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Abstract: This paper addresses the problem of time difference of arrival (TDOA) based passive target
localizationand proposes an improved chaos-driven hybrid differential evolution (DE) algorithm
and butterfly optimization algorithm (BOA), named ICDEBOA, to solve this complex optimization
problem. The proposed algorithm consists of a new mutation strategy with the mechanisms of
the BOA algorithm incorporated into the DE algorithm. To boost optimization effectiveness, chaos
theory is employed to adjust the control parameter values. The considered localization problem is
formulated using the maximum likelihood estimator. To perform the accuracy comparison, the convex
constrained weighting least squares algorithm is applied to the considered localization problem as
the widely used method in literature. The statistical analysis shows that the proposed modifications
to the ICDEBOA algorithm improve its optimization performance, as demonstrated by the improved
performance on the CEC2014 benchmark problems. The ICDEBOA algorithm is also shown to be
more robust than existing algorithms in noisy environments. Numerical simulation results show that
the proposed ICDEBOA algorithm meets the CRLB and achieves better performance than the CWLS,
DE, and BOA algorithms.

Keywords: localization; time difference of arrival; butterfly optimization algorithm; hybrid optimiza-
tion; diferential evolution; Cramer-Rao lower bound

1. Introduction

Accurate localization based on difference of arrival (TDOA) data collected from a
single receiver and a set of transmitters is essential for many wireless sensor network (WSN)
applications [1,2]. The majority of localization technologies that have been developed and
are widely in usage, such as the global positioning system (GPS) [3], ultrasonic-based
systems [4], infrared-based systems [5], and RF-based systems [6], require the attachment
of an additional device with its own power source to localize the target. Systems such
as these are known as “active localization systems,” since the target directly obtains the
range measurements, thus being directly involved in localization. Recent research focuses
on device-free passive localization, in which the target to be located does not need to be
equipped with additional devices or take any active part in the localization process and sim-
ply reflects the signals coming from the transmitters [7]. In practice, the GPS, as a prominent
active system, shows significant drawbacks, such as excessive power consumption and
poor localization performance in cases with weak satellite signals such us indoor areas [3].
Passive target localization has become one of the most popular techniques used to locate
the passive targets in a variety of applications, including emergency rescue, intelligent
transportation systems, radar, and mobile phone localization, due to its effectiveness as
a replacement for GPS and other traditional positioning systems [8,9]. The vast majority
of TDOA-based localization techniques in the literature are classified as “active systems”.
In this paper, we outline the development of a device-free passive target localization system
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for real-world environments based on TDOA measurements, along with the appropriate
design of a metaheuristic hybrid algorithm to obtain a solution to the considered problem.

Therefore, this work considers the passive target localization model, where the posi-
tioning is performed based on TDOA measurements under the noisy conditions. The TDOA
measurements are produced by subtracting the required time propagation of a signal
emitted from the transmitter over the target reflected to a receiver from the direct signal
propagation time captured at the receiver. Due to a nonlinear connection between the
measured distances and the target’s true location, estimating the target’s unknown position
is a difficult process. A reasonable assumption for the error distribution of TDOA measure-
ments when modelling the considered passive target localization problem in a line of sight
(LOS) environment is to model the measurement error as Gaussian-distributed random vari-
ables [2]. A number of estimation techniques, including nonlinear least squares (NLS) [10]
and maximum likelihood (ML) [11] estimators, that do not have a closed form solution,
are used in literature to tackle localization problems. With the linear least squares (LLS)
and weighed linear least squares (WLS) methods, the NLS method’s nonlinear objective
function can be made linear, thus providing a closed-form solution [12]. The constrained
weighted least squares (CWLS) approach is introduced to provide a solution, in closed form,
that has higher quality [13]. In this regard, the relationship between the target location and
an auxiliary variable is introduced into the CWLS optimization problem as the equality
constraint that has the highest term of the second order.

The ML estimator is another widely used estimation method that can improve estima-
tion accuracy. When the statistical information regarding the distribution of the error in
measurements is identified, the ML estimator method is straightforward to apply [11]. Due
to the pronounced nonentities and complex landscape of the ML objective function, it is
difficult to obtain a global optimum solution. In order to solve this type of optimization
problem, various efficient optimization algorithms have been suggested in the literature.
The semidefinite programming (SDP), which transforms the multimodal optimization prob-
lem into a convex one by applying the corresponding relaxations, is commonly used [2]. It
has been demonstrated, however, that the SDP approach has some drawbacks that impact
the accuracy of the global optimal solution, particularly when the measurement noise level
is high [14]. In this context, obtaining a high precision solution that represents global opti-
mum to the nonlinear, non-convex ML objective function has become a formidable obstacle.

This paper presents evolutionary algorithms (EAs) as a way to overcome these lim-
itations while searching for the global optimum solution of a multimodal and complex
target estimation problem [15–17]. In the development of the EAs, the exploration and
exploitation phases have a crucial impact on the obtained solutions [18]. EAs perform
exploration in searching for a promising location of the global optimum, whereas exploita-
tion is performed when looking to improve the obtained global best solution. Therefore,
to achieve a promising solution, the optimization algorithm must provide an effective
balance between these two phases.

Various metaheuristic algorithms, such as the genetic algorithm (GA) [19], particle
swarm optimization (PSO) [20], butterfly optimization algorithm (BOA) [21], differential
evolutionary (DE) [22], cuckoo search algorithm (CS) [23], artificial bee colony (ABC) [24],
gray wolf optimizer (GWO) [25], whale optimization algorithm (WOA) [26], and firefly
algorithm (FA) [27], have been developed and applied to various optimization problems
using key characteristics of these biological systems. BOA and DE algorithms have been
successfully used in recent years to identify the global optimal solution to a variety of
complex optimization problems due to their advantages such as ease of development and
fast convergence [28–30].

Differential evolution is a stochastic population-based evolutionary algorithm that
employs the recombination approach, which creates new solutions depending upon the
weighted difference between two randomly selected population members added to a third
population member to direct the search in the solution space. Storn and Price [22] first
proposed this method for minimizing nonlinear functions that are not differentiable. Since
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then, DE has proven to be highly effective in a wide range of scientific optimization prob-
lems thanks to its ability to prevent premature and encourage rapid convergence as well
as guarantee population diversity [16,31]. Like other EAs, it employs a population of
candidate solutions and searches stochastically by applying mutation, crossover, and selec-
tion operators to guide the population toward the promising solutions. The simplicity of
conventional DE lies in the fact that the crossover rate, scale factor, and population size
are the only three control parameters that need to be adjusted. The mutation technique
and the selection of the control parameters have a significant impact on the efficiency with
which DE solves a given optimization problem [28]. In certain optimization situations,
DE is prone to converge prematurely to local optima and exhibits poor convergence late
in the search process, motivating researchers to develop new enhanced variants of the
DE algorithm to improve the optimization performance of the DE to overcome these chal-
lenges [32,33]. There are a variety of mutation strategies in the literature. This is because
the choice of mutation strategy has a strong effect on how well an optimization problem
is solved. In this way, DE/rand/1 and DE/rand/2 are better for exploration, whereas
the DE/current-to-best/1 and DE/current-to-best/2 are better for local searches because
they focus on the best candidate in the current population [28]. To boost optimization
effectiveness, a new DE algorithm, JADE [33], has been proposed, with a new mutation
strategy, “DE/current-to-p best” as an extension to the traditional “DE/current-to-best/1”,
along with an optional external archive. Parameter adaptation eliminates the need for
experts to be aware of the specifics of optimization problems by automatically updating
the control parameters to suitable values. Results from simulations demonstrate that JADE
is superior to both traditional DE algorithms and adaptive variants. Built upon the JADE,
the researchers developed a parameter adaptive DE algorithm (SHADE) that stores the
parameters used in previous successful evolution rounds [34]. jDE (self-adaptive tuning
parameters) is another well-known variant of DE algorithm that has shown acceptable
performance on benchmark problems, which uses an evolution process to fine tune the
optimization algorithm parameters [35].

BOA is a novel optimization technique that is based on the foraging and mating
behaviour of butterflies [21] . As they search for food, butterflies emit a fragrance, the in-
tensity of which is proportional to the abundance of food sources. Other butterflies in the
swarm can detect the strength of the fragrance released by other butterflies to estimate the
likely location of a food supply or mate. Therefore, the BOA algorithm imitates feeding
and mating habits of biological butterflies, assuming that a butterfly would produce a
fragrance of varying strength, which is associated with the butterfly’s objective function
value. The fragrance will propagate over a distance, and other butterflies can sense it. This
is how the butterflies can share their personal information with other butterflies and form a
collective social knowledge network. Due to its simplicity and effectiveness, BOA has been
suggested to solve a variety of engineering applications, from WSN sensor localization [29],
engineering design problems [36], and neural network training [30], etc. Despite the fact
that the BOA has shown better performance in real-world applications compared to other
meta-heuristic algorithms, it also faces many challenging issues. For instance, the basic
BOA is easy to fall into the local optimum when solving highly complex problems, and the
convergence speed will reduce greatly in the late iteration process [37]. Therefore, many
improved variants of BOA have been suggested to overcome the two aspects [36,38].

In order to further improve the optimization performance on complex optimization
problems, researchers resorted to hybridizing two or more algorithms, thus creating one
new algorithm that exploits the complementary strengths of each method. Some examples
of the combination of two meta-heuristic algorithms include: the HFPSO [39] algorithm,
where the FA and PSO algorithms are hybridized with the aim of increasing accuracy and
improving convergence; a DE/WOA [26] hybrid algorithm, which combines local search
abilities of WOA with DE global search; HPSOBOA [40], which combines BOA and PSO
algorithms; etc. In a recent study, it was proposed to combine the butterfly optimization
algorithm (BOA) and differential evolution (DE), named HBODEA [41], in order to more
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effectively utilise each method’s advantages. Two enhancements—mutation and crossover
operations of DE and dynamic adaptive operators—are added to the original BOA in the
proposed identification strategy to increase global search capability and decrease the risk
of being trapped in a local optimum. However, this hybridization left a lot of different
improvements and variations to be performed. As a result, all of these papers demonstrate
that the hybridization of EAs speeds up the process of achieving the best solution, prevents
the issue of premature convergence, and yields better answers.

