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Abstract: This paper considers the problem of finding the position of a passive target using noisy
time difference of arrival (TDOA) measurements, obtained from multiple transmitters and a single
receiver. The maximum likelihood (ML) estimator’s objective function is extremely nonlinear and
non-convex, making it impossible to use traditional optimization techniques. In this regard, this
paper proposes the chaos-enhanced adaptive hybrid butterfly particle swarm optimization algo-
rithm, named CAHBPSO, as the hybridization of butterfly optimization (BOA) and particle swarm
optimization (PSO) algorithms, to estimate passive target position. In the proposed algorithm, an
adaptive strategy is employed to update the sensory fragrance of BOA algorithm, and chaos theory is
incorporated into the inertia weight of PSO algorithm. Furthermore, an adaptive switch probability
is employed to combine global and local search phases of BOA with the PSO algorithm. Additionally,
the semidefinite programming is employed to convert the considered problem into a convex one. The
statistical comparison on CEC2014 benchmark problems shows that the proposed algorithm provides
a better performance compared to well-known algorithms. The CAHBPSO method surpasses the
BOA, PSO and semidefinite programming (SDP) algorithms for a broad spectrum of noise, according
to simulation findings, and achieves the Cramer–Rao lower bound (CRLB).

Keywords: localization; time difference of arrival; butterfly optimization algorithm; hybrid optimiza-
tion; particle swarm optimization; Cramer-Rao lower bound

1. Introduction

Determining the location of a passive target based on time difference of arrival (TDOA)
measurements from multiple transmitters and a single receiver is a key element in many
technologies, such as radar or sonar, telecommunications, mobile communications [1,2], etc.
In general, two groups of localization approaches, active and passive, may be distinguished.
The active localization approach takes into account the scenario when in the localization the
target is actively involved. However, in the second group, the target does not participate in
the localization process and merely serves to reflect the transmitter’s signals [3]. The global
positioning system (GPS) has been widely used to determine the position of an object in
outdoor environments [4]. However, this localization system cannot provide satisfactory
performance in indoor, underwater acoustics, and urban environments, where the satellite
signals are unavailable [5,6]. Therefore, passive target localization has become widely
used in various applications, as an effective alternative to the GPS and other conventional
localization systems.

Hence, the localization of a passive target is considered in this paper, where the noisy
TDOA measurements are employed. The range measurements are calculated from the
difference in the time it takes for a signal coming from a transmitter via the target to a
receiver and the time required for a signal coming directly from the transmitter to a receiver.
Therefore, the unknown position of a target becomes difficult to estimate since the TDOA
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measurements are nonlinear. The noisy TDOA measurements in the line-of-sight (LOS)
environment can be described as the normal-distributed Gaussian random variable. Since
the probability distribution of measurement error is known, the maximum likelihood (ML)
estimator can be employed to estimate a passive target’s unknown position [2]. The ML
estimator’s objective function is very nonlinear and non-convex, making it challenging
to find the global optimal solution. Therefore, several efficient optimization algorithms
are proposed in the literature to solve this type of optimization problem. Among these
algorithms, the semidefinite programming (SDP) method became widely applied as it can
efficiently transform the considered problem to convex optimization problem [2]. The
SDP method’s primary benefit is that it does not demand a starting solution to solve the
considered optimization problem. Furthermore, it can be solved employing MATLAB
toolbox CVX with the SeDuMi solver. Still, the SDP method shows some drawbacks, which
reflects on the accuracy of the obtained solution, primarily when the large measurement
noise is present [7]. This shows that the solving of the non-convex ML estimation problem
is an important and significant challenge.

In this context, evolutionary algorithms (EAs) are proposed with the aim to success-
fully achieve the global optimum to the challenging ML estimation problem, and get
beyond the aforementioned drawbacks [8,9]. Generally speaking, there are two steps to the
optimization process for EAs: global exploration and local exploitation [10]. Here, the first
stage is concerned with identifying the area of the global optimum, and the second stage is
concerned with increasing the convergence speed and the solution accuracy. Therefore, to
efficiently find the global optimal solution, it is important to maintain a balance between
exploration and exploitation during the optimization process of EAs.

Numerous EAs are proposed to solve different optimization problems, such as ge-
netic algorithm (GA) [11], particle swarm optimization (PSO) [12], butterfly optimization
algorithm (BOA) [13], differential evolution (DE) [14], cuckoo search algorithm (CS) [15], ar-
tificial bee colony (ABC) [16] and firefly algorithm (FA) [17], etc. During recent years, BOA
and PSO algorithms are successfully applied to find the global optimal solution of different
complex optimization problems, due to their advantages, such as easy implementation,
fast convergence, and robustness [18].

The BOA is a novel optimization algorithm, developed by Arora and Singh [13], which
is inspired by the foraging and mating behavior of butterflies. During the food searching
process, the butterflies emit a fragrance, and the intensity of this fragrance is proportional
to the objective function value of the butterfly. Other butterflies in the swarm can sense the
fragrance intensity, in order to determine the potential direction of a food source or mating
partner. In general, during the optimization process, the BOA algorithm goes through two
phases: the global search phase and the local search phase. In the first phase, the BOA
algorithm goes through the search space and finds regions where potential global solutions
exist. Conversely, in the local search phase, the BOA algorithm performs a fine search in
the neighborhood of the current optimal solution. Generally, the optimization performance
of the BOA algorithm is influenced by the suitable choice of two control parameters: the
sensory fragrance and power exponent [13]. The BOA algorithm is successfully applied
to solve a wide range of optimization problems in science and engineering, where it has
demonstrated better results compared to other EAs [18,19]. It has been shown that the BOA
algorithm has a strong exploitation ability; however, it suffers from drawbacks, such as
premature convergence to local optima and weak global search ability [20]. Therefore, to
overcome these drawbacks, a number of improved versions of the BOA algorithm have
been proposed in the literature [21,22].

The PSO algorithm is another nature-inspired EA, proposed by Kennedy and Eber-
hart [23], which is based on the social behavior of flocks of birds searching for food. The
search process of the PSO algorithm is based on the position and velocity vectors. In
this regard, each particle changes its position with respect to its personal previous best
position and the best position of the whole swarm. Due to the easy implementation and
effectiveness, the PSO algorithm is successfully applied to solve a wide range of complex
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optimization problems [24,25]. However, in solving complex optimization problems the
PSO algorithm shows some disadvantages such as slow convergence rate and the problem
of premature convergence [26]. It is shown in the literature that the performance of the
PSO algorithm strongly depends on the appropriate choice of three control parameters:
the inertia weight (w), the cognitive acceleration coefficient (c1), and the social acceleration
coefficient (c2) [27]. In order to overcome these drawbacks and improve the performance, a
number of adaptive and self-adaptive versions of the PSO algorithm are developed [28,29].
Furthermore, in recent years, the integration of chaos theory with the PSO algorithm has
proven to be an effective way to improve the optimization performance and avoid the
problem of premature convergence to local optima.

During the recent years, with the development of nonlinear dynamics, chaos theory
is widely employed to improve different aspects of optimization algorithms [30]. Chaos
is the bounded dynamic behavior of nonlinear systems characterized by infinite unstable
periodic motions [31]. In this way, chaos maps are employed as an evolution function
representing the chaos behavior, which produces a bounded sequence of random numbers
depending on the choice of the initial conditions. A large number of chaos maps are found
in the literature, such as the sinusoidal map, Chebyshev map, tent map, sine map, logistic
map, etc. [32]. Due to the pseudo-randomness, ergodicity, and irregularity of chaos maps,
the integration of chaos maps into EAs has been proven to be an effective way to improve
the optimization performance and solution quality [21,29].

Another way to overcome the drawbacks and improve the optimization performance
is the hybridization of different EAs. In this regard, the BOA algorithm is successfully
hybridized with the PSO algorithm, in HPSOBOA, with the aim to improve convergence
during the evolution process [33]. Moreover, the combination of search ability of the FA and
PSO algorithms is proposed in the HFPSO algorithm, to improve the convergence speed
and solution accuracy [34]. Additionally, different hybridizations of the BOA algorithm
with other EAs, such as ABC and BOA (BOA/ABC) [16], BOA with DE (HBODEA) [35] and
BOA with PSO (HPSO) [36] can be found in the literature, which are successfully applied
to solve different complex optimization problems. Therefore, the hybridization of the EAs
is proven to enhance the speed of reaching optimal solution, so as to avoid the problem of
prematurely converging to a solution and provide more precise solutions.

This paper proposes a hybridization of the BOA and PSO algorithms, called CAHBPSO,
to efficiently tackle the presented problem of localization of a passive target. In the proposed
hybrid algorithm, the global and local search phases of the BOA algorithm are incorporated
into the velocity update equation of the PSO algorithm. In addition, instead of fixed-switch
probability, an adaptive technique is proposed to dynamically switch between exploration
and exploitation. To further improve the performance, an adaptive strategy is employed to
update the sensory fragrance of the BOA algorithm. Moreover, the logistic chaos map is
incorporated into the inertia weight parameter of the PSO algorithm, to maintain a trade-off
between local and global abilities.

The localization performance is measured against the Cramer-Rao lower bound
(CRLB), which offers a lower constraint on the unbiased estimator variance [37]. Therefore,
the root mean square error (RMSE) performance of the new CAHBPSO method and the
current SDP, BOA, and PSO algorithms are compared with the derived CRLB. The following
is a summary of this paper’s significant contributions:

• The problem of localization of a passive target is formulated using noisy TDOA mea-
surements obtained from a set of transmitters and a single receiver, for the case of LOS
conditions. Due to the highly nonlinear and non-convex nature of the ML estimation
problem that has been formulated for the consideration localization problem, sophis-
ticated optimization algorithms are proposed to address this complex optimization
problem.

• By converting the considered multimodal optimization problem to a problem with
distinct single extremum, the SDP method, as a convex method, is employed to
effectively address the ML estimation problem.
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• The enhanced CAHBPSO algorithm—a hybridization of the BOA and the PSO al-
gorithms—is proposed, to precisely estimate the position of the passive target. To
improve convergence and maintain population diversity the global and local search
phases of the BOA algorithm are incorporated into the velocity update equation of the
PSO algorithm. In addition, instead of fixed-switch probability, an adaptive param-
eter is employed to effectively maintain a trade-off between global and local search
abilities throughout the iteration process. Furthermore, the sensory fragrance of the
BOA algorithm is adaptively updated and logistic chaos map is incorporated into the
expression for the inertia weight parameter of the PSO algorithm.

• The Wilcoxon signed-rank test and Friedman test are employed for statistical perfor-
mance comparison between CAHBPSO algorithm with several widely applied EAs
on a set of CEC2014 problems. Analyzing the optimization performance, according to
the statistical analysis’s findings the modifications and hybridization proposed in this
paper successfully enhance the CAHBPSO algorithm.

• The results of the numerical simulation demonstrate that the proposed CAHBPSO
method outperforms SDP, BOA, and PSO algorithms in terms of localization perfor-
mance and CRLB accuracy. Furthermore, according to the simulation findings, the
CAHBPSO method performs the best when there is a high level of measurement noise
and it is not sensitive to changes in network layout. In terms of computational com-
plexity, the simulation results showed that the proposed algorithm provides a proper
balance between localization accuracy and complexity compared to other considered
algorithms.

The remainder of this paper is structured as follows. An overview of the existing
literature is given in Section 2. The TDOA-based problem of passive target localization
is presented in Section 3. In Section 4, the function for the problem of passive target
localization based on ML estimation is derived. The formulation of the SDP method is
described in Section 5. In Section 6, the conventional BOA algorithm with the improved
version is described. The conventional PSO algorithm with the proposed modification of
the inertia weight improved with the logistic chaos map is presented in Section 7. The
proposed CAHBPSO algorithm is presented in Section 8. Section 9 gives the formulation of
the CRLB for the considered passive target localization problem. Section 10 provides the
numerical simulation results. The conclusions and directions for future work are drawn in
Section 11. Finally, the derivation of the CRLB is given in Appendix A.

2. Background and Related Work

Accurate estimation of the location of a passive target in the presence of additive
measurement noise has become an important and challenging issue [38]. The estimated
target position’s accuracy is mostly determined by two factors: measurement precision and
the geometric layout of receivers, transmitters, and target [39]. The two types of localization
algorithms that can be roughly categorized are range-based and range-free algorithms.
Range-based localization algorithms estimate a target’s position effectively by using dis-
tance or angle information between the target and receivers. These methods are based on
data collected using a variety of ranging approaches, including time of arrival (TOA) [38],
TDOA [17], received signal strength (RSS) [40], angle of arrival (AOA) [41] and their
combinations [42]. Because of its capacity to produce high localization accuracy, the TDOA
is one of the most extensively utilized techniques [43]. In contrast to range-based localiza-
tion algorithms, range-free localization techniques estimate the unknown node position
using connectivity and topological information [44]. Distance vector hop (DV-Hop) [45],
centroid or weighted centroid technique [46], and approximation point-in-triangulation
test (APIT) [47] are the most extensively used range-free algorithms. Because these meth-
ods do not require a sophisticated hardware structure to determine range measurements,
they are both inexpensive and simple to build. However, when compared to range-based
algorithms, range-free algorithms typically have inferior localization accuracy [48].
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The nonlinear least squares (NLS) estimator [49], which is obtained by minimizing the
sum of the squared measurement errors, is a widely used estimation method for obtaining
the unknown position of a target. Generally, the solution in closed form for NLS estimator
is not obtainable, making it a challenge to obtain the solution of NLS nonlinear and non-
convex objective function. To obtain the closed-form solution of different localization
problems the linear least squares (LLS) and weighted least squares (WLS) methods are
often applied [50]. However, these methods do not provide the required localization
accuracy, and thus can be applied to provide an initial solution to the iterative optimization
methods.

