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Abstract: This paper is dealing with review of different modeling approaches, available in 

contemporary literature, and analyses of their applicability on real technological processes. 

During the theoretical discussion the scope of potential options of techniques available for 

complex systems modeling are presented. Both analytical and statistical modeling approaches are 

described. The most important part of the paper is dealing with development of the algorithm for 

selection of appropriate numerical modeling approach – ASANMA, based on the structure of the 

system and the scope of input variables of the investigated process. Presented assumptions are 

based on real-life examples of the numerical models of the real systems. Developed algorithm can 

be used by decision makers for selection of the appropriate numerical modeling approach, in the 

practice.  
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1 Introduction 

Most of management processes are presenting very complex systems defined with large 
number of constituting elements and their interrelations. If placed on the level of 
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general system theory (GST), each of such process could be defined as a complex 
system with one or more output variables and large number of input variables. Still on 
the level of GST, optimization of such systems is actually consisting in obtaining 
desired value of output variable (variables) which should be inside the defined outlying 
levels. This could be achieved in two ways. First way is based on control and regulation 
of input variables (both controlled and disturbances), which is based on defined 
controller unit of the system. The second way is based on possibility to perform 
controlled and designed changes on the structure of the system in question.  

However, considering the complexity of the systems, both methods require adequate 
model of the investigated system which would be the basis of its further optimization. 
This is because the controller unit is actually defined as inversion of mathematical 
model equation of the object of control and, on the other hand, the change of the 
structure inside the real system can be too expensive if it is not based on prior model 
based experiments. Also, it could lead to wrong reorganization of the system structure. 

Considering that in operations management, there is a belief that absolute optimization 
of any system cannot be achieved, each system should be the object of further 
optimization in the future. If defining an adequately accurate model of the system, it 
could be used as a tool for another iteration of optimization, considering that it can 
result with prediction of output values based on different scenarios and combinations of 
input variables [1].  

Accordingly, development of accurate model of the process is of essential importance in 
contemporary operations management, considering that this is enabling much easier 
way of the process parameters acquisition, which is of crucial importance for complex 
systems optimization. At the bottom line, the most important aims of the system 
(process) modeling can be listed as follows: Using the model instead of real system to 
achieve system parameters; Avoiding the risk of experiments on real system; Obtaining 
the results of prediction whose analysis should enable effective operational management 
and optimization of the real system; Lower expenses resulting from model, instead of 
system, optimization. 

Accordingly, selection of the most appropriate modeling approach, of the real complex 
process, is of crucial importance in achieving these aims. This paper is dealing with the 
development of the algorithm that can be of use to decision makers when selecting the 
most appropriate modeling approach for complex processes optimization. The algorithm 
is developed based on previous experience in modeling of real complex systems. 

 

2 Development of the Algorithm for Selection of 

Appropriate Numerical Modeling Approach -

ASANMA  

2.1 Background  

In spite of the fact of intensive development of the modeling methods in different fields 
of science and technology, it can be stated that unique classification of all types of 
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models isn’t developed yet. Having this in mind, general classification is placing all 
models in one of two groups: the class of symbolic (in most cases numerical) and the 
class of real (physical, material) models. Based on such general classification, the object 
of research presented in this paper is actually the symbolic models, e.g. numerical 
models.  Symbolic models are describing the object, process or appearance on some of 
languages (symbols) characteristically for the objects nature. To further explain the 
symbolic language, it should be started from the fact that each scientific field developed 
its own symbolism during its historical evaluation. The first language used to describe 
each scientific discipline was, of course, verbal language. Next scientific language was 
the language of mathematics pronounced by its symbolic abbreviations, relations and 
logical dependences. Starting with James Watt and his centrifugal "fly ball" governor, 
which was the first system of automotive regulation, the development of contemporary 
mathematical modeling started [2].   However, since Watt was practitioner, inventor and 
engineer, he was not the one who developed the first mathematical model of this first 
dynamic system controller unit. Actually, the first theoretic who described this system 
using numerical model was James Clerk Maxwell [3]. He wrote a famous paper "On 
governors" that is widely considered a classic in feedback control theory and is used as 
inspiration for researchers, even today [4]. Subsequently, further research was 
conducted on the field of dynamic system optimization and control, starting with Routh 
[5] and Hurwitz [6] who investigated the stability of linear systems, in parallel with 
Lyapunov [7] who introduced modeling of nonlinear systems for the first time, over 
Lorentz [8] and his famous butterfly effect up to contemporary investigations present in 
recent research [9-12]. 