Numerous applications of nonlinear dynamics, especially those incorporating chaos,
have gained prominence as a consequence of the development of nonlinear dynamics
and are now commonly employed to enhance the effectiveness of various optimization
techniques [42]. The infinitely unstable periodic motions that characterise the bounded
dynamic behaviour of non-linear systems is characterised as chaos [43]. One of the most
effective methods for improving the performance of metaheuristic algorithms is to use
chaos maps, which generate bounded random numbers based on initial conditions. In
the literature, there are various chaos maps, such as the piecewise map, iterative map,
logistic map, sine map, Tent map, and so on [44]. Chaos has been used in the self-adaptive
chaos differential evolution (SACDE) [45], where the mutation factor is controlled using
chaos maps and dynamically changing weighting factors and crossover factors are also
introduced. Recently, a new hybrid optimization method based on differential evolution
(DE) and chaos theory was made [46]. This method uses chaotic sequences to change DE
parameters automatically in order to help the algorithm to escape local minimums and
improve global convergence. For the purpose of tackling three engineering optimization
problems, Arora and Singh [36] suggested an enhanced butterfly optimization technique
with several chaotic maps. Here, three chaotic BOA algorithms were created. The first
one used chaos maps to generate initial solutions, the second used chaos to control switch
probability p, and the third was a combination of the previous two. The results showed that
BOA modified with chaotic maps shows improved performance in terms of avoiding local
optima and accelerating convergence. To prove that the suggested chaotic BOA is correct,
engineering design issues, benchmark test functions, and both multimodal and unimodal
benchmarks are used. As a result, the pseudo-randomness, ergodicity, and irregularity
of chaos maps make them an ideal addition to EAs, helping to boost the efficiency of
optimization and the quality of the solutions they provide [36,47].

Motivated by the above considerations, we recognise the importance of passive local-
ization, especially in the indoor environment, where the traditional techniques cannot be
applied with the required accuracy. By also looking at the above strengths and weaknesses
of the BOA and DE algorithms, we can see that the DE algorithm has a good ability to
explore, which depends on the mutation scheme chosen, and that the BOA algorithm has a
good ability to search locally. Therefore, in this study, we suggest ICDEBOA, a hybridiza-
tion between BOA and DE, to effectively tackle the passive target localization problem.
In the suggested approach, we add a new composite roulette wheel-based mutation oper-
ator into the DE algorithm. To take advantage of the BOA algorithm’s good local search
ability, a hybrid algorithm is created by using BOA expressions for particle movement
to produce a mutant vector in the DE algorithm. Furthermore, an adaptive technique
incorporating chaos map is used to update the BOA algorithm’s sensory fragrance.

In the context of range-based target localization, the CRLB is usually utilised to access
the statistical performance of various localization algorithms. As a result, determining
CRLB as an optimality criterion for the considered localization problem is a critical is-
sue [48]. In this aspect, the CRLB establishes the physical impossibility of an unbiased
estimator’s variance being less than the given bound. Consequently, in this research, we
define the CRLB for the investigated localization problem and use it to evaluate the root-
mean-square error (RMSE) of the presented ICDEBOA technique and compare against that
of several other widely used methods.

Given the aforementioned information, the primary goals of this work were as follows:
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• To formulate a new problem of localization of a passive target using the obtained
TDOA measurements.

• To present a new global optimization method that is a hybridization of BOA and DE
algorithms, named ICDEBOA, so that the passive target localization problem can be
solved successfully.

• To validate the proposed algorithm’s performance on benchmark test functions by
comparing simulation results to a number of state-of-the-art methods.

• To show how well the proposed method works by comparing simulation results on an
example localization system to well-known approaches and derived CRLB.

The remaining sections of the paper are structured as follows. In Section 2, relevant
work on localization and the application of evolutionary algorithms to localization problems
is presented. In Section 3, the general localization problem of a passive target using TODA
measurements is formulated. In Section 4, the derivation of the appropriate ML estimator
for the considered localization problem is presented. In Section 5, the formulation of the
CWLS is outlined. Section 6 describes differential evolution algorithm with the employed
improvements. The procedure of the BOA algorithm along with the improvements is given
in Section 7. The derivation of ICDEBOA is proposed in Section 8. Section 9 describes the
CRLB in the context of the considered localization. In Section 10, numerical experiment
results are presented. In Section 11, conclusions and future work are stated. The detailed
derivation of CRLB for passive TDOA-based localization is presented in Appendix A, while
the detiled derivation of CWLS is provided in Appendix B.

2. Background and Related Work

Finding a passive target has gained interest in recent years due to its wide applications,
especially in indoor positioning and defensive systems where GPS signals are unavail-
able [3]. In general, solutions for indoor localization fall into two categories: range-based
and range-free. Lateration, such as trilateration and multilateration, is the most widely
employed range-based localization approach. Here, the range is defined as the distance
between the target and the receivers. It can be derived from multiple signal parameters,
including time of arrival (TOA) [49], TODA, received signal strength (RSS) [50], angle of
arrival (AOA) [51], or a combination of these parameters [52]. It has been demonstrated that
the TDOA parameter delivers more accurate and straightforward localization compared to
localization techniques based on other parameters [13]. As an alternative to range-based
localization techniques for indoor environments, range-free localization techniques such
as the Distance Vector Hop (DV-Hop) [53], centroid or weighted centroid approach [54],
and approximation point-in-triangulation test (APIT) [55] are extensively utilised. These
technologies are both affordable and easy to apply since they do not necessitate compli-
cated equipment structure. However, the range-based localization methods for indoor
positioning are more accurate compared to range-free methods [56].

The formulated passive target localization problem using TDOA measurements is
a nontrivial task due to its high nonlinearity and nonconvexity. In order to solve such
complex localization problems, in the literature, the most widely used methods include the
NLS [10] and ML [11] estimators. The NLS estimator is based on finding the extremum of
the objective function, which is formulated as the sum of the squared measurement errors.
However, when solving the NLS estimator with conventional gradient based methods,
it can be shown to have some convergence issues, and there is a need for a promising
intial solution. LLS methods are often used to linearize the NLS estimation problem so
that it can be solved in closed form [12]. However, it has been shown that the CRLB
can only be reached with LLS methods when the measurement errors are small enough.
To improve the accuracy and provide a closed-form solution to the localization problem,
a two-step weighted least-squares (2WLS) method is put forward to approximate the NLS
function [12]. The two-step WLS method rearranges the nonlinear TDOA equations into a
set of linear equations by introducing an auxiliary variable [57]. In the first step, it estimates
the source position and auxiliary variable independently, and then in the second step it
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refines the estimate by considering their connection. To further improve the accuracy and
avoid ill-matrix problems, the CWLS method is proposed, which explicitly incorporates
the relationship between the source position and the auxiliary variable as a constraint [58].
In this way, the CWLS method formulates the quadratically constrained quadratic problem
(QCQP), which is a non-convex problem. However, it can be converted to a convex problem
by exploiting the hidden convexity in the constraint.

Another widely applied estimator is the ML estimator, which has been regarded
as an optimal method for target estimation [11]. However, the formulation of the ML
target localization problem using TDOA measurements is a non-convex optimization prob-
lem. To address this issue, a SDP method is proposed, which relaxes the non-convex ML
optimization to a convex SDP problem [59]. However, as shown in the literature, the perfor-
mance of the SDP method is not satisfactory in the presence of a large measurement error.
In the literature, evolutionary algorithms (EAs) are used to deal with the fact that the ML
estimation problem is not convex. This is because EAs can find the best global solution to
such problems.

Different kinds of EAs, including FA, PSO, and BOA, etc., have been successfully
utilized during the last few years in solving different localization problems [29]. Since
the performance of a wireless sensor network is significantly impacted by the accuracy of
the sensor node localization, Arora and Singh [29] proposed the BOA method, a nature-
inspired optimization algorithm, to reduce localization errors when calculating the position
of sensor nodes in WSNs. In comparison to the PSO and FA based node localization sys-
tems, the proposed method demonstrates more consistent and precise node positioning
resuls. Researchers suggested using PSO and TDOA combined, which significantly im-
proves positioning accuracy [60]. Comparisons with established methods like WLS and
LLS demonstrate that PSO is superior. In addition, the ML estimator is utilised to create
the objective function for the hybrid TDOA/AOA location estimation issue, and the PSO
improved with chaos is offered as a solution [15]. Comparative investigation demonstrates
that the upgraded PSO algorithm outperforms the traditional optimization algorithms in
terms of global search capability. To improve localization accuracy in WSNs while using
fewer power and resources, researchers presented a two-stage PSO algorithm for locating
wireless sensor nodes in concave space [61]. The authors proposed employing a TDOA
passive positioning sensor selection approach based on the tabu search to balance the posi-
tioning accuracy of the sensor network and system utilization [62]. Consideration is given
to the passive TDOA model, with sensor position errors taken into consideration, and the
tabu search method is used to solve the transformed sensor selection problem. Simulation
findings demonstrate that the performance of the suggested sensor optimization approach
closely resembles that of the exhaustive search. A genetic algorithm with the flexibility to be
modified for varied circumstances and ground models is proposed to select the appropriate
node localization in order to decrease the CRLB in each sensor of an asynchronous TDOA
architecture [63]. The proposed methodology allows for the optimization of a passive
A-TDOA architecture’s 3D sensor deployment, including ground modeling flexibility and
the reduction of spatial discretization to achieve better results, which is critical for precision
applications and indoor and outdoor navigation of automatic vehicles such as automatic
ground vehicles and unmanned aerial vehicles.

It has been established that combining two or more EAs can improve solution quality
and boost optimization performance. Combining the WLS and FA algorithms, the Hybrid
Firefly Algorithm (hybrid-FA) is proposed for estimating target coordinates from TDOA
data [27]. According to the simulation findings, the hybrid-FA approach provides better
performance and localization accuracy than the state-of-the-art localization approaches.
Furthermore, the improved DE algorithm has been successfully hybridised with the FA
method and deployed to address the passive target localization problem utilising TOA
measurements [16]. The results reveal that the proposed method outperforms the standard
algorithms in terms of localization performance. GA is hybrdized with the DE algorithm in
order to improve the perofrmance in the WSN localization problem [64]. In addition, com-
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bining the DE algorithm with the standard direct search Nelder-Mead approach yielded
higher quality solutions for an objective function defined using the ML method [65]. More-
over, a number of hybrid EA variants, such as DE and FA (HFDLA) [66], HPSOVNS [67],
and PSO and variable neighbourhood search (HPSOVNS), are used successfully to improve
positioning accuracy.