In this way, a number of local search optimization algorithms are widely applied
to solve different localization problems [51]. We differentiate between the two groups of
optimization algorithms, whether or not they require knowledge of the gradient of objective
function, both of which perform local searches around the given starting solution [52].
Hence, numerous local search algorithms, such as Gauss–Newton, Nelder–Mead, and
Conjugate gradient method are employed to estimate the unknown target position by
solving the NLS estimation problem. However, finding the global optimum using local
search optimization algorithms highly depends on the provided initial solution [52]. This
leads to the conclusion that the convergence of local search algorithms while handling
multimodal optimization problems is typically not expected without suitable initialization.

Another widely used estimation method is the ML estimator, which is commonly ap-
plied when the measurement error distribution is previously known [53]. However, because
of the nonlinearity and non-convexity of the ML estimator’s objective function, typical local
search techniques cannot be used to address this sort of complicated optimization problem.
In this regard, to formulate a convex problem, second-order cone programming (SOCP)
and SDP methods are widely applied to transform ML estimation problem, overcoming the
non-convexity of the ML objective function [54]. In comparison to the SOCP method, the
simulation results of the comparative study of both algorithms reveal that the SDP method
gives superior precision of the target location [55]. The SDP and SOCP methods, on the
other hand, cannot the achieve desired precision of the estimated solution, especially in the
cases when severe measurement noise is present. As a result, there is a lot of interest in
improving and developing efficient EAs that can be used to identify the global best solution
to the nonlinear and non-convex ML estimation problem.

Various EAs, such as CS, PSO, BOA, and FA, etc., are applied to solve different localiza-
tion problems by estimating the unknown location of a target [9,18,56]. As a result, finding
an effective optimization algorithm for a specific localization problem is critical in order
to reduce the localization error in all situations. A significant increase on the positioning
accuracy is achieved by using PSO and TDOA together [57]. Results are compared with
well-known WLS and LLS techniques and the results reveal that the PSO method outper-
forms the well-known methods. Furthermore, the PSO algorithm based on chaos theory
is proposed for the hybrid TDOA/AOA location estimation problem, where the objective
function is formulated using the ML estimator [9]. The comparative analysis shows that the
improved PSO algorithm has enhanced global search ability compared to the conventional
optimization algorithms. For the localization of wireless sensor nodes in “concave areas”,
researchers suggested a two-stage PSO technique. The approach can achieve excellent
localization accuracy in wireless sensor networks while using little energy and processing
resources [58]. In [18], the BOA algorithm is employed to estimate the location of nodes by
minimizing the considered objective function. The results of the localization performance
of BOA demonstrate more consistent and accurate location of nodes compared to widely
applied methos, such as PSO and FA.

In addition, the hybridization of EAs is proven to be as an effective way to enhance
the quality of the solutions and improve the optimization efficiency. In this way, using
TDOA measurements a hybrid firefly algorithm (hybrid-FA), which combines the WLS
and FA algorithms, is proposed in [17] for target coordinates estimation. According to the
simulation findings, the hybrid-FA method outperforms other well-known localization
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algorithms in terms of performance and localization accuracy. In addition, various hybrid
variants of EAs, such as PSO and variable neighborhood search (HPSOVNS) [59], DE and
FA (HFDLA) [60] are successfully applied to enhance positioning accuracy.

Based on the preceding, an improved CAHBPSO algorithm is proposed here to in-
crease the accuracy of the estimated target position, especially when measurement noise
increases.

3. Localization Problem

This section looks at the problem of determining the unknown location of a passive
target in a LOS environment using noisy TDOA measurements. As shown in Figure 1,
the investigated localization system consists of one receiver at the origin of the coordinate
system xr =

[
0 0

]T , N transmitters with predefined known coordinates xt
i =

[
xt

i yt
i
]T ∈

R2, ∀i ∈ {1, 2, . . . , N}, and the unknown position of the passive target at x =
[
x y

]T ∈
R2.

Figure 1. Passive target localization using noisy TDOA measurements.

In the passive target localization problem, the transmitters emit a signal, and the target
reflects the signal from each of the transmitters in all directions. The TDOA measurements
are then obtained by the receiver capturing the reflected signal as well as the direct signal
from each of the transmitters. Furthermore, the receiver and transmitters are assumed to be
perfectly synced, and it is assumed that transmitter emitted signals are reflected from the
passive target across all possible directions while not engaging directly with the receiver
and transmitters [37]. When modelling the measurement error it is valid to assume that
its probability distribution is Gaussian, which holds in LOS conditions [2]. Therefore, the
noisy TDOA measurements are

ti =
1
c
(∥∥xt

i − x
∥∥

2 + ‖xr − x‖2 −
∥∥xt

i − xr
∥∥

2

)
+ n̄i, ∀i ∈ {1,2, . . . ,N}, (1)

where ‖ · ‖2 is the Euclidean distance in two dimensions, c denotes a constant which is
equal to the known speed of light, and n̄i represents measurement noise whose underlying
probability distribution, according to the assumption, is Gaussian. The range measurements
{ri}N

i=1, can be derived by multiplying Equation (1) with constant c, as follows
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ri = c · ti

=
(∥∥xt

i − x
∥∥

2 + ‖xr − x‖2 −
∥∥xt

i − xr
∥∥

2

)
+ ni, ∀i ∈ {1, 2, ..., N},

(2)

where ni = cn̄i follows the zero-mean Gaussian distribution. Then, introducing a new vari-
able r̃i = ri +

∥∥xt
i − xr

∥∥
2, and substituting it into the range measurements in Equation (2),

the following expression can be obtained

r̃i =
∥∥xt

i − x
∥∥

2 + ‖xr − x‖2 + ni, ∀i ∈ {1, 2, ..., N}. (3)

Then, the vector form of Equation (3) can be expressed as

r̃ = d(x) + n, (4)

where

d(x) =


∥∥xt

1 − x
∥∥

2 + ‖xr − x‖2
...∥∥xt

N − x
∥∥

2 + ‖xr − x‖2

, (5)

and n = [n1, n2, . . . , nN ]
Tis the vector of zero-mean Gaussian noise. It is assumed that all

elements of n are independent and identically distributed. In this regard, the covariance
matrix can be obtained as C = E

[
nnT] = σ2IN [37], where E[·] denotes the expectation

operator and IN is (N × N) identity matrix. Then, the vector d(x) can be rewritten as

d(x) = Hg(x), (6)

where
g(x) =

[
‖xr − x‖

∥∥xt
1 − x

∥∥ . . .
∥∥xt

N − x
∥∥]T , (7)

H =
[
1NIN

]
=


1 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 1

, (8)

in which 1N denotes the unit column vector of length N. Then, Equation (4) can be
reformulated as

r̃ = Hg(x) + n. (9)

As a result, the goal of this paper is to solve the nonlinear and non-convex ML
estimation problem and to effectively estimate the unknown position of the passive target
x based on noisy TDOA data.

4. Maximum Likelihood Estimator

The Maximum likelihood estimator can be successfully employed to determine the
unknown coordinates of the passive target by determining the extremum of the likelihood
function. Under the assumption that TDOA measurements are independent and identically
distributed Gaussian zero-mean random variables, the likelihood function L(r̃|x ) of the
obtained TDOA measurements can be expressed as

L(r̃|x ) = f (r̃|x ) =

=
1

(2π)N/2 det (C)1/2 exp
(
−1

2
(r̃−Hg(x))TC−1(r̃−Hg(x))

)
,

(10)

where f (r̃|x ) is the probability density function of the measurements. Then, taking the
logarithm of the likelihood function yields

ln L(r̃|x ) = k− 1
2σ2

(
(r̃−Hg(x))T(r̃−Hg(x))

)
, (11)
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where k = ln
(

1
(2π)N/2 det (C)1/2

)
can be neglected as it does not depend on x. In this regard,

the estimated position of the passive target x̂ is obtained as the solution of the following
non-convex optimization problem

x̂ = argmin
x∈R2

(JML(x)), (12)

where the ML objective function corresponding to this may be written as

JML(x) = (r̃−Hg(x))T(r̃−Hg(x)). (13)

Figure 2 shows the corresponding contour plot of the ML objective function JML(x).
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Figure 2. The contour plot of the considered ML objective function JML(x).

According to the plot of the the objective function JML(x) in Figure 2 it is concluded
that the JML(x) is nonlinear function which has multiple local optima. Furthermore, it is
noticed that the position of the global minimum of this function correlates to the coordinates
of the unknown position of the target. As a result, advanced optimization methods,
discussed in reminder of the paper, are required to obtain the global optimal solution.

5. Semidefinite Programming Method

This section presents the SDP approach to deal with non-convexity of the ML estima-
tion problem by transforming it into a convex optimization problem in order to solve the
passive target localization problem [2]. As described, the considered localization problem
leads to the non-convex and multimodal ML objective function. In order to try to solve
this problem, the SDP method is developed for the considered passive target TDOA-based
localization problem, which converts the objective function JML(x) to a convex function.
The ML estimation problem Equation (12) with regard to x can be expressed as follows:

x̂ = arg min
x∈R2

(r̃−Hg(x))T(r̃−Hg(x)). (14)
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The objective function of the considered ML optimization problem can be transformed
into a set of linear equations, by squaring both sides of Equation (2) and introducing an
additional variable between the receiver and the target Rr = ‖xr − x‖, as follows

−2
(
xr − xt

i
)Tx− 2r̃iRr + r̃2

i + ‖xr‖2 −
∥∥xt

i

∥∥2

= 2(r̃i − Rr)ni, ∀i ∈ {1, 2, ..., N},
(15)

where the second-order term of the noise n2
i is neglected. Introducing the variable θ, as

θ =
[
x Rr]T , (16)

the Equation (15) can be expressed in the linear-matrix from

b−Aθ = m, (17)

where

A = 2


xr − xt

1 yr − yr
1 r̃1

xr − xt
2 yr − yr

2 r̃2
...

...
...

xr − xt
N yr − yr

N r̃N

, (18)

b =


r̃2

1 + x2
r + y2

r −
(
xt

1
)2 −

(
yt

1
)2

r̃2
2 + x2

r + y2
r −

(
xt

2
)2 −

(
yt

2
)2

...
r̃2

N + x2
r + y2

r −
(
xt

N
)2 −

(
yt

N
)2

, (19)

and

m = 2


(r̃1 − Rr)n1
(r̃2 − Rr)n2

...
(r̃N − Rr)nN

. (20)

Then, based on Equation (16) through Equation (20), the following WLS optimization
problem can be formulated as

min
θ

J(θ) = min
θ

(b−Aθ)TW(b−Aθ) (21)

where W ∈ RN×N is a symmetric weighting matrix. Under the sufficiently small measure-
ment noise, the symmetric weighting matrix can be approximated as

W =
[

E
{

mmT
}]−1

=
(

DTCD
)−1

, (22)

where
D = diag{2(r̃1 − Rr), 2(r̃2 − Rr), . . . , 2(r̃N − Rr)}, (23)

It should be noted that since the measurement noise m from Equation (20) is Gaussian
distributed and due to the linear relationship in Equation (17), the objective function of
the ML estimator, given in Equation (13), is equivalent to that of the WLS estimator in
Equation (21) [61].

Then, by introducing the range between xr and x, denoted by Rr = ‖xr − x‖2 as the
equality constraint, the ML estimation problem in Equation (14) is expressed as

min
x

fob = min
θ

(b−Aθ)TW(b−Aθ)

s.t. Rr = ‖xr − x‖2.
(24)



Sensors 2022, 22, 5739 10 of 36

After corresponding algebraic manipulation, the objective function of the optimization
problem fob in Equation (24) becomes

fob =
N

∑
i=1

(bi − aiθ)
2

(r̃i − Rr)2 =
N

∑
i=1

[
bi

r̃i − Rr −
ãiθ

r̃i − Rr −
νiRr

r̃i − Rr

]2

, (25)

where bi denotes the ith element of vector b, ai is the ith row of matrix A. Here, ai =[
ãi νi

]
denotes a block matrix, where the submatrices are ãi =

[
ai(1) . . . ai(n)

]
and

νi = ai(n + 1).
To transform the objective function, the matrix property xTAx = Tr

(
xxTA

)
is em-

ployed. After introduction of the matrix notation z = xTx, the Equation (25) can be
rewritten as

[
x
1

]T


N
∑

i=1

ãi ãT
i i

(r̃i−Rr)2

N
∑

i=1

ãi(νi Rr−bi)

(r̃i−Rr)2

N
∑

i=1

ãT
i (νi Rr−bi)

(r̃i−Rr)2

N
∑

i=1

(νi Rr−bi)
2

(r̃i−Rr)2

[x
1

]
=

= Tr
(

P
[
xT 1

][x
1

])
= Tr

(
P
[

z x
xT 1

])
,

(26)

in which

P =


N
∑

i=1

ãi ãT
i i

(r̃i−Rr)2

N
∑

i=1

ãi(νi Rr−bi)

(r̃i−Rr)2

N
∑

i=1

ãT
i (νi Rr−bi)

(r̃i−Rr)2

N
∑

i=1

(νi Rr−bi)
2

(r̃i−Rr)2

, (27)

and Tr(·) denotes the trace of a square matrix.
Then, based on Equations (26) and (27) the optimization problem in Equation (24) can

be equivalently written as

min
x,z

Tr
(

P
[

z x
xT 1

])
s.t. Rr = ‖xr − x‖2

z = xTx.