For a while in history of mathematical modeling, each scientific and technical field 
developed its own language of the symbols. However, resulting from the intensive 
development of informational technology during 80ties and 90ties, the possibilities for 
modeling different appearances are strongly increasing. This again led to certain 
standardization of symbolic models and their broad application which leads to 
generality of computer simulation and modeling implementation. Accordingly, 
mathematical language once again becomes major modeling tool. Each scientific field is 
subsequently adjusting its symbolism to standard mathematical expressions [13].  

2.2 Clasification of modeling approaches  

Aware of the fact that mathematical model has to mirror the real technological process 
as better as possible, as well as the cognition of the limits to which contemporary 
mathematical apparatus can reach; the question of level of real process idealization 
arises. Accordingly, primarily characteristics of the process should not be neglected, on 
one hand, while mathematical model should not be too complex, on the other. Too 
complex mathematical model is lingering the subsequent mathematical analysis. Also, 
complexity narrows the applicability of the model on a small surrounding of an 
equilibrium point of the system.  Accordingly, the first modeling technique, that will be 
denoted as (M1) in following text, is based on the assumption that the mathematical 
model of an object is presented in the form of differential equations assemble. With 
systems, presented by differential equations assemble, the structure of the model is 
emerging directly from the known theoretical background and scientific validity of the 
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system. This modeling aproach is widely recogniyed as the “First principle modeling”. 
For M1 modeling approach, as a precognition, it is necessary to know the structure of 
the investigated system and nature of the system reflected in some physical law that 
describes its behavior. Subsequently, the solutions of the differential equations assemble 
can be obtained using the computer simulation after introducing standard input signals. 
Then, the real system (the object of control) is induced with the same input signals 
while the output (response) of the system is measured. Comparing the results of the 
differential equations solution with the outputs of the real system, the conclusions on 
validity of constructed model can be brought. On the other hand, since there is no real 
linear system existing in the nature, success of this modeling approach is based on 
differential equations linearization, in the surrounding of an equilibrium point. This is 
resulting with difficulties of complex systems modeling, which can have more than one 
stabile state and this way many equilibrium points [1, 14-16]. The real system’s 
dynamical behavior is additionally aggravating this modeling approach. Subsequently, 
this modeling approach is mostly applicable for simple real (physical) systems and, of 
course, for abstract systems before their construction. 

The second modeling approach, that will be denoted as (M2) in following text, is based 
on experimentally obtained, or measured, functional dependences of the real object 
under the non stationary regime. Using the measured output of the system, obtained 
after introducing predefined input signals, mathematical model of the object can be 
defined. In this case it is not necessary to know the structure of the system (relations 
among the elements, number of elements and their characteristics), neither the physical 
law of its behavior. In this approach, it is sufficient to collect the outputs, after 
introducing predefined inputs to the system and this way to form a data base which can 
be used for further modeling procedure. This is why, this type of modeling, is called a 
“black box modeling” [13, 17, 18]. This type of real process modeling is attaining more 
and more application in the operations management, because of the practical reasons 
based on its applicability.  

Before further development of the mathematical model, based on the M2 modeling 
approach, the decision maker must assess is the system liable to predefined design of 
experiments or not. If the answer is “yes” than, further modeling should be based on 
design of experiments which can be performed using the factorial experimental design 
or the Taguchi method [19]. This modeling approach will be further indexed as M2.1. 