The techniques for passive localization have found a wide range of applications in
recent years due to their ability to accurately locate a target without relying on active sen-
sors or emitting radio signals. Based on TDOA data, the authors provided an experimental
evaluation of multipath mitigation in two distinct interior settings utilizing a beam steering
broadband circular polarization antenna (BSBCPA) in an indoor passive localization sys-
tem [68]. Experiments are proposed using LOS and complicated multipath while delivering
a signal with a 20 MHz bandwidth via WLAN. Compared to traditional omnidirectional
linear polarization antennas, they discovered that the BSBCPA can enhance positioning
accuracy by at least 51%. The experimental findings demonstrate that the proposed BS-
BCPA mitigates multipath propagation for TDOA-based indoor passive localization in a
considerable manner. Passive localization found application during the launch mission
of a launch vehicle. Using ground-based telemetry stations increases the reliability of the
launch vehicle’s flight safety control system [69]. The authors applied passive TDOA/AOA
localization utilizing two ground telemetry stations and developed a strategy to increase
the accuracy of its localization based on second-order polynomial regression. By comparing
the findings of the suggested approach to the measured data from an on-board GPS utilized
during the third flight of the Korea Space Launch Vehicle-1, the localization accuracy has
been enhanced. For security applications, the authors presented a passive localization
method based on TOA measurements on the most recent 802.11ac WiFi standard, taking
advantage of the widespread deployment of WiFi systems, which typically use RSS pa-
rameters for localization [70]. Using the experimental setting, a prototype was created that
demonstrated a considerable improvement in positioning accuracy over previous methods.
Furthermore, by leveraging the WiFi standard, the authors propose a passive localization
tracking system to predict the footprints of suspects. Using ultra-wideband radio signals
is widely used for the implementation of passive localization systems. For the passive
localization of fixed targets based on the hybrid RSS/TDoA method, the authors presented
an algorithm for the optimal estimation of the amplitude and propagation delay time of
an ultra-wideband radio signal [71]. An algorithm has been developed for the optimal
estimation of distances from the radiation source to base stations, based on the results of
the measurements of the amplitude and the propagation delay time of the UWB radio
signal. Localization in crowded urban areas is another intriguing application area. Here,
sensors are carried by flying unmanned aerial vehicles to precisely locate the signal source
passively, making it possible to establish a wireless sensor network with the ideal geometry
configuration [72]. According to the min-max criterion, the authors presented a condensed
formulation of the TDOA localization method. The nonlinear equations are relaxed using
semidefinite programming to produce an initial solution, which is then used as the starting
point of the iterative algorithm to refine the solution in order to determine the source’s
location with accuracy.

Based on the previous, this paper proposes an enhanced ICDEBOA method as the hy-
bridization of two well-proven EAs, with the aim of improving the accuracy of estimating
passive target location based on solving an ML objective function formulated using TDOA
measurements, particularly when measurement noise is high.

3. Localization Problem

The proposed passive target localization problem uses TDOA signal parameter to
estimate the passive target’s unknown position under the conditions of LOS environment.
Figure 1 illustrates the considered localization system, which consists of a set of transmitters
xt

i =
[
xt

i yt
i
]T ∈ R2, ∀i ∈ {1, 2, ..., N}, whose positions are previously known and the

passive target x =
[
x y

]T ∈ R2 at the unknown coordinates x and y. The target is
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illuminated by the signals coming from the transmitters, which is then reflected from the
target and captured at the receiver, which is, without the loss of generality, placed in the
origin xr =

[
0 0

]T .

Figure 1. Illustration of the plaement of transmitters, receiver and a target and a distribution of
signals in a considered localization problem.

Here, we model TDOA measurement error using the Gaussian distribution, which
in a LOS context, is a justified proposition [2]. Assuming the time synchronisation of
xt

i , ∀i ∈ {1, 2, ..., N} and xr is obtained and that the passive target simply reflects signals
back and forth between xt

i and xr [48], the noisy TDOA measurements are obtained as the
signal time difference

ti = tr,i − td,i, i ∈ {1, 2, ..., N} (1)

where tr,i denotes the TOA of a signal which is reflected from the target coming from the
ith transmitter and captured at the receiver, and td,i is the TOA of a signal which is directly
coming from the ith transmitter to a receiver. Then, by substituting the coordinates of
receiver, transmitters and target the TDOA measurement is represented as

ti =
1
c
(∥∥xt

i − x
∥∥

2 + ‖xr − x‖2 −
∥∥xt

i − xr
∥∥

2

)
+ n̄i, ∀i ∈ {1,2,...,N}, (2)

where ‖ · ‖2 denotes the two-dimensional Euclidean distance, c denotes propagation speed
of light, and n̄i is the Gaussian modelled measurement noise. Eliminating the term c,
the range measurement of the signal coming from ith transmitter is obtained

ri = c · ti

=
(∥∥xt

i − x
∥∥

2 + ‖xr − x‖2 −
∥∥xt

i − xr
∥∥

2

)
+ ni, ∀i ∈ {1, 2, ..., N},

(3)

where ni = cn̄i is Gaussian zero-mean distributed variable. Since the distance
∥∥xt

i − xr
∥∥

2
between each of the transmitters and receiver is previously known, we introduce a new
variable to rearrange a range measurement as follows

r̃i = ri +
∥∥xt

i − xr
∥∥

2 (4)

Therefore, the Equation (3) can be rewritten as

r̃i = ‖xr − x‖2 +
∥∥xt

i − x
∥∥

2 + ni, ∀i ∈ {1, 2, ..., N}. (5)
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Which is represented in the corresponding vector form

r̃ = d(x) + n, (6)

in which

d(x) =


∥∥xt

1 − x
∥∥

2 + ‖xr − x‖2
...∥∥xt

N − x
∥∥

2 + ‖xr − x‖2

, (7)

and n = [n1, n2, . . . , nN ]
Tis the measurement noise vector, under assumption that each

component of a vector n is independent and an identically distributed zero-mean Gaussian
variable. The C denotes the appropriate matrix of covariance, whose elements can be
calculated using the expectation operator E[·] as C = E

[
nnT]. Taking into consideration

that the measurement noise is the zero-mean Gaussian variable, it can be simplified to
C = σ2IN [48].

This paper aims to accurately predict the passive target’s x location, which is unknown,
using TDOA parameters under the presence of noise. This is achieved solving the ML
estimation problem, which is in general nonlinear and has multiple optima, which is
outlined in the following section.

4. Formulation of Maximum Likelihood Estimator

To estimate the position of a passive target the Maximum Likelihood estimator is
employed, since the probability density functions of measurement errors are known.
A zero-mean Gaussian distribution is assumed for the TDOA measurement errors in the
formulation of the localization issue [2]. Therefore, the likelihood function is obtained as

L(r̃|x ) = 1

(2π)N/2 det (C)1/2 exp
(
−1

2
(r̃− d(x))TC−1(r̃− d(x))

)
, (8)

Then, taking the logarithm of the Equation (8), log-likelihood function is yielded

ln L(r̃|x ) = k− 1
2σ2

(
(r̃− d(x))T(r̃− d(x))

)
, (9)

in which k = ln
(

1
(2π)N/2 det (C)1/2

)
is neglected as a constant independent of x. As the

solution to the minimization problem, we obtain the estimated target position x̂

x̂ = argmin
x∈R2

(JML(x)), (10)

with objective function of ML estimator

JML(x) = (r̃− d(x))T((r̃− d(x))). (11)

The corresponding objective function JML(x) of the formulated ML estimation prob-
lem is depicted on Figure 2.
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Figure 2. The plot of the considered ML objective function JML(x).

Based on an examination of the topology of the function JML(x) depicted in Figure 2,
it is determined that JML(x) is a multi-modal function with pronounced nonlinearities.
Wherever the global minimum of a function occurs is where the target x should be located,
due to the difficulty of the JML(x) function, it is important to use advanced algorithms for
finding the best possible solution globally.

5. Constrained Weighted Least-Squares

In this section, the CWLS algorithm is developed for the considered passive target
localization problem. Therefore, the nonlinear TDOA equations can be transformed into
a set of linear equations, by introducing the variable Rr = ‖xr − x‖, neglecting n2

i and
squaring the Equation (5) giving the following expression

−2
(
xr − xt

i
)Tx− 2r̃iRr + r̃2

i + ‖xr‖2 −
∥∥xt

i

∥∥2
= 2(r̃i − Rr)ni, ∀i ∈ {1, 2, ..., N}, (12)

If we write θθθ, as
θθθ =

[
x Rr ]T , (13)

then Equation (12) is converted to matrix form

b−Aθ = m, (14)

where

A = 2


xr − xt

1 yr − yr
1 r̃1

xr − xt
2 yr − yr

2 r̃2
...

...
...

xr − xt
N yr − yr

N r̃N

, (15)

b =


r̃2

1 + x2
r + y2

r −
(
xt

1
)2 −

(
yt

1
)2

r̃2
2 + x2

r + y2
r −

(
xt

2
)2 −

(
yt

2
)2

...
r̃2

N + x2
r + y2

r −
(
xt

N
)2 −

(
yt

N
)2

, (16)



Appl. Sci. 2023, 13, 684 11 of 38

and

m = 2


(r̃1 − Rr)n1
(r̃2 − Rr)n2

...
(r̃N − Rr)nN

. (17)

The following constrained optimization problem can be used to estimate the coordi-
nates of the target in the presence of measurement errors

min
θ

J(θ) = min
θ

(b−Aθ)TW(b−Aθ) (18)

s.t. θTSθ = 0, (19)

where W ∈ RN×N is a matrix of weights that is symetric, S = diag{1, 1,−1} is a diagonal
and orthonormal matrix. It is possible to approximatively determine the elements of matrix
of weights under conditions of sufficiently low measurement noise, as

W =
[

E
{

mmT
}]−1

=
(

DTCD
)−1

, (20)

where
D = diag{2(r̃1 − Rr), 2(r̃2 − Rr), . . . , 2(r̃N − Rr)}, (21)

The optimization problem (18) is a quadratically constrained quadratic program
(QCQP), which can be solved using the Lagrange multiplier method. Therefore, the La-
grangian function of the optimization problem (18) is given by

L(θ, λ) = (b−Aθ)TW(b−Aθ) + λθTSθ, (22)

where λ is the Lagrange multiplier. The minimum of Equation (22) is obtained by differen-
tiating L(θ, λ) with respect to (θ, λ), as follows

∂L(θ, λ)

∂θT =
(

ATWA + λS
)

θ−ATWb = 0, (23)

∂L(θ, λ)

∂λ
= θTSθ = 0. (24)

Solving the Equation (23) for θ, the following CWLS solution, denoted by θ̂CWLS,
is obtained

θ̂θθCWLS =
(

ATWA + λS
)−1

ATWb. (25)

where the value of λ is unknown, and can be determined as a root of the 4th-order polyno-
mial, which is obtained by substituting Equation (25) into Equation (24) (see Appendix B),
given as

3

∑
i=1

αiβi

(ζi + λ)2 = 0, (26)

where {αi}, {βi} and {ζi}, ∀i = 1, 2, 3, are given in Appendix B. Then, the procedure based
on CWLS method is

Step 1: Initialize elements of matrix of weights as W = I.
Step 2: Using the standard root finding algorithm determine all real-valued roots of the

Equation (26).
Step 3: Substitute obtained λ in previous step into Equation (25), and determine all sub

estimates of θ̂CWLS for which the J(θ)is minimal.
Step 4: Using the Equation (20) construct the weighting matrix W.
Step 5: Repeat steps 2–4 until θ̂CWLS satisfies the stopping criterion.
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6. Differential Evolution Algorithm and Improvements
6.1. Conventional DE

The DE method belongs to group of evolutionary optimization algorithms that are
capable of obtaining a global optimum of difficult multimodal optimization problems [22].
Initialization, mutation, crossover, and selection are the four cornerstone operators of
the DE algorithm’s optimization procedure. These operators are discussed briefly in the
following subsections.