(28)

The constraint in Equation (28) can be reformulated using the notation z = xTx,
as follows

Rr2 = ‖xr − x‖2
2 = xT

r xr − xT
r x− xTxr + xTx

⇔ Rr2=Tr
{[

In −xr
−xr

T xr
Txr

][
xT 1

][x
1

]}
= Tr

{[
In −xr
−xr

T xr
Txr

][
z x

xT 1

]}
.

(29)

Finding the global optimal solution of the optimization problem in Equation (28)
is difficult due to the non-convex equality constraint z = xTx. Therefore, the equality
constraint z = xTx is relaxed to a convex constraint as

z− xTx < 0, (30)

Then, after applying the Schur complement [62], the constraint can be equivalently
rewritten as a linear matrix inequality, as follows[

z x
xT 1

]
< 0. (31)
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Hence, the obtained matrix in Equation (31) is symmetric and positive semidefinite
matrix. Finally, the optimization problem in Equation (28) can be phrased as follows, based
on the above relaxation.

min
x,z,Rr

Tr
(

P
[

z x
xT 1

])
s.t. Rr2 = Tr

{[
In −xr
−xr

T xr
Txr

][
z x

xT 1

]}
[

z x
xT 1

]
< 0.

(32)

It should be noted, that for each fixed Rr, the obtained problem in Equation (32)
becomes convex optimization problem. However, this optimization problem becomes
non-convex, when the Equation (32) is solved with respect to variables {x, z, Rr}, e.g., when
the value of Rr is not previously known. Therefore, it is important to find the optimal value
of Rr, for which the problem in Equation (32) becomes convex. Thus, in this paper, the
golden section optimization algorithm (GSA) [52] is employed in order to determine the
optimal value of Rr. In this regard, two points within the interval

[
Rr

l , Rr
u
]

can be calculated
using the equations

Rr
1 = Rr

l + (1− ϕ)(Rr
u − Rr

l ),

Rr
2 = Rr

l + ϕ(Rr
u − Rr

l )
(33)

where ϕ =
(
−1 +

√
5
)

/2 represents the golden ratio. Afterwards, for each point Rr
j ,

j = 1, 2 obtained in Equation (33), the solutions xj and zj of the optimization problem
in Equation (32) are found, and the objective function can be evaluated at these points.
If fob

(
x1, z1, Rr

1
)
< fob(x2, z2, Rr

2), then the optimal point belongs to the interval
[
Rr

l , Rr
2
]
,

otherwise if fob
(
x1, z1, Rr

1
)
> fob(x2, z2, Rr

2) the solution belongs to
[
Rr

1, Rr
u
]
. Alternatively,

if fob
(
x1, z1, Rr

1
)
= fob(x2, z2, Rr

2) the boundaries are reduced to Rr
l = Rr

1 and Rr
u = Rr

2, and
the optimization process is repeated. The values of Rr

1 and Rr
2 are calculated iteratively

until the difference
∣∣Rr

1 − Rr
2

∣∣ ≤ ε is less than a predefined positive number ε.
Therefore, the procedure for determining the optimal value of Rr, for which the

considered SDP optimization problem becomes convex problem can be stated as follows:

Step 1: Initialize the Rr
l and Rr

u.
Step 2: Calculate the points Rr

1 and Rr
2 according to Equation (33).

Step 3: Solve Equation (32) with Rr = Rr
1 and Rr = Rr

2.
Step 4: If fob

(
x1, z1, Rr

1
)
< fob(x2, z2, Rr

2), then the interval becomes
[
Rr

l , Rr
2
]
, otherwise

interval is
[
Rr

1, Rr
u
]
. If fob

(
x1, z1, Rr

1
)
= fob(x2, z2, Rr

2) boundaries become Rr
l = Rr

1
and Rr

u = Rr
2 and go to Step 2.

Step 5: Repeat Steps 2–4 until
∣∣Rr

1 − Rr
2

∣∣ ≤ ε is satisfied.

6. Butterfly Optimization Algorithm and the Proposed Improved Version
6.1. Conventional BOA Algorithm

The butterfly optimization algorithm is a novel nature-inspired metaheuristic algo-
rithm, where the search process is inspired by the food foraging behavior and the process
of mating between butterflies [13]. The BOA is based on three assumptions:

1. All butterflies are said to release some fragrance in order to attract one another.
2. Each butterfly either moves randomly or towards the butterfly with the strongest

fragrance (i.e., the best butterfly in the current generation)
3. The stimulus intensity of a butterfly is proportional to the objective function value.

In general, the optimization process of the BOA algorithm can be divided into three
stages: initialization, iteration, and the final optimization stage. In the first stage, the
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values of control parameters of the algorithm are defined, and the set of initial solutions
is randomly generated within the upper and lower bounds. In the iteration stage, the
search for the global optimal solution is performed. Firstly, the algorithm calculates the
objective function value of each butterfly, and then butterflies generate the fragrance at
their positions. The intensity of the fragrance sensed by the butterfly, ϕi, can be described
as a function of the physical intensity of stimulus, as follows

ϕi = cIa, (34)

where c denotes the sensory fragrance, a represents the power exponent, and I is the
stimulus intensity, which is proportional to the objective function value. Here, coefficients
c and a are assigned in the range [0, 1]. In the case a = 1, there is no fragrance absorption,
while when a = 0, other butterflies cannot detect the fragrance produced by any butterfly.
Stimulus intensity I for ith butterfly can be determined as

I = f
(

x(G)
i

)
, (35)

where x(G)
i denotes the position of the ith butterfly in the Gth generation, and f is the

objective function of the considered optimization problem.
During the search for the global optimum, the BOA algorithm goes through two key

phases, the global search phase and the local search phase. In the first phase, the butterfly
is updating its position according to the global best solution

x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi, (36)

where g∗ represents the best solution found in the current iteration (i.e., butterfly with the
strongest fragrance) and r represents uniform random number in the range r ∈ [0, 1]. On
the other hand, the local search phase of the BOA algorithm can be written as

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi, (37)

where x(G)
j and x(G)

k are the jth and kth butterfly positions within the search space, respectively.
The switch probability p is used to transition between the global and local search

phases of the algorithm, as shown below x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi, if rp < p

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi, otherwise

(38)

where rp denotes uniformly generated random number in the range [0, 1]. Therefore,
the global search phase of the BOA algorithm, defined in Equation (36), is applied if
rp < p. Otherwise, the local search phase, given in Equation (37), is employed to search
for the optimal solution. The above-mentioned process is repeated until the stopping
criteria is satisfied and the optimal solution is obtained, in the final optimization stage of
the algorithm.

6.2. Improved BOA Algorithm

The conventional BOA algorithm provides an excellent local search ability; however, it
suffers from premature convergence to local optima due to its poor exploitation ability [20].
Therefore, there is a need to modify the trade-off between the global and local search of the
BOA in order to solve multimodal and complex optimization problems.

Analyzing Equation (34), it is evident that sensory fragrance c is one of the most
important parameters in BOA, which guides the movement of butterflies during the search
process by enabling each butterfly to sense the fragrances emitted by other butterflies.



Sensors 2022, 22, 5739 13 of 36

Therefore, using a constant value for parameter c is not suitable for complex optimization
problems. Using a small value of c, during the entire search process, can result in premature
convergence. On the other hand, in the early stage of the search process, a large constant
value of sensory fragrance c leads to a high probability of missing the area of global optimal
solution, which reduces the optimization performance. In this regard, it is critical to adjust
the value of the sensory fragrance c adaptively during the search process in order to enhance
the balance between exploration and exploitation ability.

Therefore, to provide an appropriate balance between global and local search abilities,
in this paper, an adaptive sensory fragrance c(G+1) has been introduced, which can be
described as follows

c(G+1) =
1

1 + exp
(
− c(G)G

0.2Gmax

) , (39)

where Gmax denotes the maximum number of generations. In this respect, the changes of
proposed adaptive sensory fragrance c(G+1), defined in Equation (39), versus the number
of generations is illustrated in Figure 3.
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Figure 3. The changes of the adaptive sensory fragrance c(G)during the optimization process.

According to Figure 3, it can be observed that the adaptive sensory fragrance c(G) has
smaller value at the beginning of the search process, and achieves a larger value with the
increase of generations. Therefore, in the early stage of the search process, the smaller value
of c(G) can enhance the global exploration ability and prevent premature convergence.
On the other hand, in the later stage of search process, a larger value of c(G) can improve
exploitation ability and convergence speed of the algorithm.

7. Particle Swarm Optimization and the Proposed Improved Version
7.1. Conventional PSO Algorithm

In the PSO algorithm [23], the search process is performed based on velocity and
position vectors. Each particle in a swarm of NP particles at Gth generation, has a position

vector x(G)
i =

[
x(G)

i,1 , x(G)
i,2 , . . . , x(G)

i,n

]T
and velocity vector v(G)

i =
[
v(G)

i,1 , v(G)
i,2 , . . . , v(G)

i,n

]T
,

∀i ∈ {1, 2, . . . , NP}, in the n-dimensional space. In the initial generation, the position and
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velocity vectors are randomly generated within the upper and lower bounds. During the
optimization process, each particle moves through the search space with velocity v(G)

i ,

which depends on the personal previous best position p(G)
i =

[
p(G)

i,1 , p(G)
i,2 , . . . , p(G)

i,n

]T
and

best position discovered by the whole population g(G) =
[

g(G)
1 , g(G)

2 , . . . , g(G)
n

]T
. Therefore,

the position and velocity vectors of each particle at (G + 1)th generation are updated
as follows

v(G+1)
i = v(G)

i + c1r1

(
p(G)

i − x(G)
i

)
+ c2r2

(
g(G) − x(G)

i

)
, (40)

x(G+1)
i = x(G)

i + v(G+1)
i , (41)

where c1 and c2 are the cognitive and social acceleration coefficients, respectively, which
are commonly set to 2 [26]. Here, r1 and r2 are two distinct random numbers uniformly
distributed in the range [0, 1]. In order to ensure the balance between the exploration and
exploitation abilities during the optimization process, the inertia weight ω(G) is introduced
into the PSO algorithm. Therefore, the velocity vector v(G+1)

i of each particle is updated
using the linear-decreasing inertia [63], as follows

v(G+1)
i = ω(G)v(G)

i + c1r1

(
p(G)

i − x(G)
i

)
+ c2r2

(
g(G) − x(G)

i

)
, (42)

ω(G) = ωmax −
G

Gmax
(ωmax −ωmin), (43)

where ωmax and ωmin denote the maximum and minimum values of the inertia weight,
respectively. In the literature, the maximum and minimum value of inertia weight is
commonly set to ωmax = 0.9 and ωmin = 0.4 [63].

7.2. Chaos Enhanced PSO Algorithm

The conventional PSO algorithm exhibits the issue of premature convergence to local
optima, which may affect its optimization performance in solving complex optimization
problems [26]. In this regard, the introduction of chaos theory into the PSO algorithm
can improve the optimization performance, by modifying the PSO algorithm to escape
more easily from local optima [30,64,65]. Therefore, in this paper, the logistic chaos map is
implemented to dynamically adjust the value of inertia weight, in order to maintain the
appropriate balance between global exploration and local exploitation abilities during the
optimization process.

Chaotic Dynamic Inertia Weight

It is well known in the literature that the inertia weight has an important role in main-
taining the balance between exploitation and exploration abilities during the optimization
process [27]. Analyzing Equation (43), it is evident that a large value of inertia weight, in
the early stage of the search process, can improve the global search abilities of the PSO
algorithm and prevent the problem of premature convergence. On the other hand, a smaller
value of inertia weight, in the later stage of search process, can improve the local search
ability of the PSO algorithm. A number of different inertia weight strategies are proposed
in the literature, among which the linear-decreasing inertia weight given in Equation (43)
is widely employed. According to the analysis [27,66], choosing the appropriate inertia
weight strategy for the current optimization problem depends on the properties of the
objective function. In order to obtain an appropriate balance between exploration and
exploitation skills for solving complex optimization problems, additional modifications to
the inertia weight are necessary.

In recent years, the introduction of chaos theory is emerging as a powerful approach
for improving the optimization performance of different metaheuristic algorithms [64,65].
Chaos is a bounded dynamic behavior that can be observed in certain nonlinear dynamic
systems. In this regard, the chaotic behavior can be represented with chaos maps, which
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produce a bounded sequence of random numbers depending on initial condition. In this
way, the well-known logistic chaotic map [65], which has the properties of ergodicity,
non-repetition and irregularity, is employed in this paper, to adjust the value of inertia
weight. The expression for logistic map is given as

x(G+1)
c = aωx(G)

c

(
1− x(G)

c

)
, G = 1, 2, . . . , Gmax. (44)

where aω denotes the control parameter. It should be noted that for certain initial conditions,
e.g., x(0)c 6∈ {0, 0.25, 0.5, 0.75, 1} and aω = 4, the logistic chaos map exhibits chaotic behavior.