On the other hand, if the investigated system is not liable to the predefined design of 
experiments, in the M2 approach, there are two potential possibilities to define 
numerical model of the system. 

The first one (analytical) is based on choosing the most adequate model equation from 
the variety of existing potential numerical model equations, available in literature 
(M2.2.).  

In the cases where alredy existing mathematical model equations do not present 
adequate accuracy of obtained model, modeling approach M2.3 (statistical modeling) 
can be of use. As already indicated, both linear and nonlinear statistics could be applied 
in obtaining the final model. However, there are some strong indicators, which can be 
of use when deciding which approach (liner or nonlinear) are more appropriate for 
modeling the data obtained from the specific process measurements. The first step in the 
decision making about applicability of linear or nonlinear statistical tools, for modeling, 
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should be the analysis of correlation between the variables of the system. For definition 
of the correlation dependence in the form: output of the process (Y) = f input of the 
process (Xi; i = 1÷ n), bivariate correlation analysis should be performed. As the result 
of this analysis Pearson Correlation (PC) coefficients with responding statistical 
significance should be calculated.  

To finally define the dependence of the output parameter as the function of the input 
parameters, using the linear statistics tool, for example multiple linear regression 
analysis (MLRA), with acceptable level of fitting (strong correlation), it is necessary 
that the values of PCs are above 0.5 with statistical significance (p ≤ 0.05) for most of 
dependences between Y and Xi [20, 21].  

However, even then, obtained MLRA model should be further tested for accuracy. The 
most appropriate test for defining the accuracy of a MLRA model is ANOVA. 
Significant F statistics is indicating that using the model is better than guessing the 
mean. Also, if the significance value of the F statistic is less than 0.05, this means that 
the variations explained by the model are not due the chance. Regression displays 
information about the variation accounted for by the model, while residual displays 
information about the variation that is not accounted for by the model. The ratio of 
regression to residual is advocating the level on which the dependent variable (Y) 
values are explained by the model. This ratio is also equal to the value of coefficient of 
determination between measured and model calculated Y values. Finally, the 
collinearity analysis of obtained MLRA models coefficients should be performed. If for 
most predictors (Xi), the values of the partial and part correlations drop sharply from 
the zero-order correlation this means that much of the variance in Y that is explained by 
Xi is also explained by other variables. The tolerance is the percentage of the variance 
in a given predictor that cannot be explained by the other predictors. Thus, relatively 
small tolerances in case of some of predictors show that large percentage of the variance 
in a given dependent variable (Y) can be explained by the other predictors. Also a 
variance inflation factor (VIF) greater than 2 is usually considered problematic for the 
model predictors. Also, important factor of the collinearity analysis is condition index. 
Values of condition index greater than 15 indicate a possible problem with collinearity, 
greater than 30 a serious problem.  

Accordingly, if the PCs are large enough, with statistical significance below 0.05 and 
also ANOVA indicators and collinearity analysis are at acceptable level, than obtained 
MLRA model can be regarded as adequate for accurately prediction of output variable 
of the process. This modeling approach will be indexed as M2.3.1.  

The models equations obtained using MLRA approach are in the form: Y = a.X1 + b.X2 
+ …. + n.Xn, (with a,b, ..,n presenting the coefficient of model equation). If such 
equation can be used as adequate description of interdependence between input (Xi) and 
output variable (Y) of the process, this is a benefit because it is possible to calculate the 
values of Y for any combination of Xi values. However, there aren’t that many cases of 
complex business or management processes in which the linear modeling approach 
would yield high accuracy of prediction (above 70%).  