6.1.1. Initialization

The DE algorithm begins its search for the global optimum with a population of NP candi-
date solutions that are randomly positioned in the feasible search space. Each member of the pop-

ulation in the Gth generation is vector of components x(G)
i =

[
x(G)

i,1 , x(G)
i,2 , . . . x(G)

i,j , . . . , x(G)
i,n

]T
,

where x(G)
i,j denotes the jth component of the ith vector, of nth dimension. For the considered

localization problem, the component of each individual in the population is initialized as follows{
x(G)

i : x(G)
i,j ∈

[
xL

i,j, xU
i,j

]}
, ∀i ∈ {1, 2, ..., NP}, ∀j ∈ {1, 2, ..., n} (27)

where randj denotes a random number generated in the range [0, 1]. Here, xL
i,j and xU

i,j
denote the maximum and minimum bounds of the feasible search space for each vec-
tor component.

6.1.2. Mutation

The mutation is a crucial operator in the DE algorithm, which promotes the exploration
of the search space to locate the region of the global minimum and improves the quality of
the solutions. In this regard, for each target vector x(G)

i , the DE algorithm creates the cor-

responding mutant vector v(G+1)
i =

[
v(G+1)

i,1 , v(G+1)
i,2 , . . . , v(G+1)

i,j , . . . , v(G+1)
i,n

]T
. The vector

v(G)
i is usually created as a combination of weighted vector differences between randomly

chosen vectors. Numerous mutation techniques have been presented in the literature with
the intent of enhancing exploration, exploitation, or both. The most prominent mutation
schemes include [73]:
DE/rand/1

v(G+1)
i = x(G)

r1 + F
(

x(G)
r2 − x(G)

r3

)
, (28)

DE/rand/2
v(G)

i = x(G)
r1 + F

(
x(G)

r2 − x(G)
r3

)
+ F

(
x(G)

r4 − x(G)
r5

)
, (29)

DE/best/1
v(G+1)

i = x(G)
best + F

(
x(G)

r1 − x(G)
r2

)
, (30)

DE/best/2
v(G+1)

i = x(G)
best + F

(
x(G)

r1 − x(G)
r2

)
+ F

(
x(G)

r3 − x(G)
r4

)
, (31)

DE/current-to-best/1

v(G+1)
i = x(G)

i + F
(

x(G)
best − x(G)

i

)
+ F

(
x(G)

r1 − x(G)
r2

)
, (32)

where r1, r2, r3, r4 and r5 are mutually distinct integers randomly generated from the set

{1, 2, . . . , NP}\{i}, the x(G)
best denotes the individual with the best objective function value

in the entire population at the current generation G and F is the scale factor that controls
the scaling ratio of the difference vector. It has been shown that besides choosing the appro-
priate mutation scheme the value of scale factor plays a significant role in the optimization
outcome [28].
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6.1.3. Crossover

The crossover operator is used in the DE algorithm to promote population diversity.
In this operator, the algorithm generates a trial vector component u(G+1)

i,j by combining

the elements of the target vector x(G)
i,j and the matching mutant vector v(G)

i,j , created in the
previous step, as follows

u(G+1)
i,j =

 v(G+1)
i,j if randi,j 6 CR ∨ j = jrand

x(G)
i,j otherwise

(33)

where randi,j is a uniformly generated random number from the range [0, 1], and CR is a
crossover rate, a parameter controlling the number of components from the mutant vector
is injected into the trial vector, and jrand ∈ {1, 2, . . . , n} is an integer selected randomly. It
has been demonstrated that the number of vector components chosen for crossover varies
depending on the stage of the optimization process [74]. Adaptively changing the crossover
rate during optimization is, thus, essential.

6.1.4. Selection

Finally, in the selection operator, the DE algorithm determines which vector poses the
qualities required to solve the considered optimization problem and is chosen to form a
population for the next generation. As the measure of the quality of the solution, the ob-
jective function value at the trial vector f

(
u(G+1)

i

)
and matching target vector f

(
x(G)

i

)
is

employed. Therefore, the individual with the lower objective function value is retained for
the next generation according to

x(G+1)
i =

{
u(G+1)

i if f
(

u(G+1)
i

)
6 f

(
x(G)

i

)
x(G)

i otherwise
, (34)

where x(G+1)
i denotes the target vector selected to the next generation.

Repeated iterations of mutation, selection, and crossover are carried out until the max-
imum number of generations Gmax specified by the termination criteria has been reached.

6.2. Improvement of the Differential Evolution Algorithm

SHADE is a powerful variant of the DE algorithm that emerged as an improvement
on the well-known JADE algorithm [34]. Therefore, in this study, we suggest using the
SHADE method to provide specific control parameters for each population member. In this
regard, for each individual the scale factor F(G)

i and crossover rate CR(G)
i are produced

according to the Cauchy and normal distributions, respectively, as follows

F(G)
i = randci

(
µ
(G)
F , 0.1

)
, (35)

CR(G)
i = randni

(
µ
(G)
CR , 0.1

)
, (36)

where randci

(
µ
(G)
F , 0.1

)
represents a random number drawn according with the Cauchy

distribution whose median is denoted as µ
(G)
F and the scale parameter is fixed to 0.1,

and randi

(
µ
(G)
F , 0.1

)
is a random number drawn from the normal distribution with mean

value denoted as µ
(G)
CR and standard deviation 0.1.

Both µ
(0)
F and µ

(0)
CR are initialized to 0.5. Since the domains of the scale factor and

crossover rate in DE algorithm are usually defined as F ∈ [0, 1] and CR ∈ [0, 1] [73], the in
the cases when the values generated according to Equations (35) and (36) are out of bounds
the following truncation rules are applied: When scale factor is F(G)

i > 1, we truncate F(G)
i
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to 1,otherwise in case F(G)
i < 0, F(G)

i is regenerated using Equation (35) and domain is

checked again. For the crossover rate check if CR(G)
i > 1, and if satisfied truncate to 1,

in the case CR(G)
i < 0 truncate CR(G)

i to 0.
The SHADE algorithm has introduced a set where the successful previous versions of

generated parameters are stored in order to influence the generation of new values in the
next generation. Therefore, the F(G)

i and CR(G)
i values which have proven to be successful

are stored in the sets SF and SCR, respectively in each iteration. Then, in the next generation
the µ

(G)
F and µ

(G)
CR parameters are generated according to

µ
(G+1)
F =

{
(1− c)µ(G)

F + c ·meanWL(SF) i f SF 6= ∅
(1− c)µ(G)

F + c · rand(0, 1) otherwise
, (37)

µ
(G+1)
CR =

{
(1− c)µ(G)

CR + c ·meanWA(SCR) i f SCR 6= ∅
(1− c)µ(G)

CR + c · rand(0, 1) otherwise
, (38)

where c denotes learning rate, a constant that controls the amount of previous experience
taken for new parameter generation, which is set to c = 0.1 [34], while meanWL(·) and
meanWA(·) are the weighted Lehmer mean and weighted arithmetic mean, respectively,
which are determined as

meanWL(SF) =

L
∑

k=1
wk · S2

F,k

L
∑

k=1
wk · SF,k

, (39)

meanWA(SCR) =

L
∑

k=1
wk · S2

CR,k

L
∑

k=1
wk · SCR,k

, (40)

where the size of the sets SF and SCR is L = |SF| = |SCR|, and wk coefficients are deter-
mined as

wk =

∣∣∣ f(u(G)
i

)
− f

(
x(G)

i

)∣∣∣
L
∑

k=1

∣∣∣ f(u(G)
i

)
− f

(
x(G)

i

)∣∣∣ . (41)

6.3. Mutation Scheme DE/current-to-pbest/1

The popular JADE method includes a mutation operator, DE/current-to-pbest/1,
that narrows the search to the top percentile of population members and quickens con-
vergence [33]. This operator is an extended with improved parameter adaption scheme
introduced in the SHADE algorithm. This demonstrates the significance of the mutation
strategy to the performance of optimization. The following may be stated about the accom-
panying mutation vector based on the suggested DE/current-to-pbest/1 mutation operator:

v(G)
i = x(G)

i + F(G)
i

(
x(G)

pbest − x(G)
i

)
+ F(G)

i

(
x(G)

r1 − x(G)
r2

)
, (42)

where x(G)
pbest is randomly selected from the top (p× 100%× NP ) individuals in the current

population with p ∈ (0, 1] and F(G)
i is generated to Equation (35).

Analysing the Eq., we observe that the search ability of the algorithm is enhanced,
particularly in the latter stages of the evolution process, when the mutation vector explores
the neighborhood of each x(G)

i in the direction of the x(G)
pbestsolution.
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7. Butterfly Optimization Algorithm and Improvements
7.1. Original BOA Algorithm

BOA is a novel metaheuristic optimization technique that was inspired by butterfly
foraging and butterfly mating [21]. The BOA algorithm’s algorithmic representation of the
biological system is based on three hypotheses:

1. All butterflies attract each-other by emitting a scent.
2. Their flight is random or aimed to the best butterfly emitting more intense scent.
3. Butterfly stimulus strength is determined by the objective function value at the con-

sidered butterfly.