In Figure 4, the unbounded chaotic behavior produced by logistic chaotic map, given
in Equation (44) is presented as a function of generation number G, for the x(0)c = 0.9 and
aω = 4.
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Figure 4. The the unbounded chaotic behavior produced by logistic chaotic map for the x(0)c = 0.9
and aω = 4.

Furthermore, to better control the inertia weight parameter, the logistic chaos map is
upper-bounded by introducing the term e−G/Gmax . Therefore, the chaotic dynamic inertia
weight ω

(G+1)
c can be calculated as follows

ω
(G)
c = e−

G
Gmax · x(G)

c (45)

In this respect, Figure 5 illustrates the changes of the proposed chaotic dynamic inertia
weight ω

(G+1)
c , defined in Equation (45), with the increase of generations. As can be seen

from Figure 5, the chaotic dynamic inertia weight ω
(G+1)
c , defined in Equation (45), is

upper-bounded by the exponential factor e−G/Gmax , and the value of ω
(G+1)
c gradually

decreases with the increase of generations. In the early stage of the search process, ω
(G+1)
c

has a larger value, which is suitable for enhancing the global search ability and finding
the region of the global optimal solution. In the later stage of search process, a smaller
value of ω

(G+1)
c can enhance the exploitation ability and improve the convergence towards

the global optimum. This shows that the proposed chaotic dynamic inertia weight ω
(G+1)
c
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provides an effective balance between global exploration and local exploitation abilities,
and thus improves the optimization performance of the PSO algorithm.
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Figure 5. The changes of the chaotic dynamic inertia weight ω
(G+1)
c during the search process.

8. Chaos Enhanced Adaptive Hybrid Butterfly Particle Swarm Optimization Algorithm

To efficiently solve the considered complex passive target localization problem, in
this section, CAHBPSO algorithm is introduced, as a hybridization of the BOA with PSO
algorithm. In order to overcome the problem of premature convergence and enhance the
exploration and exploitation abilities of PSO algorithm, in this paper, the global search
and local search phases of conventional BOA algorithm are incorporated into the velocity
update equation of the PSO algorithm. Instead of fixed switch probability, we propose an
adaptive technique to dynamically adjust between global exploration and local exploitation
abilities during the optimization process. In addition, the proposed adaptive strategy for
updating the value of the sensory fragrance of the BOA algorithm is introduced into the
CAHBPSO algorithm. Furthermore, the chaotic dynamic inertia weight, proposed in this
paper, is incorporated into the hybrid algorithm with the aim to improve convergence
and efficiently maintain the population diversity. Therefore, to improve the optimization
performance and achieve a more efficient algorithm for complex optimization problems,
the following two modifications are proposed.

Firstly, the exploration of the PSO algorithm is enhanced by replacing the term
c2r2

(
g(G) − x(G)

i

)
in Equation (42) with

(
r2 × g∗ − x(G)

i

)
× ϕi from the global search phase

of the BOA algorithm, given in Equation (36). Furthermore, v(G)
i in Equation (42) is substi-

tuted with x(G)
i from Equation (36), and linear inertia weight ω(G) is replaced with chaotic

dynamic inertia weight ω
(G+1)
c . The equation for updating the ith butterfly’s location can

thus be expressed as

x(G+1)
i = ω

(G+1)
c x(G)

i + c1r1

(
p(G)

i − x(G)
i

)
+
(

r2 × g∗ − x(G)
i

)
× ϕi. (46)

Next, further modification is done with the aim to enhance the local search ability
PSO algorithm. In this regard, we exchange the term c1r1

(
p(G)

i − x(G)
i

)
in Equation (42)



Sensors 2022, 22, 5739 17 of 36

with the term
(

r2 × x(G)
j − x(G)

k

)
× ϕi from the local search phase of the BOA algorithm,

given in Equation (37). Furthermore, v(G)
i in Equation (42) is substituted with x(G)

i from

Equation (37) and the proposed chaotic dynamic inertia weight ω
(G+1)
c is introduced.

Therefore, the new butterfly position is determined by

x(G+1)
i = ω

(G+1)
c x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi + c2r2

(
g(G) − x(G)

i

)
. (47)

In this paper, instead of using a fixed switch probability, an adaptive mechanism is
proposed to dynamically adjust between global exploration and local exploitation during
the optimization process. In this regard, the adaptive switch probability p(G+1) can be
described as follows

p(G+1) =

∣∣∣∣∣ f (G)
mean − f (G)

best

f (G)
worst − f (G)

best

∣∣∣∣∣, (48)

where f (G)
mean, f (G)

best and f (G)
worst denote the mean, best, and worst values butterflies achieved in

the previous generation in terms of objective function, respectively.
The trade of between global and local search abilities during the optimization process

can be managed by changing the parameter p(G+1), according to Equation (48). In the
following analysis we can consider two two extreme cases. Firstly, the parameter p(G+1) is
near to 1, indicating that the algorithm’s global exploration capabilities has to be improved
since the diversity in the population is low. As a result, Equations (36) and (46) will be
picked at random with a probability of 0.5, with the goal of improving global exploration
and locating the global optimal solution region. In the second case, parameter p(G+1) is
close to 0, indicating that all the solutions are near the global optimal solution, which
shows that local exploitation must be improved. Therefore, Equations (37) and (47) will be
randomly selected, with the probability of 0.5, to enhance exploitation ability and improve
the convergence speed.

In this regard, the position of the ith butterfly can be updated based on the value of
parameter p(G+1) according to the pseudocode shown in Algorithm 1.

Algorithm 1 Position update of the ith butterfly of the proposed hybrid CAHBPSO algorithm.

if p(G+1) > 0.5 then
if rand > 0.5 then

x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi

else
x(G+1)

i = ω
(G+1)
c x(G)

i + c(G)
1 r1

(
p(G)

i − x(G)
i

)
+
(

r2 × g∗ − x(G)
i

)
× ϕi

end if
else if p(G+1) ≤ 0.5 then

if rand > 0.5 then
x(G+1)

i = x(G)
i +

(
r2 × x(G)

j − x(G)
k

)
× ϕi

else
x(G+1)

i = ω
(G+1)
c x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi + c(G)

2 r2

(
g(G) − x(G)

i

)
end if

end if

The proposed modifications, introduced in the CAHBPSO algorithm, provide an
effective balance between exploration and exploitation abilities during the optimization
process. Furthermore, these modifications are effective in overcoming the problem of
premature convergence. In this way, the pseudocode of the proposed CAHBPSO algorithm
is presented in Algorithm 2, for the considered passive target localization problem.
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Algorithm 2 Pseudo-code of the proposed CAHBPSO algorithm.

Generate initial population
Determine stimulus intensity Ii = f

(
x(0)i

)
Set the value of parameters c1, c2, a, Gmax, aω, ω(0)

Initialize values of p(0)
i and g(0)

while stopping criteria not met do
Calculate adaptive sensory modality function c(G) according to Equation (39)
for each butterfly i in the population do

Calculate fragrance ϕi = cIa

end for
Find the best butterfly
Calculate chaotic inertia weight according to Equation (45)
for each butterfly i in the population do

if p(G+1) > 0.5 then
if rand > 0.5 then

x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi

else
x(G+1)

i = ω
(G+1)
c x(G)

i + c(G)
1 r1

(
p(G)

i − x(G)
i

)
+
(

r2 × g∗ − x(G)
i

)
× ϕi

end if
else if p(G+1) ≤ 0.5 then

if rand > 0.5 then
x(G+1)

i = x(G)
i +

(
r2 × x(G)

j − x(G)
k

)
× ϕi

else
x(G+1)

i = ω
(G+1)
c x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi + c(G)

2 r2

(
g(G) − x(G)

i

)
end if

end if
end for
Find the global best solution g(G)

Determine the personal best solution according to:

p(G+1)
i =

{
p(G)

i , if p(G)
i ≺ x(G)

i
x(G)

i , otherwise
end while

9. Cramer–Rao Lower Bound

The CRLB for the passive target localization problem provides a lower bound on the
covariance matrix of any unbiased estimator [37]. Therefore, in this paper, the CRLB is used
as a benchmark to evaluate the performance of the considered estimators. The derivation
of the CRLB can be obtained from the inverse of the Fisher information matrix (FIM) F(x),
which can be defined as

F(x) = E

[(
∂ ln( f (r̃|x ))

∂x

)(
∂ ln( f (r̃|x ))

∂x

)T
]

= −E
[

∂2 ln( f (r̃|x ))
∂x∂xT

]
.

(49)

Thus, the components of the FIM are given as follows

F(x) =
[

F11 F12
F21 F22

]
, (50)



Sensors 2022, 22, 5739 19 of 36

where the corresponding elements can be obtained as

F11 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖
+

x− xt
i∥∥x− xt

i

∥∥
2

)2

, (51)

F12 = F21 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖
+

x− xt
i∥∥x− xt

i

∥∥
2

)

×
(

y− yr

‖x− xr‖
+

y− yt
i∥∥x− xt

i

∥∥
2

)
,

(52)

F22 =
1
σ2

N

∑
i=1

(
y− yr

‖x− xr‖
+

y− yt
i∥∥x− xt

i

∥∥
2

)2

. (53)

The derivations of Equations (51)–(53) are given in Appendix A. Then, the relationship
between the variance and CRLB can be defined as

E
[
(x̂−x) (x̂−x)T

]
≥ Tr

{
F(x)−1

}
= CRLB(x), (54)

where x̂ denotes the estimated value of x.

10. Experimental Study

This section present the experimental results conducted in order to evaluate the lo-
calization accuracy of the proposed CAHBPSO algorithm and compare the optimization
performance with the well-known algorithms in the literature on a set of CEC2014 bench-
mark problems using the statistical analysis. Therefore, the obtained results are outlined in
the following two subsections.

10.1. Statistical Evaluation of CAHBPSO Method against the CEC2014 Benchmark

This section outlines the results of the statistical comparison of the optimization
performance between the proposed CAHBPSO algorithm and widely applied algorithms
in the literature, including PSO [23], BOA [13], SHADE [67] and HPSOBOA [33] on a
set of CEC2014 benchmark problems. The CEC2014 benchmark problems consist of 30
single-objective real-parameter numerical optimization problems, where D = 10, 30, 50,
and 100 are the considered dimensions of the search space, which are defined in [68]. The
considered CEC2014 benchmark problems can be classified into four groups:

• f1 − f3 unimodal optimization problems;
• f4 − f16 simple multimodal objective functions;
• f17 − f22 hybrid objective functions, in which variables are subdivided and various

basic functions are applied to each subset;
• f23− f30 composition functions, which provide continuity around the optimal solution

and merge the properties of sub-functions.

The metric of the obtained solution error f (x̂)– f (x∗) was established to make a statis-
tical comparison of the optimization performance of CAHBPSO and other widely applied
algorithms, where x̂ represents the global optimum of each algorithm produced in a single
run and x∗ denotes the solution to the CEC2014 benchmark problem, which is previously
known. For each of the test functions, each algorithm was run 51 times with the termination
threshold set at 10,000D and the swarm size was NP = 100 particles. The search space
for each objective function is defined as [−100 100]D. As a consequence, the obtained
experimental findings are examined and compared using two nonparametric statistical
hypothesis tests, such as the Wilcoxon signed-rank test and the Friedman test, to perform
statistical assessment of optimization performance.
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To perform pair-wise comparison of optimization performance between the proposed
CAHBPSO and other well-known algorithms, the Wilcoxon signed-rank test is applied. In
this regard, statistical comparison findings can reveal if the first algorithm outperforms
the second method statistically. The significance level for this statistical test was set at 0.05.
In the findings, R+ means the total of rankings in which the first algorithm exceeded the
second, whereas R− denotes the sum of ranks in which the second algorithm outperformed
the first algorithm. The Wilcoxon signed-rank test’s null hypothesis asserts that “there
is no difference between the mean findings of the two samples” [69]. The alternative
hypothesis, on the other hand, asserts that “there is a difference in the mean results of the
two samples”. Therefore, using the p value and comparing it with the significance level
α, the null hypothesis can be rejected when p ≤ α. In this regard, the obtained results
are denoted with signs +, ≈, − according to the result of the statistical test. Here, plus
sign (+) denotes that the first algorithm had significantly better optimization performance
than second one, minus sign (−) indicates that the first algorithm performed significantly
worse than the first one, while the sign (≈) denotes that there is no significant difference in
optimization performance between two considered algorithms.

The Friedman test is used in this study to determine the substantial difference between
the optimization performances of the studied methods. In order to determine the rankings
of all examined algorithms across each CEC2014 objective function over each of the search
space dimensions D, the Friedman test is utilized. As a result, the algorithm with the
lowest rank performs the best in terms of optimization, while the method with the highest
rank performs the worst. The Friedman test’s null hypothesis is that “there is no difference
among the performance of all algorithms”, whereas the alternative hypothesis is that “there
is a difference among the performance of all algorithms” [69]. When the p value is less than
or equal to α = 0.05, the null hypothesis can be rejected.

The numerical simulations results of the proposed CAHBPSO and other considered
algorithms, computed over 51 independent trials on a set of CEC2014 benchmark problems
are presented in Table 1. The results are presented in terms of mean (Mean) and standard
deviation (STD) of the best obtained objective function value. Furthermore, the sign is
added to indicate if the examined method outperforms (+), performs similarly (≈), or
worse (−) than the suggested CAHBPSO method.
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Table 1. Table presents the objective function values in terms of mean and standard deviation obtained by the considered algorithms, as a result of the numerical
simulation performed on 30 CEC2014 test functions.