In cases where the linear statistics tools wouldn’t result with high enough accuracy, 
nonlinear statistics should be used. Meaning, low value of correlation between two 
variables doesn’t automatically mean that interdependence of their behavior does not 
exist. This is only an indicator that linear modeling approach cannot describe their inter 
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correlation. This is usually good indicator that further modeling should be based on 
dynamic behavior of the variables [16]. This modeling approach, based on nonlinear 
statistics, will be indexed as M2.3.2. In such cases, modeling is usually facilitated using 
nonlinear statistic approaches such are, for example, Artificial Neural Networks 
(ANNs) - in case that input variables do not have wide range during whole time interval 
of observation [22-24] or Adaptive-Network-Based Fuzzy Inference System for 
variables with wide range of change [25,26].  

ANNs modeling approach will be indexed as M2.3.2.1 in following text. Artificial 
neural networks can be viewed as nonlinear approaches to multivariate statistical 
methods, not bound by assumptions of normality or linearity. Although neural networks 
originated outside the field of statistics and have even been seen as an alternative to 
statistical methods in some circles, there are signs that this viewpoint is initiating an 
appreciation of the manners in which neural networks complement classical statistics 
[27,28]. The general example of ANN used in the development of the model is in the 
form of a network which consists of three layers of nodes (Figure 1).  

The layers, described as input, hidden and output layers, comprise i, j and k numbers of 
processing nodes, respectively. Each node in the input (hidden) layer is linked to all the 
nodes in the hidden (output) layer using weighted connections. In addition to the i and j 
numbers of input and hidden nodes, the ANN architecture also houses a bias node (with 
a fixed output +1) in its input and hidden layers and they provide additional adjustable 
parameters (weights) for model fitting. The number of the nodes (i) in the ANN 
network input layer is equal to the number of inputs in the process, whereas the number 
of output nodes (k) equals the number of process outputs. However, the number of 
hidden nodes (j) is an adjustable parameter the magnitude of which is determined by 
issues, such as the desired approximation and generalization capabilities of the network 
model [29]. The employment of an ANN usually comprises three phases. First is the 
training phase, which is achieved using 70–80 % of randomly selected data from the 
starting data set. During this phase, the correction of the weighted parameters of the 
connections is achieved through the necessary number of iterations, until the mean 
squared error between the calculated and measured outputs of the network is minimal. 
During the second phase, the remaining 20–30 % of the data is used for testing the 
“trained” network. In this phase, the network uses the weighted parameters determined 
during the first phase. These new data, excluded during the network learning stage, are 
now incorporated as the new input values (Xi) that are then transformed into the new 
outputs (Yi). The third phase is a validation of the network on a new data set. This data 
set usually consists of the data from the new experimental measurements of the same 
process. The validation phase presents the final level of a successful or unsuccessful 
prediction obtained by using the network developed in the two previous stages on a new 
data set [28]. 

However, in some cases when almost all input variables of the system have wide range 
of relative change (ratio of variance compared to range), modeling approach based on 
one rule describing the dynamic changes of input variables, belonging to group of 
nonlinear statistic analysis methods (such are ANNs), probably wouldn’t result with 
accurate enough prediction. In such cases, further modeling approach should be based 
on Adaptive-Network-Based Fuzzy Inference System (ANFIS). This modeling 
approach will be indexed as M2.3.2.2 in following text. 
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Figure 1 

General example of ANN structure (prevedi) 

 

As a basis for construction of a set of fuzzy if-then rules the ANFIS system, based on 
selected membership functions, can be used. The ANFIS structure is obtained by 
embedding the fuzzy interference system into the framework of adaptive networks [30]. 
Similar as ANN, an adaptive network is a network structure consisting of a number of 
nodes connected through directional links. The outputs of these adaptive nodes depend 
on modifiable parameters pertaining to these nodes [31]. The pattern in which these 
parameters should be iteratively varied, aiming to minimize the final error, is specified 
by the learning rule. Also, according to [32], the fuzzy inference system (FIS) is a 
framework based on fuzzy set theory and fuzzy if – then rules. Three main components 
of a FIS structure are: a rule base, a database, and a reasoning mechanism. The 
appropriate number of if – then rules, for levels of ranges of input variables, is located 
in the rule base. The example of a rule is “if Brent Oil price is high, than Dow Jones 
Global index is also high,” where items such are low or high are representing the 
linguistic variables. The database defines the membership functions applied in fuzzy 
rules and the reasoning mechanism performs the inference procedure [30]. This way, for 
example that there are two input variables (X1 and X2), and assuming that their ranges 
can be divided in two levels, there would be the rule base with two rules for modeling 
the value of output variable Y: 
Rule 1: If X1 is in the range A1 and X2 is in the range B1, then f1 = p1x1 + q1x2 + r1                     