There are three stages to BOA algorithm’s optimization process: startup, iteration,
and final optimization. In each execution of BOA, the initialization phase is conducted
first, followed by iteration, and the algorithm is finished after the optimal solution has
been identified in the final optimization phase. The objective function and solution space
are specified during the phase of initialization. In this phase, the BOA parameters are
initialized, and the method then generates a random initial butterfly population within
the upper and lower bounds calculating and storing their fragrance and fitness values.
The iteration phase of BOA follows the initialization step and with it is when the optimum
solution is found via a series of iterations. During each iteration, the value of the objective
function is calculated for each butterfly, and then the butterflies use that value to influence
the amount of scent ϕi they produce in their current positions

ϕi = cIa, (43)

in which a denotes the power exponent chosen as a ∈ [0, 1] and c is the sensory fragrance
in the range [0, 1], and I is the stimulus intensity. The change in fragrance absorption is
governed by the parameter a value. Given two limit scenarios, i.e., when a = 1, there is
no absorption of scent, i.e., the same amount of fragrance is recognized by all butterflies.
Consequently, a fragrant butterfly can be discovered anywhere within the region, and a
global solution can be reached. In contrast, when a = 0, the scent cannot be sensed by
other butterflies, thus impacting the algorithm’s optimization behaviour. The algorithm’s
convergence rate can be controlled by the value of the parameter c, which is usually
chosen based on the properties of the objective function to be optimized. The values of
a and c, have a considerable effect on the algorithm’s convergence rate and optimization
performance. The value of the stimulus intensity I depends on the objective function value
at the considered butterfly, as follows

I = f
(

x(G)
i

)
, (44)

where f
(

x(G)
i

)
is the objective function value of ith butterfly at Gth generation. In the

iteration phase, the BOA evaluates two steps, i.e., global and local search. The butterfly
with the highest obj. function value, indicated by g∗, is moved in the step of global search
using the formula

x(G+1)
i = x(G)

i +
(

r2 × g∗ − x(G)
i

)
× ϕi, (45)

where r ∈ [0, 1] is the randomly selected number. The next step, which deals with the local
search, assumes movement of the butterfly in the vicinity of other neighbouring butterflies,
as follows

x(G+1)
i = x(G)

i +
(

r2 × x(G)
j − x(G)

k

)
× ϕi, (46)

where x(G)
j and x(G)

k denote the appropriate butterflies taken from the solution space.
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In each iteration, switch probability p is used to choose between expressions in
Equations (46) and (45) according to the expression

x(G+1)
i =

 x(G)
i +

(
r2 × g∗ − x(G)

i

)
× ϕi, for rp < p

x(G)
i +

(
r2 × x(G)

j − x(G)
k

)
× ϕi, otherwise

(47)

where rp ∈ [0, 1] is generated randomly at each generation. Iterations continue until a
certain condition is reached, and an optimal solution is presented.

7.2. Chaos Enhanced BOA Algorithm

Literature shows that the traditional BOA method has high local search ability, but it
often prematurely converges to local optima, which degrades optimization efficiency, par-
ticularly when dealing with the complicated and multi-modal optimization [37]. Therefore
there is a need to modify original BOA and improve optimization performance. This is why
some academics have recommended incorporating chaos into BOA in order to boost overall
optimization efficiency and avoid the issues in performance [36]. In nonlinear dynamic
systems, we can observe a bounded dynamic behavior called chaos, which is described
with chaos maps, which generate a limited series of random integers in response to a given
starting condition.

By analyzing Equation (43), we see that the butterfly’s ability to detect the scents emit-
ted off by other butterflies is one of the most crucial aspects in BOA, since it directs their
flight throughout the search phase. Thus, when solving complex optimization problems,
parameter c should not be kept constant during the optimization process. Searching with a
small c may cause premature convergence, while a large constant value of c early in the
search phase increases the risk of missing the region of global optimum, which affects
optimization performance. Therefore, we propose an adaptive mechanism to change value
of sensory fragrance c during the optimization process which is based on the use of chaos
maps, which can be written in the following form

c(G) = e−
G

Gmax · x(G)
c (48)

where x(G)
c represents the chaotic motion produced by chosen chaos map in the Gth

generation. The Equation (48) describes a parameter which has the chaotic motion but is

upper bounded by the fator e−
G

Gmax .
Numerous distinct chaos maps may be found in literature. The five most popular

chaotic maps have been utilised in the current study to change the value of parameter c
and to identify which one is most appropriate for the task at hand.

Piecewise map: The Piecewise map is described as

x(G+1)
c =



x(G)
c
P , 0 ≤ x(G)

c < P
x(G)

c −P
0.5−P , P ≤ x(G)

c ≤ 0.5
1−P−x(G)

c
0.5−P , 0.5 ≤ x(G)

c ≤ 1− P
1−x(G)

c
P , 1− P ≤ x(G)

c ≤ 1

(49)

G = 1, 2, . . . , Gmax. (50)

Iterative map: The expression for the Iterative map can be written as

x(G+1)
c = sin

(
Pπ

x(G)
c

)
, G = 1, 2, . . . , Gmax. (51)

where P is the parameters choosen as P ∈ (0, 1).
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Logistic map: The Logistic map is written as

x(G+1)
c = Px(G)

c

(
1− x(G)

c

)
, G = 1, 2, . . . , Gmax. (52)

Sine map: The expression for Sine map can be written as

x(G+1)
c =

a
4

sin
(

πx(G)
c

)
, G = 1, 2, . . . , Gmax. (53)

where the chaotic motion is achieved for a ∈ (0, 4).
Tent map: The Tent map is written acording to the equation

x(G+1)
c =

 x(G)
c
0.7 , x(G)

c < 0.7
10
3

(
1− x(G)

c

)
, x(G)

c ≥ 0.7
G = 1, 2, . . . , Gmax. (54)

In this respect, Figure 3 illustrates the changes of the employed chaos maps given
in Equations (49)–(54), with the increase in generations, and the plot chaos based sensory
fragrance c(G) from Equation (48) with the employment of each chaos map expression for
setting the value of x(G)

c .
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Figure 3. Plot of the employed chaos maps and corresponding chaos based sensory fragrance c(G) as
a function of generation number.

From the Figure 3, we find that the considered chaos maps generate a number sequence
that is both ergodic and irregular, but each considered map has unique properties that are
visible on the graph. Moreover, we observe that the exponential factor e−G/Gmax serves
as the top boundary for the chaos-based sensory scent c(G). As a result, at the beginning
of the optimization process, the considered chaotic sequences have higher values, and as
more generations are added, the value of the resulting sequence of numbers decreases.
Higher values at the start of the optimization process are beneficial for encouraging solution
space exploration. The lower values at the end of the optimization process, however, are
important for the improvement of local search in the later stage of the optimization process.

In order to determine which of the considered chaos maps is best suited to increase
the performance of BOA algorithm, in this paper the statistical analysis is applied, which is
explained in detail in Section 10.1.1. Based on the results of the Friedman’s test, presented
in Table 1 we observe that the introduction of chaos maps into the BOA algorithm leads
to an increase in optimization performance compared to conventional BOA. Furthermore,
it is concluded that the BOA algorithm enhanced with sine map has achieved the best
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performance (best rank). Therefore the chaos-based sensory fragrance c(G) can be obtained
using the following equations:

x(G+1)
c =

a
4

sin
(

πx(G)
c

)
(55)

c(G) = e−
G

Gmax · x(G)
c , G = 1, 2, . . . , Gmax (56)

where a is the parameter which determines the chaotic motion.

Table 1. Summary of the statistical findings of the Friedman test comparing the performance of the
five chaos-improved BOA algorithms and the conventional BOA algorithm.

Algorithm 10D 30D 50D 100D Mean Ranking Rank

BOA-c-Sine 2.27 2.5 2.65 2.5 2.47 1
BOA-c-Logistic 2.76 2.72 2.62 2.9 2.75 2
BOA-c-Picewise 3.13 3.4 3.05 2.8 3.09 3
BOA-c-Iterative, 3.53 3.52 3.42 3.93 3.6 4

BOA-c-Tent 4.03 3.41 3.75 3.5 6.67 5
Original BOA 5.26 5.45 5.51 5.37 5.4 6

Friedman
p-value 6× 10−10 8.32× 10−11 2.96× 10−12 4.42× 10−12

8. Improved Chaos-Driven Hybrid Differential Evolution and Butterfly
Optimization Algorithm

In Section 4, it has been demonstrated that the considered passive target localization
problem is a non-convex complex problem, which cannot be solved using conventional
algorithms. According to a review of the literature, the DE algorithm often performs well in
a global search but poorly in a local search [32]. However, applying these tactics throughout
the whole evolution process might result in premature convergence. The authors have
suggested utilising DE/best/1, DE/best/2, and more recently DE/current-to-p-best/1 mu-
tation strategies to enhance local search [33]. Conversely, BOA algorithm shows excellent
local search ability, however, it often prematurely converges to local optima of complex
problems [37]. Therefore, the main idea of this paper is to combine good local search
abilities of BOA with excellent global search of DE algorithm. In the proposed ICDEBOA
algorithm, this is achieved by introducing the BOA particle movement equations into the
mutation strategies of DE algorithm. Furthermore, the improvements of DE and BOA
algorithms, outlined in the previous subsections, are introduced into the ICDEBOA algo-
rithm.Therefore, in order to improve the exploration abilities of the proposed ICDEBOA
algorithm, in this paper we propose the uses of the following two mutation strategies
for exploration:

• DE/rand/1 mutation strategy with adaptive scale factor F(G)
i , which is calculated

according to the Equation (35). Therefore the expression for calculating the mutation
vector is

v(G+1)
i = x(G)

r1 + F(G)
i

(
x(G)

r2 − x(G)
r3

)
. (57)

• Novel DE/rand-global-BOA/2 mutation strategy, which is produced by introducing
the parts of BOA global search step into the DE/rand/2 mutation strategy. Therefore,
to achieve this the term F

(
x(G)

r4 − x(G)
r5

)
in Equation (29) is replaced with the term(

r2 × g∗ − x(G)
i

)
× ϕi from Equation (45). Furthermore, the adaptive scale factor F(G)

i
given in Equation (35) is introduced instead the conventional scale factor F. Addition-
ally, the sine chaos map-based sensory fragrance c(G) is employed in determining the
term ϕi. Therefore, the DE/rand-global-BOA/2 mutation strategy has the form

v(G)
i = x(G)

r1 + F(G)
i

(
x(G)

r2 − x(G)
r3

)
+
(

r2 × g∗ − x(G)
i

)
× ϕi. (58)
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Next, the modification is performed in order to perform local search and improve the
solution accuracy. The use of the following two mutation operators is proposed

• The usage of DE/best/1 mutation strategy with adaptive scale factor F(G)
i from

Equation (35) is proposed, which can be expressed as

v(G+1)
i = x(G)

best + F(G)
i

(
x(G)

r1 − x(G)
r2

)
. (59)

• A new DE/best-local-BOA/2, produced by hybridizing the mutation operator DE/best/2
form DE algorithm with the local search step of BOA algorithm given in Equation (46).
In this regard, the term F

(
x(G)

r3 − x(G)
r4

)
from the Equation (31) is replaced with the

term
(

r2 × x(G)
j − x(G)

k

)
× ϕi from Equation (46). Furthermore, the adaptive scale

factor F(G)
i from Equation (35) and sine chaos map-based sensory fragrance c(G) from

Equation (48) have been introduced, providing the following expression

v(G+1)
i = x(G)

best + F(G)
i

(
x(G)

r1 − x(G)
r2

)
+
(

r2 × x(G)
j − x(G)

k

)
× ϕi. (60)

A lot of research has been proposed, which deals with the introduction of new mutation
operators into the DE algorithm. In JADE, authors proposed using the DE/current-to-p-
best/1 mutation scheme to improve optimization performance [33]. Moreover, authors
proposed using multiple mutation strategies [75]. In this way, the suggested technique
presents a novel triangular mutation rule based on the convex combination vector of the
triplet created by the three randomly selected vectors and the difference vector between
the best and poorest individuals from the three randomly picked vectors. Combining the
mutation rule with the standard mutation approach via a non-linear decreasing proba-
bility rule, authors proposed using a reflection-based mutation operation inspired by the
Nelder–Mead technique and two additional fundamental mutation strategies to preserve
population diversity [76]. In order to choose mutation strategies, their probabilities of
success for each individual are employed using a roulette wheel selection method. Recently,
the authors proposed hybridization between DE and FA algorithms with multiple mutation
strategies, where the FA is introduced into the mutation scheme of DE and then randomly
applied during the evolution process [16].