CAHBPSO SHADE FA BOA PSO HPSOBOA

Mean (STD) Sign

f1

10 2.20× 103(3.48× 103) 2.03× 106(1.15× 106)+ 2.76× 108(1.66× 108)+ 2.76× 106(2.10× 106)+ 2.24× 106(2.59× 106)+ 2.51× 108(1.22× 108)+
30 4.31× 106(4.41× 106) 1.31× 108(4.48× 107)+ 3.57× 109(9.93× 108)+ 4.69× 108(2.03× 108)+ 3.82× 107(3.26× 107)+ 1.28× 104(1.03× 104)−
50 7.81× 106(5.49× 106) 2.32× 108(6.41× 107)+ 9.04× 109(1.88× 109)+ 1.62× 109(5.33× 108)+ 5.80× 107(3.57× 107)+ 1.24× 1010(3.15× 109)+
100 1.53× 108(6.61× 107) 8.87× 108(1.61× 108)+ 2.13× 1010(3.21× 109)+ 4.47× 109(9.49× 108)+ 3.13× 108(1.25× 108)+ 4.74× 105(1.91× 105)−

f2

10 3.08× 102(3.81× 102) 3.04× 105(1.60× 105)+ 1.28× 1010(4.14× 109)+ 2.78× 108(2.42× 108)+ 2.69× 103(3.81× 103)+ 1.22× 1010(2.28× 109)+
30 3.93× 10−2(2.15× 10−1) 2.84× 107(9.70× 106)+ 1.34× 1011(1.58× 1010)+ 3.76× 1010(5.70× 109)+ 9.43× 108(8.59× 108)+ 9.79× 1010(1.49× 1010)+
50 3.12× 103(4.40× 103) 2.74× 108(9.07× 107)+ 2.74× 1011(2.32× 1010)+ 9.79× 1010(1.49× 1010)+ 5.20× 109(3.36× 109)+ 1.90× 1011(2.41× 109)+
100 2.56× 106(1.81× 107) 5.52× 109(1.06× 109)+ 6.44× 1011(4.03× 1010)+ 2.36× 1011(1.60× 1010)+ 3.18× 1010(7.48× 109)+ 2.31× 10−12(4.27× 10−12)−

f3

10 4.01× 10−3(1.08× 10−2) 1.13× 103(6.34× 102)+ 3.23× 105(1.20× 106)+ 8.10× 102(2.90× 102)+ 2.24× 103(2.82× 103)+ 1.62× 104(2.13× 103)+
30 1.44× 100(1.71× 100) 2.45× 104(8.20× 103)+ 2.14× 106(6.68× 106)+ 3.57× 104(7.26× 103)+ 2.23× 104(8.42× 103)+ 1.27× 105(1.24× 104)+
50 2.12× 103(1.96× 103) 3.00× 105(1.46× 105)+ 5.83× 105(6.73× 105)+ 1.27× 105(1.24× 104)+ 4.73× 104(1.15× 104)+ 1.88× 105(4.85× 103)+
100 7.25× 103(3.71× 103) 7.03× 105(2.23× 105)+ 8.45× 105(1.60× 105)+ 2.64× 105(1.62× 104)+ 1.45× 105(1.64× 104)+ 3.79× 10−12(5.76× 10−12)−

f4

10 1.15× 101(1.62× 101) 3.43× 101(3.25× 100)+ 2.58× 103(1.25× 103)+ 6.65× 102(3.59× 102)+ 3.31× 101(7.85× 100)+ 2.18× 101(1.63× 101)+
30 1.56× 102(4.06× 101) 1.64× 102(2.02× 101)≈ 3.56× 104(9.83× 103)+ 8.79× 103(1.30× 103)+ 1.76× 102(4.57× 101)− 2.02× 100(1.07× 101)−
50 1.78× 102(3.58× 101) 2.67× 102(4.55× 101)+ 1.15× 105(1.97× 104)+ 2.87× 104(4.08× 103)+ 5.43× 102(2.22× 102)+ 6.47× 104(2.93× 103)+
100 5.65× 102(1.18× 102) 1.06× 103(1.07× 102)+ 2.85× 105(3.58× 104)+ 6.59× 104(7.89× 103)+ 2.39× 103(9.13× 102)+ 1.55× 102(4.59× 101)−

f5

10 1.94× 101(3.95× 100) 2.09× 101(1.41× 10−1)+ 2.03× 101(6.68× 10−2)+ 1.99× 101(1.17× 100)+ 1.98× 101(2.83× 100)+ 4.37× 100(7.92× 100)−
30 2.08× 101(6.36× 10−2) 2.13× 101(6.99× 10−2)+ 2.10× 101(4.53× 10−2)+ 2.09× 101(5.30× 10−2)+ 2.09× 101(1.08× 10−1)+ 2.03× 101(4.20× 10−2)−
50 2.10× 101(6.12× 10−2) 2.14× 101(4.64× 10−2)+ 2.12× 101(3.06× 10−2)+ 2.11× 101(2.76× 10−2)+ 2.11× 101(4.71× 10−2)+ 2.13× 101(3.36× 10−2)+
100 2.13× 101(3.48× 10−2) 2.15× 101(3.22× 10−2)+ 2.13× 101(2.73× 10−2)+ 2.13× 101(2.37× 10−2)+ 2.13× 101(2.50× 10−2)+ 2.07× 101(4.29× 10−2)−

f6

10 7.93× 10−1(9.58× 10−1) 6.27× 100(1.81× 100)+ 1.30× 101(9.28× 10−1)+ 4.55× 100(4.65× 10−1)+ 1.44× 100(8.74× 10−1)+ 3.55× 10−1(6.06× 10−1)−
30 9.37× 100(2.44× 100) 3.86× 101(3.11× 100)+ 4.83× 101(1.42× 100)+ 2.98× 101(1.43× 100)+ 1.16× 101(2.34× 100)+ 2.32× 101(4.19× 100)−
50 2.52× 101(3.75× 100) 6.80× 101(5.33× 100)+ 8.41× 101(1.77× 100)+ 5.89× 101(2.00× 100)+ 2.65× 101(3.96× 100)≈ 2.32× 101(4.19× 100)−
100 7.52× 101(5.97× 100) 1.53× 102(7.13× 100)+ 1.77× 102(2.32× 100)+ 1.40× 102(3.28× 100)+ 8.03× 101(5.06× 100)+ 7.02× 101(1.19× 101)−

f7

10 1.04× 10−1(4.43× 10−2) 9.22× 10−1(8.92× 10−2)+ 1.96× 102(4.95× 101)+ 9.20× 101(3.01× 101)+ 4.78× 10−1(5.82× 10−1)+ 7.46× 10−2(3.99× 10−2)−
30 1.79× 10−2(2.13× 10−2) 1.22× 100(6.78× 10−2)+ 1.16× 103(1.59× 102)+ 5.98× 102(6.79× 101)+ 8.70× 100(9.21× 100)+ 1.82× 10−2(3.05× 10−2)+
50 1.03× 10−2(1.22× 10−2) 3.72× 100(7.66× 10−1)+ 2.68× 103(2.70× 102)+ 1.27× 103(8.60× 101)+ 4.60× 101(3.21× 101)+ 1.82× 10−2(3.05× 10−2)−
100 3.81× 10−3(7.32× 10−3) 5.38× 101(1.27× 101)+ 5.80× 103(3.77× 102)+ 2.78× 103(9.78× 101)+ 2.73× 102(6.99× 101)+ 1.01× 10−1(3.33× 10−1)+

f8

10 5.85× 10−2(2.36× 10−1) 3.84× 101(8.60× 100)+ 1.15× 102(1.45× 101)+ 3.98× 101(6.06× 100)+ 5.53× 100(3.07× 100)+ 9.48× 101(5.62× 100)+
30 1.27× 101(3.29× 100) 2.24× 102(2.01× 101)+ 4.97× 102(3.56× 101)+ 2.70× 102(1.59× 101)+ 6.29× 101(1.35× 101)+ 2.50× 101(2.23× 101)−
50 3.86× 101(6.75× 100) 4.38× 102(2.91× 101)+ 9.32× 102(4.80× 101)+ 5.51× 102(2.24× 101)+ 1.73× 102(3.13× 101)+ 2.50× 101(2.23× 101)−
100 1.37× 102(2.47× 101) 1.02× 103(4.43× 101)+ 2.05× 103(5.06× 101)+ 1.27× 103(2.83× 101)+ 5.56× 102(4.88× 101)+ 2.12× 102(5.37× 101)+
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Table 1. Cont.

CAHBPSO SHADE FA BOA PSO HPSOBOA

Mean (STD) Sign

f9

10 4.48× 100(2.00× 100) 5.79× 101(1.05× 101)+ 1.20× 102(1.37× 101)+ 3.87× 101(6.38× 100)+ 1.04× 101(5.22× 100)+ 4.86× 10−1(8.27× 10−1)−
30 6.19× 101(1.59× 101) 2.69× 102(2.42× 101)+ 6.10× 102(4.43× 101)+ 2.90× 102(1.80× 101)+ 8.12× 101(2.19× 101)+ 8.92× 101(2.34× 101)−
50 1.34× 102(2.48× 101) 5.02× 102(3.41× 101)+ 1.16× 103(6.09× 101)+ 6.10× 102(2.70× 101)+ 1.82× 102(3.17× 101)+ 8.92× 101(2.34× 101)−
100 3.43× 102(5.85× 101) 1.13× 103(5.30× 101)+ 2.49× 103(9.12× 101)+ 1.38× 103(4.42× 101)+ 5.63× 102(6.26× 101)+ 3.47× 102(6.33× 101)+

f10

10 5.69× 101(6.45× 101) 1.58× 103(3.08× 102)+ 2.04× 103(1.45× 102)+ 9.91× 102(1.20× 102)+ 2.16× 102(1.29× 102)+ 4.42× 10−1(9.31× 10−1)−
30 5.05× 102(2.49× 102) 7.46× 103(5.76× 102)+ 8.61× 103(2.09× 102)+ 6.59× 103(2.85× 102)+ 1.97× 103(4.69× 102)+ 1.49× 100(1.15× 100)−
50 1.10× 103(3.56× 102) 1.39× 104(8.79× 102)+ 1.55× 104(1.87× 102)+ 1.29× 104(3.37× 102)+ 5.28× 103(7.33× 102)+ 1.49× 100(1.15× 100)−
100 3.96× 103(7.39× 102) 3.18× 104(1.11× 103)+ 3.39× 104(3.52× 102)+ 3.02× 104(6.48× 102)+ 1.56× 104(9.18× 102)+ 1.60× 100(1.02× 100)−

f11

10 1.79× 102(1.32× 102) 2.14× 103(2.62× 102)+ 2.07× 103(9.23× 101)+ 1.07× 103(1.36× 102)+ 3.26× 102(1.67× 102)+ 1.30× 101(1.13× 101)−
30 2.54× 103(5.97× 102) 9.01× 103(4.31× 102)+ 8.55× 103(1.95× 102)+ 6.93× 103(2.24× 102)+ 2.55× 103(7.53× 102)≈ 3.88× 103(3.89× 102)−
50 5.68× 103(1.22× 103) 1.62× 104(7.22× 102)+ 1.54× 104(2.35× 102)+ 1.32× 104(4.71× 102)+ 5.65× 103(7.51× 102)≈ 3.88× 103(3.89× 102)−
100 1.64× 104(4.62× 103) 3.47× 104(9.68× 102)+ 3.36× 104(3.37× 102)+ 3.07× 104(6.24× 102)+ 1.38× 104(2.76× 103)− 1.23× 104(1.05× 103)−

f12

10 1.05× 10−1(1.24× 10−1) 3.39× 100(1.02× 100)+ 1.08× 100(1.77× 10−1)+ 9.85× 10−1(1.31× 10−1)+ 3.31× 10−1(3.61× 10−1)+ 1.12× 10−1(2.90× 10−2)+
30 1.42× 100(6.26× 10−1) 5.74× 100(1.08× 100)+ 2.54× 100(2.68× 10−1)+ 2.40× 100(2.40× 10−1)+ 1.46× 100(1.07× 100)≈ 3.08× 10−1(4.45× 10−2)−
50 2.35× 100(5.58× 10−1) 6.91× 100(8.13× 10−1)+ 3.50× 100(2.46× 10−1)+ 3.41× 100(3.14× 10−1)+ 1.82× 100(1.57× 100)− 3.08× 10−1(4.45× 10−2)−
100 3.48× 100(5.31× 10−1) 6.63× 100(6.11× 10−1)+ 4.24× 100(2.40× 10−1)+ 4.10× 100(2.60× 10−1)+ 3.35× 100(1.48× 100)− 5.84× 10−1(6.63× 10−2)−