…                                                                                                                                       (1) 
Rule 2: If X1 is in the range A2 and X2 is in the range B2, then f2 = p2x1 + q2x2 + r2                    

…                                                                                                                                      (2) 
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In the case f(x1, x2) is a first-order polynomial, and then the model is called a first-order 
Sugeno fuzzy model. Compared to classical three layers ANN network, ANFIS 
architecture can be presented with five layers (Figure 2). Where X1 and X2 are inputs to 
nodes in layer 1, Ai and Bi are the linguistic label of the ranges of input variables (small, 
large, etc), associated with the node function. Membership functions of nodes located in 
layer 1 (Oi

1
 = µAi(Xi) or Oi

2
 = µBi(Xi)) specifies the degree to which the given Xi 

satisfies the quantifier Ai, Bi, etc.  
 

 

Figure 2 

General example of ANFIS architecture 

 
Usually, membership functions are either bell- shaped with maximum equal to 1 and 
minimum equal to 0, or Gaussian function.  Nodes located in the layer 2 are multipliers, 
which are multiplying the signals exiting the layer 1 nodes. For example Oi

2 = Wi = 
µAi(Xi) x µBi(Xi), i  = 1, 2, etc. Output of each node is representing the firing strength 
of a rule. The i-th node of layer 3 calculates the ratio of i-th rules firing strength to sum 

of all rules firing strengths. This way Oi
3 = iW  = Wi /(W1 + W2 + …), i = 1, 2, … Every 

node i in the layer 4 has a node function of following type: Oi
4 =  iW  . f1 = iW

. (pix1 + 

qix2 + ri), where pi, qi and ri will be referred to as consequent parameters. The single 
node of layer 5 is the node that computes the overall output as the summation of all 
incoming signals i.e., 

Oi
5 = ∑

i

ii fW  = 

∑

∑

i

i

i

ii

W

fW

                                                                                                  (3) 

Training of the parameters in the ANFIS structure is accommodated according to the 
hybrid learning rule algorithm which is the integration of the gradient descent method 
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and the least square methods. In the forward pass of the algorithm, functional signals go 
forward until layer 4 and the consequent parameters are identified by the least squares 
method to minimize the measured error. In the back propagation pass, the premise 
parameters are updated by the gradient descent method [30]. 

2.3 The ASANMA algorithm 

Based on above clasification and justification of modeling approaches, following 
algorithm for appropriate selection of the adequate numerical modeling approach – 
ASANMA can be presented (Appendix 1). This algorithm can be of use of decision 
makers when selecting the most appropriate modelin texchniquest for the systems 
which are the objest of their interest, in accordance to above defined criterions. 

3 Conclusions  

This paper is presenting the development of the decision making tool applicable for 
selection of the appropriate modeling approcah in atempt to define numerical model of 
complex business or management system. The obtained decision making tool is in the 
form of algorithm. The acronim of abtained algorithm is ASANMA (Algorithm for 
Selection of Appropriate Numerical Modeling Approach). All theoretical beckground 
presented in this manuscript is based on knowledge obtained during modeling of real 
complex systems in practice. However, due to the page limitaition exampleas of real life 
systems modeling are not presented in the text of the paper. 
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Appendix 1 Algorithm for selection of appropriate 

numerical modeling approach – ASANMA 

 