In this paper, we proposed using the roulette wheel selection, in order to perform the
choice of the mutation operator, which is appropriate to the current optimization stage.
Initially, each of the mutation operators are assigned random success rates sr in the range
[0, 1] such that ∑ sr,k = 1, ∀k = 1, 2, 3, 4. During the evolution process, the kth mutation

operator, which is used to produce mutant vector v(G)
i of the ith individual, is assigned

value 1 if the produced mutant vector lead to the improvement in the optimization process,
e.g., the success rate is calculated as follows

s(G)
r,k =

{
1, if f

(
v(G)

i

)
< f

(
x(G)

i

)
0, otherwise

. (61)

Then, the total probability of choosing the appropriate mutation scheme is calculated
as follows

p(G)
k =

NP

∑
i=1

s(G)
r,k

NP,k
, (62)

where NP,k denotes the total number of individuals that are assigned the kth mutation
operator in the current generation. Therefore, if the value of pk of kth mutation operator is
higher, the probability of choosing that mutation scheme increases.

In this way, the pseudocode of the proposed ICDEBOA algorithm is presented in
Algorithm 1, for the considered passive target localization problem.
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Algorithm 1 ICDEBOA algorithm pseudo-code

Initialize parameters NP, MaxIter
Generation of initial population of NP individual
Generate sine map x(G)

c for G = 1, 2, . . . , MaxIter
Initialize values of pk for k = 1, 2, 3, 4
while G < MaxIter do

Determine the probability of choosing the appropriate mutation scheme p(G)
k

Update sensory fragrance c(G) using the Equation (55)
for i = 1, 2, . . . , NP do

Generate three random integers r1, r2, r3 ∈ {1, . . . , NP} such that r1 6= r2 6= r3 6= i
Use roulette wheel to select k
switch k do

case k = 1
Apply mutation operator in Equation (57)

case k = 2
Apply hybrid mutation operator DE/rand-global-BOA/2 in Equation (58)

case k = 1
Apply mutation operator in Equation (59)

case k = 1
Apply hybrid mutation operator DE/best-local-BOA/2 in Equation (60)

end switch
Calculate the success rate s(G)

r,k using Equation (61)
Perform crossover
Generate random number jrand ∈ {1, 2, . . . , n}
for j = 1, 2, . . . , n do

u(G+1)
i,j =

 v(G+1)
i,j if randi,j 6 CR ∨ j = jrand

x(G)
i,j otherwise

end for
Perform selection

x(G+1)
i =

{
u(G+1)

i if f
(

u(G+1)
i

)
6 f

(
x(G)

i

)
x(G)

i otherwise
end for

end while

9. Cramer-Rao Lower Bound

In this section, the overview of the estimation error measure and the derivation of
the appropriate CRLB is provided, which is used to assess the performance of considered
estimation methods. The CRLB, which is given by the inverse of the Fisher information
matrix (FIM), denoted as F(x), sets the lower limit for the variance (or covariance matrix)
of any unbiased estimator [48]. The FIM F(x) represents a measure of the knowledge
contained in the observed data about the unknown parameter vector, and it may be
computed as follows

F(x) =
[

F11 F12
F21 F22

]
= E

[(
∂ ln( f (r̃|x ))

∂x

)(
∂ ln( f (r̃|x ))

∂x

)T
]

= −E
[

∂2 ln( f (r̃|x ))
∂x∂xT

]
.

(63)

with the corresponding elements of the matrix determined according to the expressions

F11 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖
+

x− xt
i∥∥x− xt

i

∥∥
2

)2

, (64)
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F12 = F21 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖
+

x− xt
i∥∥x− xt

i

∥∥
2

)

×
(

y− yr

‖x− xr‖
+

y− yt
i∥∥x− xt

i

∥∥
2

)
,

(65)

F22 =
1
σ2

N

∑
i=1

(
y− yr

‖x− xr‖
+

y− yt
i∥∥x− xt

i

∥∥
2

)2

. (66)

The process of deriving the Equations (64)–(66) is described in detail in Appendix A.
Therefore, the CRLB inequality bound of the unbiased estimator x̂ of parameter x is repre-
sented with the relationship between covariance cov(x̂) = E[x̂]and the inverse of the FIM,
as follows

E
[
(x̂−x) (x̂−x)T

]
≥ Tr

{
F(x)−1

}
= CRLB(x), (67)

where x̂ denotes the estimated value of x.

10. Experimental Analysis

Experiments were carried out to evaluate the accuracy of the proposed ICDEBOA
method on the localization problem and to compare the optimization performance of the
proposed algorithm with the performance of state-of-the-art algorithms in the literature on a
set of CEC2014 benchmark problems. The results of these experiments are presented in this
section. The results collected may be broken down into two categories: (1) an assessment
of various EAs’ performances on the CEC2014 benchmark, and (2) an examination of
localization’s effectiveness.

10.1. Statistical Comparisons on CEC2014 Problems

According to [77], the CEC2014 benchmark problems include 30 optimization prob-
lems with one objective that are defined on real numbers with the search space dimensions
of D = 10, 30, 50, and 100. Based on objective functions characteristics, the CEC2014
benchmark problems can be put into four groups:

• Unimodal functions (1–3),
• Simple multimodal functions (4–16),
• Hybrid objective functions(17–22),
• Composition functions (23–30).

In order to compare how well the algorithms performs, the solution error measure
f (x̂)− f (x∗) was created. This is defined as the difference between the solution x̂, which has
the lowest objective function value and was obtained in a single simulation run and solution
x∗, which is previously known for the considered objective function. The termination
criterion for the subsequent numerical experiments was set at 10, 000D, 100 individual in
each algorithm’s population is employed, and each algorithm was run 51 times for each of
the test functions. Two non-parametric statistical hypothesis tests, such as the Wilcoxon
signed-rank test and the Friedman test, have been used to analyze and evaluate the quality
of the solutions from a statistical perspective.

The Wilcoxon signed-rank is used to compare the optimization performance of each
of the algorithms under consideration. This test provides information whether the first
algorithm performs statistically better than the second algorithm, and was performed with
α = 0.05 significance. Therefore, ”there is no difference between the mean results of the
two samples” [78] represents the null hypothesis. The hypothesis is rejected when p < α,
and then ”there is a difference in the mean results of the two samples” represents inverse
hypothesis.

Here, R+ denotes accomulated ranks where first algorithm had a superior performance
to second one taken to test , and R− denotes the accomulated ranks for the case when the
second tested algorithm achieved better performance.
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The Friedman test was employed to determine differences in performance between
each algorithm taken for comaprison form the statistical point. This is achieved by obtaining
the ranks of each algorithm over each CEC2014 problem on all considered D. Here, the best
performing algorithm is the one with the lowest rank. This test is taken with a significance
level α = 0.05, and the null hypothesis ”there is no difference among the performance of all
algorithms” is rejected for p ≤ α. Conversely, the alternative is ”there is a difference among
the performance of all algorithms” [78].

In the obtained results, the signs +, ≈, − (better, equal, and worse) denote: (+) that
the first algorithm had significantly better optimization performance than the second, (−)
that the first algorithm performed significantly worse than the second, and (≈) that there is
no significant difference in optimization performance between the two algorithms.

10.1.1. Analyzing the Effectiveness of the Chaos Maps on BOA Performance

To evaluate the effectiveness of the chaos theory-based sensory fragrance, as proposed
in Section 7.2 in Equation (55), on the optimization performance of the BOA algorithm we
have performed the following statistical analysis. The performance of the BOA algorithm
is evaluated with five chaos maps, as shown in Figure 3, and compared to the conventional
BOA algorithm using the Friedman test. The following variations of BOA algorithm were
considered, which have the same operators as conventional BOA, except that the sensory
fragrance is set according to Equation (48) with the following chaos map:

1. BOA-c-Picewise, using the Picewise map given in Equation (49),
2. BOA-c-Iterative, using the Iterative map given in Equation (51),
3. BOA-c-Logistic, using the Logistic map given in Equation (52),
4. BOA-c-Sine, using the Sine map given in Equation (53),
5. BOA-c-Tent, using the Tent map given in Equation (54).

Table 1 shows a summary of the Friedman test’s statistical results of the performance
comparison between the five chaos-improved BOA algorithms and the conventional BOA.

According to the results in Table 1, we conclude that the chaos-enhanced BOA algo-
rithms have significantly better performance than the conventional BOA. Moreover, the
results demonstrate that the best performance among the tested algorithms is achieved
with the BOA-c-Sine algorithm, which demonstrates the effectiveness of the proposed
modification. Therefore, we conclude that the improved chaos-based sensory fragrance
given in Equation (55) will be taken in hybridization with the DE algorithm with the sine
map given in Equation (53).

10.1.2. Analyzing the Effectiveness of the Proposed Hybridization

In this section, we present the results of performing the statistical comparison between
the performance of the proposed ICDEBOA algorithm and several state-of-the-art algo-
rithms in literature, including original BOA [21], SHADE [34], HPSOBOA [40], and jDE [35],
evaluated over 30 objective functions defined in the CEC2014 benchmark.

The obtained mean (Mean) and standard (STD) deviation values of the best results of
each algorithm obtained on each test objective function over each dimension are shown in
Table 2. In addition, an appropriate sign is assigned to each tested algorithm, except the
proposed ICDEBOA, to indicate whether the current algorithm achieved better +, worse −
or a similar ≈ solution to the proposed algorithm.
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Table 2. Mean and standard deviation of the best objective function value obtained by the considered algorithms on a set of the CEC2014 test functions.