f13

10 1.06× 10−1(4.92× 10−2) 5.55× 10−1(1.42× 10−1)+ 5.03× 100(1.15× 100)+ 2.74× 100(5.86× 10−1)+ 1.13× 10−1(4.66× 10−2)≈ 6.02× 10−2(1.36× 10−2)−
30 3.69× 10−1(9.46× 10−2) 8.88× 10−1(1.76× 10−1)+ 1.05× 101(1.03× 100)+ 7.10× 100(5.29× 10−1)+ 3.21× 10−1(2.00× 10−1)− 3.90× 10−1(6.43× 10−2)−
50 5.93× 10−1(9.93× 10−2) 1.09× 100(1.85× 10−1)+ 1.22× 101(9.85× 10−1)+ 7.85× 100(3.08× 10−1)+ 6.10× 10−1(2.55× 10−1)≈ 3.90× 10−1(6.43× 10−2)−
100 6.60× 10−1(7.34× 10−2) 1.15× 100(1.63× 10−1)+ 1.43× 101(6.36× 10−1)+ 9.10× 100(1.84× 10−1)+ 1.42× 100(9.73× 10−1)+ 5.28× 10−1(5.81× 10−2)−

f14

10 4.94× 10−2(1.78× 10−2) 6.00× 10−1(1.53× 10−1)+ 5.80× 101(1.26× 101)+ 2.06× 101(5.32× 100)+ 1.44× 10−1(1.62× 10−1)+ 3.77× 10−2(1.37× 10−2)−
30 2.87× 10−1(1.55× 10−1) 1.13× 100(4.16× 10−1)+ 4.23× 102(5.65× 101)+ 2.23× 102(2.31× 101)+ 7.61× 10−1(1.44× 100)+ 2.99× 10−1(7.19× 10−2)−
50 5.78× 10−1(2.97× 10−1) 1.38× 100(5.45× 10−1)+ 6.91× 102(6.99× 101)+ 3.20× 102(2.64× 101)+ 1.03× 101(9.86× 100)+ 2.99× 10−1(7.19× 10−2)−
100 3.99× 10−1(1.77× 10−1) 4.55× 100(2.57× 100)+ 1.72× 103(1.19× 102)+ 8.29× 102(3.69× 101)+ 8.44× 101(2.16× 101)+ 3.29× 10−1(3.16× 10−2)−

f15

10 7.17× 10−1(2.44× 10−1) 5.65× 100(9.89× 10−1)+ 1.87× 105(1.45× 105)+ 2.01× 102(2.15× 102)+ 1.00× 100(4.28× 10−1)+ 4.86× 104(2.37× 104)+
30 6.15× 100(1.86× 100) 2.65× 101(2.57× 100)+ 2.09× 107(1.29× 107)+ 4.64× 104(2.82× 104)+ 1.48× 101(1.52× 101)+ 1.48× 107(3.72× 106)+
50 1.62× 101(4.85× 100) 5.92× 101(8.10× 100)+ 1.55× 108(6.36× 107)+ 8.49× 105(3.97× 105)+ 4.91× 102(8.53× 102)+ 1.48× 107(3.72× 106)+
100 7.03× 101(1.39× 101) 2.12× 103(1.55× 103)+ 6.26× 108(1.85× 108)+ 7.84× 106(2.61× 106)+ 1.38× 104(9.95× 103)+ 4.46× 107(5.50× 106)+

f16

10 1.42× 100(7.03× 10−1) 4.15× 100(2.00× 10−1)+ 3.96× 100(1.45× 10−1)+ 2.80× 100(2.30× 10−1)+ 1.90× 100(5.79× 10−1)+ 3.70× 100(3.63× 10−2)+
30 1.04× 101(7.71× 10−1) 1.40× 101(2.83× 10−1)+ 1.35× 101(1.50× 10−1)+ 1.25× 101(1.82× 10−1)+ 1.03× 101(7.37× 10−1)≈ 2.32× 101(5.31× 10−2)+
50 2.05× 101(8.38× 10−1) 2.39× 101(2.54× 10−1)+ 2.32× 101(1.47× 10−1)+ 2.22× 101(1.81× 10−1)+ 1.95× 101(9.41× 10−1)− 2.32× 101(5.31× 10−2)+
100 4.56× 101(4.68× 10−1) 4.85× 101(3.34× 10−1)+ 4.75× 101(1.77× 10−1)+ 4.64× 101(2.31× 10−1)+ 4.35× 101(1.77× 100)− 4.76× 101(1.65× 10−1)+
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Table 1. Cont.

CAHBPSO SHADE FA BOA PSO HPSOBOA

Mean (STD) Sign

f17

10 1.12× 103(1.12× 103) 4.78× 104(5.45× 104)+ 9.50× 106(1.06× 107)+ 1.28× 103(3.00× 102)+ 4.25× 103(3.01× 103)+ 6.57× 105(1.29× 105)+
30 3.21× 105(2.55× 105) 1.36× 107(7.33× 106)+ 3.00× 108(1.33× 108)+ 4.46× 106(4.14× 106)+ 1.31× 106(1.46× 106)+ 8.49× 108(2.51× 107)+
50 1.17× 106(9.36× 105) 4.56× 107(1.86× 107)+ 1.17× 109(3.51× 108)+ 7.92× 107(5.10× 107)+ 2.93× 106(2.81× 106)+ 8.49× 108(2.51× 107)+

100 1.31× 107(8.27× 106) 1.89× 108(6.03× 107)+ 3.53× 109(8.60× 108)+ 6.68× 108(2.88× 108)+ 2.38× 107(1.17× 107)+ 2.86× 109(4.30× 108)+
f18

10 3.56× 103(4.46× 103) 1.92× 103(2.70× 103)− 1.06× 108(1.15× 108)+ 4.14× 102(1.99× 102)− 4.40× 103(5.30× 103)≈ 1.96× 106(2.80× 106)+
30 5.78× 103(5.96× 103) 4.64× 106(5.29× 106)+ 9.29× 109(2.74× 109)+ 1.54× 108(1.99× 108)+ 2.27× 106(9.20× 106)+ 2.93× 1010(4.38× 109)+
50 1.06× 103(1.23× 103) 3.44× 106(2.13× 106)+ 2.90× 1010(6.79× 109)+ 4.80× 109(2.14× 109)+ 3.86× 107(9.42× 107)+ 2.93× 1010(4.38× 109)+

100 1.46× 104(8.49× 104) 1.66× 107(6.25× 106)+ 8.05× 1010(1.20× 1010)+ 2.19× 1010(4.77× 109)+ 5.14× 108(4.23× 108)+ 4.90× 1010(2.59× 109)+
f19

10 1.06× 100(8.49× 10−1) 3.98× 100(1.11× 100)+ 7.35× 101(4.40× 101)+ 8.00× 100(3.21× 100)+ 2.06× 100(7.88× 10−1)+ 9.37× 101(3.80× 101)+
30 6.80× 100(1.77× 100) 1.53× 101(1.88× 100)+ 1.22× 103(4.46× 102)+ 3.48× 102(9.00× 101)+ 2.56× 101(2.02× 101)+ 5.27× 103(1.16× 103)+
50 6.35× 101(1.57× 101) 6.74× 101(9.25× 100)≈ 4.78× 103(1.42× 103)+ 1.43× 103(4.46× 102)+ 6.87× 101(2.55× 101)≈ 5.27× 103(1.16× 103)+

100 1.64× 102(1.74× 101) 1.83× 102(1.76× 101)+ 2.14× 104(3.77× 103)+ 6.46× 103(1.10× 103)+ 2.92× 102(6.55× 101)+ 1.55× 104(7.68× 102)+
f20

10 3.21× 100(2.73× 100) 3.52× 101(1.46× 101)+ 1.88× 106(4.62× 106)+ 5.04× 102(2.79× 102)+ 9.70× 102(2.18× 103)+ 8.08× 104(2.04× 104)+
30 1.30× 102(5.76× 101) 9.76× 104(9.60× 104)+ 9.78× 106(9.55× 106)+ 3.92× 104(1.60× 104)+ 8.39× 103(5.39× 103)+ 4.21× 105(6.46× 104)+
50 9.05× 102(4.29× 102) 1.25× 106(1.63× 106)+ 1.46× 107(1.28× 107)+ 6.84× 104(2.24× 104)+ 1.35× 104(6.09× 103)+ 4.21× 105(6.46× 104)+

100 8.85× 103(2.95× 103) 2.75× 106(2.31× 106)+ 4.89× 107(3.80× 107)+ 2.90× 105(7.67× 104)+ 4.86× 104(1.74× 104)+ 1.36× 107(6.91× 106)+
f21

10 4.75× 101(5.69× 101) 2.10× 103(6.44× 103)+ 2.04× 106(2.17× 106)+ 3.56× 103(1.43× 103)+ 4.26× 103(3.91× 103)+ 2.25× 106(1.29× 106)+
30 6.37× 104(4.69× 104) 4.79× 106(3.27× 106)+ 1.47× 108(8.24× 107)+ 4.54× 105(3.22× 105)+ 3.48× 105(4.60× 105)+ 3.12× 108(4.04× 106)+
50 7.30× 105(7.94× 105) 2.81× 107(1.68× 107)+ 4.74× 108(2.03× 108)+ 4.34× 106(2.96× 106)+ 1.82× 106(1.76× 106)+ 3.12× 108(4.04× 106)+

100 5.74× 106(4.67× 106) 1.23× 108(4.39× 107)+ 1.84× 109(5.25× 108)+ 1.57× 108(6.71× 107)+ 9.69× 106(4.68× 106)+ 8.35× 108(1.43× 108)+
f22

10 6.25× 100(9.20× 100) 1.43× 102(1.07× 102)+ 5.06× 102(1.30× 102)+ 5.66× 101(1.51× 101)+ 6.11× 101(5.32× 101)+ 6.45× 102(1.99× 102)−
30 2.14× 102(1.41× 102) 1.36× 103(2.33× 102)+ 1.65× 104(2.11× 104)+ 1.46× 103(2.64× 102)+ 3.34× 102(1.61× 102)+ 2.87× 106(1.22× 106)+
50 7.56× 102(2.46× 102) 2.76× 103(3.29× 102)+ 6.81× 105(6.33× 105)+ 6.27× 103(4.31× 103)+ 7.20× 102(3.24× 102)≈ 2.87× 106(1.22× 106)+

100 2.25× 103(4.20× 102) 6.24× 103(5.61× 102)+ 2.18× 106(1.11× 106)+ 2.57× 104(2.61× 104)+ 1.80× 103(6.15× 102)− 5.47× 105(7.45× 104)+
f23

10 −7.21× 103(7.13× 10−12) −7.21× 103(5.60× 10−3)+ −6.94× 103(1.27× 102)+ −7.34× 103(4.51× 100)− −7.21× 103(2.83× 100)+ −5.33× 102(2.91× 10−4)+
30 −7.22× 103(1.09× 10−1) −7.22× 103(8.39× 10−1)+ −5.62× 103(4.50× 102)+ −7.34× 103(9.19× 10−12)− −7.21× 103(7.46× 100)+ −5.21× 103(1.39× 10−3)−
50 −7.19× 103(4.79× 10−1) −7.19× 103(1.48× 100)+ −3.48× 103(6.79× 102)+ −7.34× 103(9.19× 10−12)− −7.12× 103(3.20× 101)+ −5.21× 103(1.39× 10−3)−

100 −7.18× 103(2.18× 100) −7.10× 103(1.43× 101)+ 1.40× 103(1.27× 103)+ −7.34× 103(9.19× 10−12)− −6.95× 103(6.80× 101)+ −7.34× 103(1.73× 10−3)−
f24

10 −2.04× 103(4.00× 100) −1.99× 103(8.36× 100)+ −1.91× 103(1.41× 101)+ −2.02× 103(6.91× 100)+ −2.03× 103(1.32× 101)+ −1.01× 102(8.63× 10−1)+
30 −1.92× 103(5.73× 100) −1.91× 103(3.10× 100)+ −1.61× 103(3.12× 101)+ −1.95× 103(6.89× 10−13)− −1.95× 103(2.30× 10−4)− −9.60× 102(2.03× 10−3)−
50 −1.88× 103(3.87× 100) −1.86× 103(3.59× 100)+ −1.24× 103(5.65× 101)+ −1.95× 103(6.89× 10−13)− −1.95× 103(2.51× 10−4)− −9.60× 102(2.03× 10−3)−

100 −1.76× 103(5.60× 100) −1.69× 103(6.59× 100)+ −1.89× 102(9.61× 101)+ −1.95× 103(6.89× 10−13)− −1.95× 103(5.76× 10−4)− −1.95× 103(3.90× 10−3)−
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Table 1. Cont.

