714, 127.1132 were 16 Da higher than the Series II ions of 2', 3'-dehydro PME1, proved that the vinyl group changed to be the epoxidized group. Fig. 5 showed a proposed fragmentation pathway in the form of the above ions' structures of 2', 3'-epoxy PME1.

The quasi-molecular ion (Fig. 6A) of the component in peak 3 was m / z $1201.7550\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, together with the doubly protonated ion of $\mathrm{m} / \mathrm{z} 601.3842([\mathrm{M}+$ $\left.2 \mathrm{H}]^{2+}\right)$ and the metal adduct ion of $m / z 1223.7380\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. The molecular weight of this component was 34 Da higher than the m / z of 2', 3'-dehydro PME1, which means two hydroxyls were added to $2^{\prime}, 3$ '-dehydro PME1. This component was referred to be 2', 3'-dihydroxy PME1. The MS/MS of the ion $m / z 601.3842$ was obtained and Series II ions were marked in Fig. 6B. A proposed fragmentation pathway of 2', 3'- dihydro PME1 was shown in Fig. 7. The product ions of Series II are formed by losses of three ring amino acids (D-Leu $+L$ - Leu $+L$ - Dab, position 6 , 7 and 8) and subsequent losses of other amino acid residues to obtain ion with m / z 875.5329, 775.4679, 474.2947 and 273.1841. There are two dehydration modes for the di-hydroxylated FA moiety. The OH group at position 3' or 2' was dehydrated with the adjacent H to form the enol ion (a) or (b) with m / z 155.1071. Both of the ions (a) and (b) were able to isomerize into more stable carbonyl ion. The (b) ion can be further broken into ion $m / z 113.0958$ at the collision voltage of 30 eV , the fragmentation ions with more detailed information including m / z, abundance and relative abundance (\%) were shown in SI Table S1.

The characteristic ions of 2', 3'-epoxy PME1 and 2', 3'-dihydroxy PME1 were able to reverse-prove the position of double bond in FA moiety of the unsaturated PME. Assuming that the double bond is located at position 7', it is difficult to obtain the above characteristic ions containing epoxy, dihydroxy and carbonyl groups. Based on the structural analysis strategy, 2', 3'-epoxy PME2 and 2', 3'-dihydroxy PME2 were detected and characterized.

3.2. Structure elucidation of 2', 3'-epoxy PME2 and 2', 3'-dihydroxy PME2

The 2', 3'-epoxy PME2 and 2', 3'-dihydroxy PME2 were transformed from 2', 3'-dehydro PME2 (peak a in SI Fig. S1) under the same photochemical reaction. The quasi-molecular ions of the other component in peak 2 (Fig. 3) with $m / z 585.3713$ ([M
$\left.+2 \mathrm{H}]^{2+}\right), 1169.7352\left([\mathrm{M}+\mathrm{H}]^{+}\right)$and $1191.7155\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$were 16 Da (Fig. 4A) higher than the m / z of 2', 3'-dehydro PME2 with $m / z 577.3727\left([M+2 H]^{2+}\right.$, SI Fig. S2A). This component was referred to be 2', 3'-epoxy PME2. Besides the diagnostic Series II ions of m / z 843.4996, 743.4402, 442.2669, 241.1557 and 113.0968 which were 14 Da less than the related ions of 2', 3'-epoxy PME1, the ions of (epoxidized FA $+L$-Dab $+L$-Thr) with $m / z 342.2028$ and the epoxidized FA with $m / z 141.0915$ were also obtained obviously (Fig. 8A). The proposed structures of the characteristic ions were shown in Fig. 9.

The component of peak 1 with $m / z 1187.7428\left([\mathrm{M}+\mathrm{H}]^{+}\right), 594.3759\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$ and $1209.7231\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$was referred as 2', 3^{\prime}-dihydroxy PME2, which was 34 Da higher than the m / z of 2', 3'-dehydro PME2 and 14 Da less than that of 2', 3'-dihydroxy PME1. The MS/MS of the ion $m / z 594.3759$ was obtained and Series II ions were marked in Fig 8B. The proposed fragmentation pathway of 2', 3'dihydroxy PME2 refers to that of 2', 3'- dihydroxy PME1. The Series II product ions of 2', 3'-dihydroxy PME2 were m / z 861.5121, 761.4581, 460.2754, 259.1653 and 141.0938, which were 14 Da less than those of 2', 3'-dihydroxy PME1.