ICDEBOA HPSOBOA jDE BOA SHADE

Mean (STD) Sign

f1

10 7.80× 10−15 (8.67× 10−15 ) 2.51× 108 (1.22× 1008 )− 2.24× 106 (2.59× 106)− 2.76× 106 (2.10× 106)− 2.03× 106 (1.15× 106)−
30 1.28× 104 (1.04× 104) 1.28× 104 (1.03× 104)− 5.80× 107 (3.57× 107)− 1.62× 109 (5.33× 108)− 2.32× 108 (6.41× 107)−
50 1.28× 104 (1.04× 104) 1.24× 1010 (3.15× 109)− 5.80× 107 (3.57× 107)− 1.62× 109 (5.33× 108)− 2.32× 108 (6.41× 107)−
100 4.74× 105 (1.91× 105) 4.74× 105 (1.91× 105)− 3.13× 108 (1.25× 108)− 4.47× 109 (9.49× 108)− 8.87× 108 (1.61× 108)−

f2

10 0.00× 100 (0.00× 100) 1.22× 1010 (2.28× 109)− 2.69× 103 (3.81× 103)− 2.78× 108 (2.42× 108)− 3.04× 105 (1.60× 105)−
30 2.46× 10−13 (1.01× 10−13) 9.79× 1010 (1.49× 1010)− 5.20× 109 (3.36× 109)− 9.79× 1010 (1.49× 1010)− 2.74× 108 (9.07× 107)−
50 2.46× 10−13 (1.01× 10−13) 1.90× 1011 (2.41× 109)− 5.20× 109 (3.36× 109)− 9.79× 1010 (1.49× 1010)− 2.74× 108 (9.07× 107)−
100 2.31× 10−12 (4.23× 10−12) 2.31× 10−12 (4.27× 10−12)− 3.18× 1010 (7.48× 109)− 2.36× 1011 (1.60× 1010)− 5.52× 109 (1.06× 109)−

f3

10 0.00× 100 (0.00× 100) 1.62× 104 (2.13× 103)− 2.24× 103 (2.82× 103)− 8.10× 102 (2.90× 102)− 1.13× 103 (6.34× 102)−
30 6.31× 10−13 (3.62× 10−13) 1.27× 105 (1.24× 104)− 4.73× 104 (1.15× 104)− 1.27× 105 (1.24× 104)− 3.00× 105 (1.46× 105)−
50 6.31× 10−13 (3.62× 10−13) 1.88× 105 (4.85× 103)− 4.73× 104 (1.15× 104)− 1.27× 105 (1.24× 104)− 3.00× 105 (1.46× 105)−
100 3.73× 10−12 (5.71× 10−12) 3.79× 10−12 (5.76× 10−12)− 1.45× 105 (1.64× 104)− 2.64× 105 (1.62× 104)− 7.03× 105 (2.23× 105)−

f4

10 2.18× 101 (1.63× 101) 2.18× 101 (1.63× 101)− 3.31× 101 (7.85× 100)− 6.65× 102 (3.59× 102)− 3.43× 101 (3.25× 100)−
30 3.51× 100 (1.49× 101) 2.02× 100 (1.07× 101)≈ 5.43× 102 (2.22× 102)− 2.87× 104 (4.08× 103)− 2.67× 102 (4.55× 101)−
50 3.51× 100 (1.49× 101) 6.47× 104 (2.93× 103)− 5.43× 102 (2.22× 102)− 2.87× 104 (4.08× 103)− 2.67× 102 (4.55× 101)−
100 1.55× 102 (4.59× 101) 1.55× 102 (4.59× 101)− 2.39× 103 (9.13× 102)− 6.59× 104 (7.89× 103)− 1.06× 103 (1.07× 102)−

f5

10 4.37× 100 (7.92× 100) 4.37× 100 (7.92× 100)− 1.98× 101 (2.83× 100)− 1.99× 101 (1.17× 100)− 2.09× 101 (1.41× 10−1)−
30 2.03× 101 (4.18× 10−2) 2.03× 101 (4.20× 10−2)− 2.11× 101 (4.71× 10−2)− 2.11× 101 (2.76× 10−2)− 2.14× 101 (4.64× 10−2)−
50 2.03× 101 (4.18× 10−2) 2.13× 101 (3.36× 10−2)− 2.11× 101 (4.71× 10−2)− 2.11× 101 (2.76× 10−2)− 2.14× 101 (4.64× 10−2)−
100 2.07× 101 (4.29× 10−2) 2.07× 101 (4.29× 10−2)− 2.13× 101 (2.50× 10−2)− 2.13× 101 (2.37× 10−2)− 2.15× 101 (3.22× 10−2)−

f6

10 3.55× 10−1 (6.06× 10−1) 3.55× 10−1 (6.06× 10−1)≈ 1.44× 100 (8.74× 10−1)− 4.55× 100 (4.65× 10−1)− 6.27× 100 (1.81× 100)−
30 2.35× 101 (4.22× 100) 2.32× 101 (4.19× 100)≈ 2.65× 101 (3.96× 100)− 5.89× 101 (2.00× 100)− 6.80× 101 (5.33× 100)−
50 2.35× 101 (4.22× 100) 2.32× 101 (4.19× 100)≈ 2.65× 101 (3.96× 100)− 5.89× 101 (2.00× 100)− 6.80× 101 (5.33× 100)−
100 7.02× 101 (1.19× 101) 7.02× 101 (1.19× 101)≈ 8.03× 101 (5.06× 100)− 1.40× 102 (3.28× 100)− 1.53× 102 (7.13× 100)−

f7

10 7.46× 10−2 (3.99× 10−2) 7.46× 10−2 (3.99× 10−2)≈ 4.78× 10−1 (5.82× 10−1)− 9.20× 101 (3.01× 101)− 9.22× 10−1 (8.92× 10−2)−
30 1.52× 10−2 (2.58× 10−2) 1.82× 10−2 (3.05× 10−2)− 4.60× 101 (3.21× 101)− 1.27× 103 (8.60× 101)− 3.72× 100 (7.66× 10−1)−
50 1.52× 10−2 (2.58× 10−2) 1.82× 10−2 (3.05× 10−2)− 4.60× 101 (3.21× 101)− 1.27× 103 (8.60× 101)− 3.72× 100 (7.66× 10−1)−
100 1.01× 10−1 (3.33× 10−1) 1.01× 10−1 (3.33× 10−1)≈ 2.73× 102 (6.99× 101)− 2.78× 103 (9.78× 101)− 5.38× 101 (1.27× 101)−
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Table 2. Cont.

ICDEBOA HPSOBOA jDE BOA SHADE

Mean (STD) Sign

f8

10 0.00× 100 (0.00× 100) 9.48× 101 (5.62× 100)− 5.53× 100 (3.07× 100)− 3.98× 101 (6.06× 100)− 3.84× 101 (8.60× 100)−
30 2.58× 101 (2.35× 101) 2.50× 101 (2.23× 101)− 1.73× 102 (3.13× 101)− 5.51× 102 (2.24× 101)− 4.38× 102 (2.91× 101)−
50 2.58× 101 (2.35× 101) 2.50× 101 (2.23× 101)− 1.73× 102 (3.13× 101)− 5.51× 102 (2.24× 101)− 4.38× 102 (2.91× 101)−
100 2.12× 102 (5.37× 101) 2.12× 102 (5.37× 101)− 5.56× 102 (4.88× 101)− 1.27× 103 (2.83× 101)− 1.02× 103 (4.43× 101)−

f9

10 4.86× 10−1 (8.27× 10−1) 4.86× 10−1 (8.27× 10−1)− 1.04× 101 (5.22× 100)− 3.87× 101 (6.38× 100)− 5.79× 101 (1.05× 101)−
30 8.94× 101 (2.29× 101) 8.92× 101 (2.34× 101)≈ 1.82× 102 (3.17× 101)− 6.10× 102 (2.70× 101)− 5.02× 102 (3.41× 101)−
50 8.94× 101 (2.29× 101) 8.92× 101 (2.34× 101)≈ 1.82× 102 (3.17× 101)− 6.10× 102 (2.70× 101)− 5.02× 102 (3.41× 101)−
100 3.47× 102 (6.33× 101) 3.47× 102 (6.33× 101)− 5.63× 102 (6.26× 101)− 1.38× 103 (4.42× 101)− 1.13× 103 (5.30× 101)−

f10

10 4.42× 10−1 (9.31× 10−1) 4.42× 10−1 (9.31× 10−1)− 2.16× 102 (1.29× 102)− 9.91× 102 (1.20× 102)− 1.58× 103 (3.08× 102)−
30 1.58× 100 (1.30× 100) 1.49× 100 (1.15× 100)+ 5.28× 103 (7.33× 102)− 1.29× 104 (3.37× 102)− 1.39× 104 (8.79× 102)−
50 1.58× 100 (1.30× 100) 1.49× 100 (1.15× 100)+ 5.28× 103 (7.33× 102)− 1.29× 104 (3.37× 102)− 1.39× 104 (8.79× 102)−
100 1.60× 100 (1.02× 100) 1.60× 100 (1.02× 100)− 1.56× 104 (9.18× 102)− 3.02× 104 (6.48× 102)− 3.18× 104 (1.11× 103)−

f11

10 1.30× 101 (1.13× 101) 1.30× 101 (1.13× 101)+ 3.26× 102 (1.67× 102)− 1.07× 103 (1.36× 102)− 2.14× 103 (2.62× 102)−
30 3.91× 103 (4.15× 102) 3.88× 103 (3.89× 102)≈ 5.65× 103 (7.51× 102)− 1.32× 104 (4.71× 102)− 1.62× 104 (7.22× 102)−
50 3.91× 103 (4.15× 102) 3.88× 103 (3.89× 102)≈ 5.65× 103 (7.51× 102)− 1.32× 104 (4.71× 102)− 1.62× 104 (7.22× 102)−
100 1.23× 104 (1.05× 103) 1.23× 104 (1.05× 103)+ 1.38× 104 (2.76× 103)− 3.07× 104 (6.24× 102)− 3.47× 104 (9.68× 102)−

f12

10 1.12× 10−1 (2.90× 10−2) 1.12× 10−1 (2.90× 10−2)− 3.31× 10−1 (3.61× 10−1)− 9.85× 10−1 (1.31× 10−1)− 3.39× 100 (1.02× 100)−
30 3.05× 10−1 (4.66× 10−2) 3.08× 10−1 (4.45× 10−2)≈ 1.82× 100 (1.57× 100)− 3.41× 100 (3.14× 10−1)− 6.91× 100 (8.13× 10−1)−
50 3.05× 10−1 (4.66× 10−2) 3.08× 10−1 (4.45× 10−2)≈ 1.82× 100 (1.57× 100)− 3.41× 100 (3.14× 10−1)− 6.91× 100 (8.13× 10−1)−
100 5.84× 10−1 (6.63× 10−2) 5.84× 10−1 (6.63× 10−2)− 3.35× 100 (1.48× 100)− 4.10× 100 (2.60× 10−1)− 6.63× 100 (6.11× 10−1)−