CAHBPSO SHADE FA BOA PSO HPSOBOA

Mean (STD) Sign

f25

10 −1.43× 103(4.15× 101) −1.40× 103(8.76× 100)+ −1.38× 103(8.08× 100)+ −1.42× 103(1.50× 101)≈ −1.41× 103(2.51× 101)≈ −1.22× 102(2.78× 10−2)+
30 −1.40× 103(1.70× 100) −1.37× 103(6.07× 100)+ −1.19× 103(6.57× 101)+ −1.40× 103(9.19× 10−13)− −1.39× 103(3.52× 100)+ −8.62× 102(3.14× 10−5)−
50 −1.39× 103(3.60× 100) −1.34× 103(9.93× 100)+ −8.52× 102(1.04× 102)+ −1.40× 103(9.19× 10−13)− −1.38× 103(5.53× 100)+ −8.62× 102(3.14× 10−5)−

100 −1.33× 103(1.06× 101) −1.25× 103(1.55× 101)+ 2.21× 102(2.28× 102)+ −1.40× 103(9.19× 10−13)− −1.40× 103(2.50× 101)− −1.40× 103(7.49× 10−5)−
f26

10 −2.72× 103(4.04× 10−2) −2.72× 103(1.66× 10−1)+ −2.72× 103(2.06× 100)+ −2.72× 103(7.73× 10−2)+ −2.72× 103(3.21× 10−2)− −7.87× 102(6.90× 10−1)−
30 −2.72× 103(3.61× 101) −2.72× 103(1.49× 101)+ −2.47× 103(1.23× 102)+ −2.71× 103(2.08× 101)+ −2.70× 103(4.27× 101)≈ −2.78× 103(2.42× 101)+
50 −2.65× 103(8.53× 101) −2.65× 103(6.42× 101)− −2.11× 103(1.77× 102)+ −2.64× 103(3.19× 101)− −2.64× 103(4.85× 101)≈ −2.78× 103(2.42× 101)+
100 −2.61× 103(5.90× 101) −2.58× 103(1.50× 101)+ −1.19× 103(2.11× 102)+ −2.62× 103(2.30× 10−12)− −2.62× 103(2.02× 10−12)− −2.62× 103(2.39× 10−7)−

f27

10 −1.69× 104(1.70× 102) −1.69× 104(1.96× 102)≈ −1.65× 104(1.18× 102)+ −1.72× 104(2.52× 100)− −1.69× 104(1.53× 102)≈ −3.18× 103(2.23× 10−2)−
30 −1.67× 104(9.99× 101) −1.64× 104(1.77× 102)+ −1.53× 104(1.58× 102)+ −1.67× 104(1.57× 101)− −1.66× 104(1.07× 102)− −1.10× 104(2.59× 10−2)−
50 −1.62× 104(1.07× 102) −1.56× 104(1.43× 102)+ −1.39× 104(3.77× 102)+ −1.65× 104(1.11× 102)− −1.62× 104(9.68× 101)− −1.10× 104(2.59× 10−2)−

100 −1.49× 104(1.80× 102) −1.41× 104(2.32× 102)+ −9.71× 103(1.03× 103)+ −1.50× 104(5.29× 102)− −1.49× 104(1.56× 102)≈ −1.70× 104(7.29× 10−2)−
f28

10 −5.79× 104(5.90× 101) −5.79× 104(8.59× 101)≈ −5.67× 104(2.65× 102)+ −5.79× 104(6.97× 101)≈ −5.79× 104(7.17× 101)≈ −6.26× 103(3.34× 10−2)−
30 −5.73× 104(2.82× 102) −5.71× 104(8.32× 101)+ −5.02× 104(7.77× 102)+ −5.70× 104(1.43× 102)+ −5.74× 104(1.43× 102)− −2.43× 104(9.75× 10−2)−
50 −5.65× 104(4.44× 102) −5.59× 104(1.00× 103)+ −4.17× 104(1.52× 103)+ −5.52× 104(5.24× 102)+ −5.65× 104(4.68× 102)≈ −2.43× 104(9.75× 10−2)−
100 −5.32× 104(1.21× 103) −5.00× 104(2.77× 103)+ −1.79× 104(2.21× 103)+ −4.84× 104(1.62× 103)+ −5.21× 104(9.93× 102)+ −5.82× 104(1.43× 10−1)−

f29

10 −2.71× 1010(5.97× 105) −2.71× 1010(2.84× 104)+ −2.71× 1010(1.98× 107)+ −2.71× 1010(5.55× 102)≈ −2.71× 1010(4.15× 105)≈ −1.02× 109(8.96× 103)+
30 −2.70× 1010(3.03× 102) −2.70× 1010(8.16× 104)+ −2.60× 1010(2.33× 108)+ −2.70× 1010(0.00× 100)− −2.70× 1010(4.07× 105)+ −7.37× 109(1.15× 105)+
50 −2.70× 1010(1.54× 107) −2.70× 1010(5.95× 105)+ −2.40× 1010(4.96× 108)+ −2.70× 1010(0.00× 100)− −2.70× 1010(2.92× 106)+ −7.37× 109(1.15× 105)+

100 −2.71× 1010(1.05× 103) −2.71× 1010(1.92× 106)+ −1.82× 1010(1.13× 109)+ −2.71× 1010(0.00× 100)− −2.70× 1010(2.40× 107)+ −2.71× 1010(1.27× 105)+
f30

10 −3.02× 109(1.73× 102) −3.02× 109(4.99× 102)+ −3.02× 109(1.91× 105)+ −3.02× 109(2.77× 102)+ −3.02× 109(4.53× 102)+ −4.40× 108(3.37× 104)+
30 −3.00× 109(1.15× 103) −3.00× 109(1.48× 104)+ −3.00× 109(4.25× 106)+ −3.00× 109(9.63× 10−7)− −3.00× 109(1.72× 104)+ −6.15× 108(3.91× 103)−
50 −3.00× 109(4.67× 103) −3.00× 109(7.08× 104)+ −3.00× 109(1.68× 107)+ −3.00× 109(9.63× 10−7)− −3.00× 109(4.38× 104)+ −6.15× 108(3.91× 103)−

100 −3.02× 109(3.52× 104) −3.02× 109(1.23× 106)+ −2.51× 109(1.44× 108)+ −3.02× 109(9.63× 10−7)− −3.02× 109(9.39× 105)+ −3.02× 109(2.04× 104)−
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Based on the findings in Table 1, it is clear that the proposed CAHBPSO algorithm
outperforms other studied algorithms in terms of “Mean” and “STD” values on the vast
majority of benchmark functions. However, compared to the PSO algorithm, the proposed
algorithm achieved a worse performance on simple multimodal functions f4, f13 on di-
mension D = 30, f12, f16 on dimensions D = 50, 100, and f11 on D = 100. Furthermore,
a worse performance is observed on hybrid function f22 on dimension D = 100 and on
composite functions f24, f27 on dimensions D = 30, 50, 100, as well as functions f24, f25, f26
on dimensions D = 100, function f26 over dimension D = 10, and f28 on dimensions
D = 30. Compared to the BOA algorithm, the proposed CAHBPSO algorithm showed a
worse performance on composite functions f23 and f27 on all dimensions, f24, f25, f29, f30 on
dimensions D = 30, 50, 100, and function f26 on dimensions D = 50, 100. When compared
to the SHADE and FA algorithms, it is clear that CAHBPSO outperforms them on all
functions across all dimensions. Only on the hybrid and composite functions f18, D = 10
and f26, D = 50 did the proposed algorithm perform worse than the SHADE algorithm. As
a result, when compared to the SHADE and FA algorithms, the suggested CAHBPSO algo-
rithm delivers the best results. The proposed algorithm performed similarly to or slightly
worse than the BOA and PSO algorithms on problems with greater dimensions, such as
D = 30, 50 and 100 on composite functions. However, the suggested method surpassed the
BOA and PSO algorithms on the majority of test functions.Compared to the HPSOBOA
algorithm, it is observed that the proposed algorithm achieved worse performance over all
considered dimensions on functions f6, f10, f11, f13, f14, f28 and f30, while the CAHBPSO
algorithm outperformed HPSOBOA method on functions f15, f16, f17, f18, f19, f20, f21,
f22 and f29 over all dimensions. On other functions the results are mixed, depending on
the dimensionality of the problem. It can be observed that when dimension D = 10 is
concerned the CAHBPSO algorithm achieved the best result in the majority of the results
compared to HPSOBOA. As a conclusion, the CAHPBSO method’s improvements and
hybridization are confirmed, and the CAHBPSO algorithm effectively discovers potential
solutions across all CEC2014 benchmark tests and dimensions.

The obtained numerical results are analyzed using Wilcoxon signed-rank test, in order
to perform the pair-wise optimization performance comparison between the proposed
CAHBPSO and other considered algorithms. Therefore, the results of statistical comparison
using Wilcoxon’s signed-rank test on CEC2014 benchmark problems are presented in
Table 2.

From the results in Table 2, it can be observed that the proposed CAHBPSO algorithm
has significantly better performance than the SHADE, FA, BOA, and PSO algorithms on
all considered dimensions. Compared to the BOA and PSO algorithms, on D = 30, 50,
and 100 an increase is observed in cases where the proposed algorithm had worse per-
formance. When comparing to the HPSOBOA algorithm, we observe that the proposed
CAHBPSO algorithm achieved better performance for D = 10, while for other dimensions
the algorithms had similar performance. However, in all considered cases, the CAHBPSO
algorithm achieved higher R+ values than R− compared to considered algorithms.

Furthermore, the Friedman test is used to assess whether there is a significant statistical
difference in the optimization performances of the algorithms considered. Table 3 displays
the average ranks obtained by the Friedman test of examined algorithms on various
CEC2014 problems over all dimensions. The algorithm’s top rank is bolded, while the
second best is underlined.

From the statistical comparison results presented in Table 3, it can be observed that
the proposed CAHBPSO algorithm achieves the best performance among the considered
algorithms and has the lowest rank in all considered cases. The HPSOBOA algorithm had
the second-best performance. It is observed that the obtained p values for the considered
Friedman test are less than the significance level α = 0.05 in all dimensions over all consid-
ered cases. As a result, the hypothesis suggests that there is a considerable discrepancy in
the performance of the algorithms under consideration. Based on the statistical analysis
findings, it is determined that the proposed hybridization of BOA and PSO algorithms
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increases optimization performance while overcoming the disadvantages of both tech-
niques. Furthermore, the enhanced approach for updating butterfly positions, as well
as the addition of a chaotic map to the inertia weight and adaptive sensory fragrance,
considerably increase the CAHBPSO algorithm capabilities, demonstrating the efficacy of
proposed improvements.

Table 2. Wilcoxon test results for D = 10, 30, 50, and 100 obtained using CAHBPSO and other
evaluated algorithms on a set of CEC2014 benchmark problems.

D Algorithms R+ R− p Value + ≈ − Dec.

10

CAHBPSO versus SHADE 392 73 6.08× 10−4 27 2 1 +
CAHBPSO versus FA 465 0 1.86× 10−9 30 0 0 +
CAHBPSO versus BOA 376 89 2.37× 10−3 24 3 3 +
CAHBPSO versus PSO 419 46 3.45× 10−5 23 6 1 +
CAHBPSO versus HPSOBOA 330 153 4.49× 10−2 18 12 0 +

30

CAHBPSO versus SHADE 457 8 4.66× 10−8 29 1 0 +
CAHBPSO versus FA 465 0 1.86× 10−9 30 0 0 +
CAHBPSO versus BOA 396 69 4.18× 10−4 24 0 6 +
CAHBPSO versus PSO 424 41 1.82× 10−5 22 5 3 +
CAHBPSO versus HPSOBOA 234 231 9.84× 10−1 13 17 0 ≈

50

CAHBPSO versus SHADE 441 24 1.42× 10−6 29 1 0 +
CAHBPSO versus FA 465 0 1.86× 10−9 30 0 0 +
CAHBPSO versus BOA 387 78 9.52× 10−4 24 0 6 +
CAHBPSO versus PSO 391 74 6.67× 10−4 20 7 3 +
CAHBPSO versus HPSOBOA 184 181 3.28× 10−1 15 15 0 ≈

100

CAHBPSO versus SHADE 465 0 1.86× 10−9 30 0 0 +
CAHBPSO versus FA 465 0 1.86× 10−9 30 0 0 +
CAHBPSO versus BOA 389 76 7.98× 10−4 23 1 6 +
CAHBPSO versus PSO 398 67 3.45× 10−4 22 1 7 +
CAHBPSO versus HPSOBOA 238 227 9.19× 10−1 13 17 0 ≈

Table 3. The obtained average ranks using Friedman test for all investigated algorithms across all
functions and dimensions using CEC2014, with α = 0.05.

Algorithm 10D 30D 50D 100D Mean Ranking Rank

CAHBPSO 1.77 2.07 1.97 2.07 1.97 1
HPSOBOA 3.40 2.57 3.00 2.47 2.86 2

PSO 2.97 2.97 2.87 3.00 2.95 3
BOA 3.30 3.60 3.50 3.57 3.49 4

SHADE 3.83 4.03 3.97 4.07 3.98 5
FA 5.73 5.77 5.70 5.83 5.76 6

Friedman p value 3.36× 10−14 1.44× 10−14 1.58× 10−13 1.84× 10−15

10.2. Localization Performance of the Proposed CAHBPSO Algorithm

In this section, simulations are performed to verify and compare the localization per-
formance of the proposed CAHBPSO with the existing algorithms, such as SDP, PSO, BOA,
and the well-known WLS method [50], for the considered passive target localization prob-
lem in LOS environment. Here, the derived CRLB is utilized as a performance benchmark
in the following simulations to assess the localization capabilities in terms of RMSE metric.

The simulations are performed to evaluate the localization accuracy of all consid-
ered algorithms under the noisy TDOA measurements. Furthermore, the performance of
different algorithms is assessed in relation to changes in transmitter, target, and receiver
geometric configurations. The numerical simulations are carried out using a passive target
localization system consisting of one receiver and four transmitters positioned at known
locations, as well as a passive target located at various locations. Three simulation scenarios
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are considered in this regard, depending on the chosen coordinates where the passive
target is placed: (i) the passive target is surrounded by the four transmitters; (ii) the target
is outside the hull which are transmitters-forming; and (iii) the passive target is deployed
randomly over an area 80× 80 m2 for each simulation run. The identical receiver and
transmitter setup is used in each simulation scenario, with the receiver at xr =

[
0 0

]T ,

and four transmitters creating a convex hull at xt
1 =

[
80 80

]Tm, xt
2 =

[
80 −80

]Tm,

xt
3 =

[
−80 80

]Tm, and xt
4 =

[
−80 −80

]Tm. Therefore, to evaluate the localization
accuracy of the considered algorithms, the RMSE is employed, which is defined as

RMSE =

√√√√ 1
Nm

N

∑
n=1

∥∥x̂(n) − x
∥∥2

2, (55)

where x denotes the is the actual target location, x̂(n) represents the position of a target that
is estimated using one of the considered algorithms and Nm = 1000 is the number of Monte
Carlo simulation repetitions for a given variance of measurement noise σ2.