Through the above experiments, we revised the previously reported structure of unsaturated PME to be 2', 3^{\prime}-dehydro PME $1 / 2$ instead of $7^{\prime}, 8^{\prime}$-dehydro PME1/2 [16].

4. CONCLUSION

In this study, the unsaturated PME with double bond on the FA is converted to be epoxidized and di-hydroxylated products. The structures of the oxidative products are elucidated by the comprehensive structure analysis strategy based on HPLC-Q/TOF-MS/MS. Two pairs of epoxidized and di-hydroxylated products named as 2', 3'-epoxy PME1/E2 and 2', 3'-dihydroxy PME1/E2, which were synthesized from 2', 3'-dehydro PME1/E2, were reported. The characteristic ions of epoxidized and di-hydroxylated products were analyzed by MS/MS, which proved that the double bond was located at the $2^{\prime}, 3^{\prime}$ position of FA chain. It provides a convenient method to
determine the position of the double bond without purification and NMR for other unsaturated polypeptide antibiotics, such as polymyxin B.

AUTHOR CONTRIBUTIONS

Hanzhi Zhang: Conceptualization, Investigation, Methodology, Writing - original draft, Project administration

Zhenhua Tian: Methodology, Writing - review \& editing
Hao Liu: Supervision
Hongwu Wang: Investigation

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No human or animal were used in this study.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

Science and Technology Commission of Shanghai Municipality (China, Grant number: 20142202200).

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflict of interests.

ACKNOWLEDGEMENT

We are grateful for financial support from Research Foundation of Science and Technology Commission of Shanghai Municipality (China, Grant number: 20142202200).

SUPPLEMENTARY MATERIAL

Available on publisher's website.

REFERENCES

1. Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol., 2019, 17, 3. https://doi.org/10.1038/s41579-018-0125-x
2. Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: the re-emerging antibiotic for multidrug-resistant gram-negative bacterial infections. Lancet. Infect. Dis., 2006, 6(9), 589-601. https://doi.org/10.1016/S1473-3099(06)70580-1
3. Velkov, T.; Roberts, K.D.; Nation, R.L.; Thompson, P.E.; Li, J. Pharmacology of polymyxins: new insights into an 'old' class of antibiotics. Future Microbiol., 2013, 8(6), 711-724. https://doi: 10.2217/fmb.13.39
4. Rabanal, F.; Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep., 2017, 34(17), 886-908. https://doi.org/10.1039/C7NP00023E
5. Cui, A.L.; Hu, X.X.; Gao, Y.; Wang, X.K.; Nie, T.Y.; Chen, Y.; He, Q.Y.; Guo, H.F.; Jiang, J.D.; You, X.F.; Li, Z.R. Synthesis and Bioactivity investigation of the individual components of cyclic lipopeptide antibiotics. J. Med. Chem., 2018, 61(5), 1845-1857.
https://doi.org/10.1021/acs.jmedchem.7b01367
6. Bossche, L.V.D.; Schepdael, A.V.; Chopra, S.; Hoogmartens, J.; Adams, E. Identification of impurities in polymyxin B and colistin bulk sample using liquid chromatography coupled to mass spectrometry. Talanta, 2011, 83(5), 1521-1529. https://doi.org/10.1016/j.talanta.2010.11.044
7. Orwa, J.; Govaerts, C.; Busson, R.; Roets, E.; Schepdael, A.V.; Hoogmartens, J. Isolation and structural characterization of colistin components. J. Antibiot., 2001, 54(7), 595-599. https://doi: 10.7164/antibiotics.54.595
8. Govaerts, C.; Orwa, J.; Schepdael, A.V.; Roets, E.; Hoogmartens, J. Liquid chromatography-ion trap tandem mass spectrometry for the characterization of polypeptide antibiotics of the colistin series in commercial samples. J. Chromatogr. A., 2002, 976(1-2), 65-78.
https://doi.org/10.1016/S0021-9673(02)00375-8
9. Zhang, H.Z.; Qin, F.; Liu, H. Identification of unknown impurities in polymyxin B sulfate by HPLC-MS/MS. Chin. Pharm. J., 2018, 53(11), 918-924. https://doi: 10.11669/cpj.2018.11.013
10. Orwa, J.; Gerven, A.V.; Roets, E.; Hoogmartens, J. Development and validation of a liquid chromatography method for analysis of colistin sulphate.

Chromatographia, 2000, 51(4), 433-436.
https://doi.org/10.1007/BF02490480
11. Vogler, K.; Studer, R.O. The chemistry of polymyxin antibiotics. Experientia, 1966, 22(6), 345-354.
https://doi.org/10.1007\%2FBF01901127
12. Chihara, S.; Tobita, T.; Yahata, M.; Ito, A.; Koyama, Y. Enzymatic degradation of colistin isolation and identification of $\alpha-\mathrm{N}$-acyl α, γ-diaminobutyric acid and colistin nonapeptide. Agr. Biol. Chem., 1972, 37(11), 2455-2463. https://doi.org/10.1080/00021369.1973.10861030
13. Zhang, H.Z.; Li, F.; Dun, J.L.; Sun, N.; Liu, H.; Chen, G.L. Combination of derivatization-HPLC-MS and enzymatic hydrolysis-Edman degradation for amino sequence and configuration of polymyxin B components. Chromatographia, 2021, 84(11), 1057-1064.
https://doi.org/10.1007/s10337-021-04091-2
14. Ikai, Y.; Oka, H.; Hayakama, J.; Kawamura, N.; Harada, K.; Suzuki, M.; Nakazawa, H.; Ito, Y. Isolation of colistin A and B using high-speed countercurrent chromatography. J. Liq. Chromatogr. Rel. Technol., 1998, 21(1-2), 143-155.
https://doi.org/10.1080/10826079808001943
15. Zhang, H.Z.; Sun, N.; Qin, F.; Luo, W.Y.; Zhao, J.D.; Wen, H.L.; Qiu, Y.; Liu, H.; Li, M. Structure analysis of components in polymyxin E sulfate by high performance liquid chromatography-quadrupole/time of flight mass spectrometry. Chin. Pharm. J., 2021, 56(1), 1861-1870. https://doi: 10.11669/cpj.2021.01.009
16. Zhang, H.Z.; Sun, N.; Liu, X.F.; Qin, F.; Luo, W.Y.; Huang, Z.H.; Bian, X.C.; Ding, J.G.; Liu, H. Structure analysis of vinyl polymyxin B1 and preliminary study on the antibacterial activity. World Notes on Antibiotics, 2020, 41(6), 475-481. http://www.worldnotes.cn/CN/Y2020/V41/I6/475
17. Cai, W.B.; Cheng, S.M.; Yang, J.;, Fen, J.X.; Zhang, W.P.; Li, Z.S.; Chen, Q.H.; Xia, Y.; Ouyang, Z.; Ma, X.X. Large-scale lipid analysis with $\mathrm{C}=\mathrm{C}$ location and sn-position isomer resolving power. Nat. Commun. 2020, 11 (1), 375. https://doi.org/10.1038/s41467-019-14180-4
18. Ma, X.X.; Chong, L.;, Tian, R.; Shi, R.; Hu, T.Y.; Ouyang, Z.; Xia, Y. Identification and quantitation of lipid $\mathrm{C}=\mathrm{C}$ location isomers: a shotgun lipidomics
approach enabled by photochemical reaction. Proc. Natl. Acad .Sci. U.S.A., 2016, 113(10), 2573-2578.
https://doi.org/10.1073/pnas. 1523356113

[^0]: Abstract Background: Polymyxin E (PME), which is a complex of cationic cyclic lipodecapeptides, is used to treat multidrug-resistant gram-negative bacterial infections. Besides the main components PME1 and PME2, polymyxin containing unsaturated