Figure 6 shows the results of the first simulation scenario, in which the true position of
the passive target is x =

[
20 30

]Tm. The RMSE performances of the examined algorithms
are displayed in relation to measurement noise p = 10 log

(
σ2) and compared to the CRLB.
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Figure 6. RMSEs in terms of p for a passive target at x =
[
20 30

]T
.

The RMSEs obtained using the CAHBPSO method achieve the CRLB for the whole
studied ranges of p, as shown in Figure 6. Furthermore, the RMSE performances of the
WLS, SDP, BOA, and PSO algorithms are several dBs higher than the CRLB. However, the
obtained numerical results reveal that the SDP approach deviates significantly from the
CRLB for large values of p (esp. p > 20 dB) when compared to examined algorithms. It is
observed that the RMSEs of the well-known WLS method show the worst performance
over all considered methods.

The findings of the second simulation scenario, in which the true location of the target
is placed at x = [100 80]Tm, are presented in Figure 7, where the RMSE performances of
the studied algorithms are plotted and compared with the CRLB.
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Figure 7. RMSEs in terms of p for a passive target at x = [100 80]T .

According to the results in Figure 7, the proposed CAHBPSO method achieves CRLB
accuracy and outperforms the investigated algorithms with the increase of p. In comparison
to the CAHBPSO method, the BOA and PSO algorithms’ localization performance has
decreased, as shown by the simulation results. In any considered case of measurement noise,
the RMSE performances of the WLS method do not reach the CRLB. Furthermore, the SDP
method performs poorly, especially when the measurement noise is high (esp. p > 20 dB).

For the third simulation scenario, where the position of the passive target is randomly
generated inside the examined region for each simulation run, the RMSEs of all evaluated
algorithms as the function of p are shown and compared against the CRLB in Figure 8.
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Figure 8. RMSEs in relation to measurement noise p for a third simulation scenario.
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As shown in Figure 8, the proposed CAHBPSO method achieves CRLB accuracy
throughout the whole range of p and outperforms the WLS, SDP, BOA, and PSO algorithms
in terms of localization accuracy.

When comparing the numerical results of the various simulation scenarios represented
in Figures 6–8, it can be seen that when the target is positioned inside the convex hull of
the transmitters, the examined methods perform well. When the target is situated outside
of the convex hull of the transmitters, the RMSE performance is higher. Furthermore, the
RMSEs of the proposed CAHBPSO method achieve the CRLB throughout the whole range
of p in every simulated scenario studied.

To further evaluate the performance of all considered algorithms, the cumulative
distribution functions (CDFs) of the localization error are obtained for the variance of mea-
surement noise σ2 = 10 m2. The localization error (LE) is defined as LE =

∥∥∥x̂(n) − x
∥∥∥

2
, ∀n ∈

{1, . . . , Nm}. Therefore, Figure 9 shows the corresponding CDFs in terms of the localization
error, for the first simulation scenario, obtained for each algorithm.
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Figure 9. CDFs of passive target localization error of the considered algorithms for the first simulation
scenario.

From the results in Figure 9, it is observed that in 90% of the cases, the proposed
CAHBPSO algorithm provides a localization error of less than 3.66 m, while the SDP, BOA,
and PSO algorithms have localization errors less than 4.1 m, 4.0 m, and 3.86 m, respectively.
As a result, when compared to the other algorithms studied, the suggested CAHBPSO
method has the lowest localization error according to CDFs.

Finally, the effect of increasing the number of transmitters on the localization accuracy
is investigated for the second simulation scenario. In this respect, the ith transmitter is
placed at the following coordinates

xt
i =

[
R cos ϕi
R sin ϕi

]
, i ∈

{
1, 2, . . . , N j

}
(56)

where R = 80
√

2 m is the radius of a circle, ϕi = 2π/N j denotes the angular separation
between transmitters, and N j is the number of transmitters taken for simulation. Hence, the
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RMSE performances of the considered algorithms as a function of number of transmitters
are depicted in Figure 10, for the variance of measurement noise σ2 = 1 m2.
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Figure 10. The RMSEs of the algorithms under consideration for σ2 = 1 m2, as a function of the
number of transmitters.

As shown in Figure 10, the RMSE performances of all considered algorithms signifi-
cantly improve when the number of transmitters is increased from 4 to 10. Moreover, the
proposed CAHBPSO algorithm provides 56% improvement in localization accuracy when
the number of transmitters is increased from 4 to 20. Based on the simulation findings,
it is determined that, when compared to other investigated methods, the performance of
the proposed CAHBPSO algorithm is not susceptible to excessive measurement noise and
changes in network topology.

Computational Complexity of the Considered Algorithms

The computational complexity of the proposed CAHBPSO and other algorithms
that were taken into consideration, as well as the typical computation time required
to arrive at the overall optimal solution, are analyzed and compared in this subsec-
tion. In the literature, it is shown that the computational complexity of SDP method
is O

(
16
(

N2n + Nn2)+ Gmax(n + 1)3 + 4(2n + 3)3.5
)

[7]. Furthermore, the appropriate
computational complexity of PSO algorithm can be written as O(GmaxNP(n + f )), while
the complexity of BOA is O(Gmax(n× NP + n× f )) [70], where ( f ) denotes the com-
putational complexity of evaluating the considered objective function. All butterflies
are sorted according to the objective function value in one generation of the proposed
CAHBPSO algorithm, where the average computing complexity of this operation is
O(NPlog(NP)). After sorting, the time complexity of calculating the fragrance of each
butterfly is O(NP). Then, in the global and local search phase of the algorithm, each
butterfly goes through the process of exploring the search space, where the average time
complexity required to update the position of ith butterfly is O(NP × n) + O(NP)×O( f ).
Therefore, the overall computing complexity of CAHBPSO algorithm is determined as
O(NPlog(NP)) + O(NP) + Gmax(O(NP × n) + O(NP)×O( f )), which can be simplified to
O(NPlog(NP)) + Gmax(O(NP × n) + O(NP)×O( f )).
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Following that, the average computing time required for identifying the global opti-
mal solution is examined, as another crucial element influencing the performance of the
algorithms under consideration. An identical PC with a 3.2 GHz CPU and 16 GB of RAM is
used for the analysis. In this regard, for each simulation scenario the average computational
times required to obtain global optimum, for each considered algorithm, are shown in
Table 4.

Table 4. The computation times on average for the methods under consideration.

SDP PSO BOA CAHBPSO

Scenario 1 10.03 3.02× 10−2 1.46× 10−2 2.06× 10−1

Scenario 2 9.96 1.03× 10−2 1.13× 10−2 2.07× 10−1

Scenario 3 14.55 1.17× 10−2 1.46× 10−2 2.48× 10−1

As shown in Table 4, The BOA technique has the fastest implementation, whereas
the SDP method shows the longest computing time considering all evaluated methods.
Furthermore, the results reveal that the proposed CAHBPSO method provides the opti-
mum balance of localization accuracy and average computation time to attain the global
optimal solution.

11. Conclusions

In this paper, the passive target localization problem based on the noisy TDOA mea-
surements, obtained from multiple transmitters and a single receiver, is considered and
investigated. In this regard, a hybridization of the BOA and PSO algorithms, named
CAHBPSO algorithm, is proposed to solve the considered localization problem with high
accuracy, even in the presence of large measurement noise. In the proposed algorithm,
an adaptive parameter is introduced to combine global search and local search phases of
the BOA algorithm with the PSO algorithm, with the aim to maintain an effective balance
between exploration and exploitation abilities during the optimization process. Moreover,
to improve convergence and maintain population diversity, chaos theory is incorporated
into the inertia weight parameter of the PSO algorithm and an adaptive strategy has
been employed to update the value of the sensory fragrance of the BOA. To assess the
performance of the discussed techniques, the corresponding CRLB for the passive target
localization issue is derived. In addition, a statistical analysis is carried out to compare
the proposed CAHBPSO algorithm optimization performance with that of well-known
algorithms in the literature on a set of CEC2014 benchmark test problems.

It can be shown from the statistical comparisons between CAHBPSO and other well-
known algorithms in the literature that the hybrid method suggested in this paper demon-
strates better optimization performance. Furthermore, it is concluded that the proposed
CAHBPSO algorithm attains the CRLB accuracy and provides better localization perfor-
mance compared to the WLS, SDP, BOA, and PSO algorithms. In addition, it is observed
that the CAHBPSO algorithm shows lower sensitivity to the variations in network topol-
ogy and higher localization accuracy under the high measurement noise. Finally, from
the analysis of the execution time and computational complexity, it is concluded that the
proposed CAHBPSO algorithm provides a proper balance between localization accuracy
and complexity compared to other considered algorithms.

Future studies will aim to identify the optimal network architecture for the passive
target localization problem in the presence of non-line-of-sight environment. In order to
improve the performance of the optimization process, research may also concentrate on
performing the analysis of the sensitivity to the parameter changes.
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Appendix A

The logarithm of the likelihood function, which is defined in Equation (10), has the
following form

ln f (r̃|x ) = c− 1
2σ2

(
(r̃−Hg(x))T(r̃−Hg(x))

)
, (A1)

From Equation (A1), the log-likelihood function’s first partial derivative with respect
to x is given as

∂ ln( f (r̃|x ))
∂x

= − 1
2σ2

∂

∂x

(
(r̃−Hg(x))T(r̃−Hg(x))

)
, (A2)

where
∂

∂x

(
(r̃−Hg(x))T(r̃−Hg(x))

)
= −2

∂g(x)T

∂x
HT(r̃−Hg(x)). (A3)

Then, substituting Equation (A3) into Equation (A2), the following is obtained

∂ ln( f (r̃|x))
∂x

=
1
σ2

∂g(x)T

∂x
HT(r̃−Hg(x)) (A4)

As a result, taking the partial derivative with regard to x the following is obtained(
∂ ln( f (r̃|x ))

∂x

)
=

1
σ2

(
∂g(x)

∂x

)T
HT(r̃−Hg(x)). (A5)

Using the above expressions, the first element on the diagonal of the FIM is obtained
as follows

F11 = E

[(
∂ ln( f (r̃|x ))

∂x

)(
∂ ln( f (r̃|x ))

∂x

)T
]

= E

[
1
σ4

(
∂g(x)

∂x

)T
HT(r̃−Hg(x))(r̃−Hg(x))TH

(
∂g(x)

∂x

)]

=
1
σ4

(
∂g(x)

∂x

)T
HTE

[
(r̃−Hg(x))(r̃−Hg(x))T

]
H
(

∂g(x)
∂x

)
=

1
σ2

(
∂g(x)

∂x

)T
HTH

(
∂g(x)

∂x

)
.

(A6)
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The rest of the element of the FIM matrix are obtained in the same way as above, e.g.,

F12 = F21 = E

[(
∂ ln( f (r̃|x ))

∂x

)(
∂ ln( f (r̃|x ))

∂y

)T
]

=
1
σ2

(
∂g(x)

∂x

)T
HTH

(
∂g(x)

∂y

)
,

(A7)

F22 = E

[(
∂ ln( f (r̃|x ))

∂y

)(
∂ ln( f (r̃|x ))

∂y

)T
]

=
1
σ2

(
∂g(x)

∂y

)T
HTH

(
∂g(x)

∂y

)
.

(A8)

The partial derivative of g(x) with respect to the components of x may be represented
as according to Equation (7), as follows

∂g(x)
∂x

=



x−xr
‖x−xr‖2

y−yr
‖x−xr‖2

x−xt
1

‖x−xt
1‖2

y−yt
1

‖x−xt
1‖2

...
...

x−xt
N

‖x−xt
N‖2

y−yt
N

‖x−xt
N‖2


, (A9)

where ∂g(x)/∂x is the N× 2 Jacobian matrix. The next expression may be readily produced
by doing matrix multiplication

F11 =
1
σ2

(
∂g(x)

∂x

)T
HTH

(
∂g(x)

∂x

)

=
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖2
+

x− xt
i∥∥x− xt

i

∥∥
2

)2 (A10)

The equations for the remaining elements of FIM are produced in the same way

F12 = F21 =
1
σ2

(
∂g(x)

∂x

)T
HTH

(
∂g(x)

∂y

)
=

1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖2
+

x− xt
i∥∥x− xt

i

∥∥
2

)(
y− yr

‖x− xr‖2
+

y− yt
i∥∥x− xt

i

∥∥
2

) (A11)

F22 =
1
σ2

(
∂g(x)

∂y

)T
HTH

(
∂g(x)

∂y

)

=
1
σ2

N

∑
i=1

(
y− yr

‖x− xr‖2
+

y− yt
i∥∥x− xt

i

∥∥
2

)2 (A12)

Finally, Equations (51)–(53) of the corresponding elements of FIM are obtained.
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