f13

10 6.02× 10−2 (1.36× 10−2) 6.02× 10−2 (1.36× 10−2)+ 1.13× 10−1 (4.66× 10−2)− 2.74× 100 (5.86× 10−1)− 5.55× 10−1 (1.42× 10−1)−
30 3.91× 10−1 (6.18× 10−2) 3.90× 10−1 (6.43× 10−2)≈ 6.10× 10−1 (2.55× 10−1)− 7.85× 100 (3.08× 10−1)− 1.09× 100 (1.85× 10−1)−
50 3.91× 10−1 (6.18× 10−2) 3.90× 10−1 (6.43× 10−2)≈ 6.10× 10−1 (2.55× 10−1)− 7.85× 100 (3.08× 10−1)− 1.09× 100 (1.85× 10−1)−
100 5.28× 10−1 (5.81× 10−2) 5.28× 10−1 (5.81× 10−2)+ 1.42× 100 (9.73× 10−1)− 9.10× 100 (1.84× 10−1)− 1.15× 100 (1.63× 10−1)−

f14

10 3.77× 10−2 (1.37× 10−2) 3.77× 10−2 (1.37× 10−2)≈ 1.44× 10−1 (1.62× 10−1)− 2.06× 101 (5.32× 100)− 6.00× 10−1 (1.53× 10−1)−
30 2.98× 10−1 (7.30× 10−2) 2.99× 10−1 (7.19× 10−2)+ 1.03× 101 (9.86× 100)− 3.20× 102 (2.64× 101)− 1.38× 100 (5.45× 10−1)−
50 2.98× 10−1 (7.30× 10−2) 2.99× 10−1 (7.19× 10−2)+ 1.03× 101 (9.86× 100)− 3.20× 102 (2.64× 101)− 1.38× 100 (5.45× 10−1)−
100 3.29× 10−1 (3.16× 10−2) 3.29× 10−1 (3.16× 10−2)≈ 8.44× 101 (2.16× 101)− 8.29× 102 (3.69× 101)− 4.55× 100 (2.57× 100)−
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Table 2. Cont.

ICDEBOA HPSOBOA jDE BOA SHADE

Mean (STD) Sign

f15

10 4.16× 10−1 (1.04× 10−1) 4.86× 104 (2.37× 104)− 1.00× 100 (4.28× 10−1)− 2.01× 102 (2.15× 102)− 5.65× 100 (9.89× 10−1)−
30 1.97× 101 (5.86× 100) 1.48× 107 (3.72× 106)− 4.91× 102 (8.53× 102)− 8.49× 105 (3.97× 105)− 5.92× 101 (8.10× 100)−
50 1.97× 101 (5.86× 100) 1.48× 107 (3.72× 106)− 4.91× 102 (8.53× 102)− 8.49× 105 (3.97× 105)− 5.92× 101 (8.10× 100)−
100 1.28× 102 (3.94× 101) 4.46× 107 (5.50× 106)− 1.38× 104 (9.95× 103)− 7.84× 106 (2.61× 106)− 2.12× 103 (1.55× 103)−

f16

10 3.87× 10−1 (2.67× 10−1) 3.70× 100 (3.63× 10−2)− 1.90× 100 (5.79× 10−1)− 2.80× 100 (2.30× 10−1)− 4.15× 100 (2.00× 10−1)−
30 1.72× 101 (4.31× 10−1) 2.32× 101 (5.31× 10−2)− 1.95× 101 (9.41× 10−1)− 2.22× 101 (1.81× 10−1)− 2.39× 101 (2.54× 10−1)−
50 1.72× 101 (4.31× 10−1) 2.32× 101 (5.31× 10−2)− 1.95× 101 (9.41× 10−1)− 2.22× 101 (1.81× 10−1)− 2.39× 101 (2.54× 10−1)−
100 4.02× 101 (5.16× 10−1) 4.76× 101 (1.65× 10−1)− 4.35× 101 (1.77× 100)− 4.64× 101 (2.31× 10−1)− 4.85× 101 (3.34× 10−1)−

f17

10 9.66 × 101 (7.45 × 101) 6.57 × 105 (1.29 × 105)− 4.25 × 103 (3.01 × 103)− 1.28 × 103 (3.00 × 102)− 4.78 × 104 (5.45 × 104)−
30 2.12 × 103 (6.35 × 102) 8.49 × 108 (2.51 × 107)− 2.93 × 106 (2.81 × 106)− 7.92 × 107 (5.10 × 107)− 4.56 × 107 (1.86 × 107)−
50 2.12 × 103 (6.35 × 102) 8.49 × 108 (2.51 × 107)− 2.93 × 106 (2.81 × 106)− 7.92 × 107 (5.10 × 107)− 4.56 × 107 (1.86 × 107)−
100 6.85 × 104 (3.86 × 104) 2.86 × 109 (4.30 × 108)− 2.38 × 107 (1.17 × 107)− 6.68 × 108 (2.88 × 108)− 1.89 × 108 (6.03 × 107)−

f18

10 4.65 × 100 (4.33 × 100) 1.96 × 106 (2.80 × 106)− 4.40 × 103 (5.30 × 103)− 4.14 × 102 (1.99 × 102)− 1.92 × 103 (2.70 × 103)−
30 6.75 × 102 (7.08 × 102) 2.93E+10 (4.38 × 109)− 3.86 × 107 (9.42 × 107)− 4.80 × 109 (2.14 × 109)− 3.44 × 106 (2.13 × 106)−
50 6.75 × 102 (7.08 × 102) 2.93E+10 (4.38 × 109)− 3.86 × 107 (9.42 × 107)− 4.80 × 109 (2.14 × 109)− 3.44 × 106 (2.13 × 106)−
100 1.72 × 103 (1.61 × 103) 4.90E+10 (2.59 × 109)− 5.14 × 108 (4.23 × 108)− 2.19E+10 (4.77 × 109)− 1.66 × 107 (6.25 × 106)−

f19

10 3.66 × 10−3 (7.06 × 10−3) 9.37 × 101 (3.80 × 101)− 2.06 × 100 (7.88 × 10−1)− 8.00 × 100 (3.21 × 100)− 3.98 × 100 (1.11 × 100)−
30 1.49 × 101 (2.80 × 100) 5.27 × 103 (1.16 × 103)− 6.87 × 101 (2.55 × 101)− 1.43 × 103 (4.46 × 102)− 6.74 × 101 (9.25 × 100)−
50 1.49 × 101 (2.80 × 100) 5.27 × 103 (1.16 × 103)− 6.87 × 101 (2.55 × 101)− 1.43 × 103 (4.46 × 102)− 6.74 × 101 (9.25 × 100)−
100 8.71 × 101 (2.95 × 101) 1.55 × 104 (7.68 × 102)− 2.92 × 102 (6.55 × 101)− 6.46 × 103 (1.10 × 103)− 1.83 × 102 (1.76 × 101)−

f20

10 8.00 × 10−1 (8.22 × 10−1) 8.08 × 104 (2.04 × 104)− 9.70 × 102 (2.18 × 103)− 5.04 × 102 (2.79 × 102)− 3.52 × 101 (1.46 × 101)−
30 1.68 × 102 (4.09 × 101) 4.21 × 105 (6.46 × 104)− 1.35 × 104 (6.09 × 103)− 6.84 × 104 (2.24 × 104)− 1.25 × 106 (1.63 × 106)−
50 1.68 × 102 (4.09 × 101) 4.21 × 105 (6.46 × 104)− 1.35 × 104 (6.09 × 103)− 6.84 × 104 (2.24 × 104)− 1.25 × 106 (1.63 × 106)−
100 3.67 × 102 (7.71 × 101) 1.36 × 107 (6.91 × 106)− 4.86 × 104 (1.74 × 104)− 2.90 × 105 (7.67 × 104)− 2.75 × 106 (2.31 × 106)−

f21

10 1.34 × 101 (2.20 × 101) 2.25 × 106 (1.29 × 106)− 4.26 × 103 (3.91 × 103)− 3.56 × 103 (1.43 × 103)− 2.10 × 103 (6.44 × 103)−
30 1.45 × 103 (4.95 × 102) 3.12 × 108 (4.04 × 106)− 1.82 × 106 (1.76 × 106)− 4.34 × 106 (2.96 × 106)− 2.81 × 107 (1.68 × 107)−
50 1.45 × 103 (4.95 × 102) 3.12 × 108 (4.04 × 106)− 1.82 × 106 (1.76 × 106)− 4.34 × 106 (2.96 × 106)− 2.81 × 107 (1.68 × 107)−
100 1.58 × 104 (9.32 × 103) 8.35 × 108 (1.43 × 108)− 9.69 × 106 (4.68 × 106)− 1.57 × 108 (6.71 × 107)− 1.23 × 108 (4.39 × 107)−
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Table 2. Cont.

ICDEBOA HPSOBOA jDE BOA SHADE

Mean (STD) Sign

f22

10 2.17 × 10−1 (1.85 × 10−1) 6.45 × 102 (1.99 × 102)− 6.11 × 101 (5.32 × 101)− 5.66 × 101 (1.51 × 101)− 1.43 × 102 (1.07 × 102)−
30 3.97 × 102 (1.50 × 102) 2.87 × 106 (1.22 × 106)− 7.20 × 102 (3.24 × 102)− 6.27 × 103 (4.31 × 103)− 2.76 × 103 (3.29 × 102)−
50 3.97 × 102 (1.50 × 102) 2.87 × 106 (1.22 × 106)− 7.20 × 102 (3.24 × 102)− 6.27 × 103 (4.31 × 103)− 2.76 × 103 (3.29 × 102)−
100 1.47 × 103 (3.58 × 102) 5.47 × 105 (7.45 × 104)− 1.80 × 103 (6.15 × 102)− 2.57 × 104 (2.61 × 104)− 6.24 × 103 (5.61 × 102)−

f23

10 −4.03 × 102 (0.00 × 100) −5.33 × 102 (2.91 × 10−4)+ −4.02 × 102 (2.83 × 100)− −5.33 × 102 (4.51 × 100)+ −4.03 × 102 (5.60 × 10−3)−
30 −5.07 × 103 (4.98 × 10−12) −5.21 × 103 (1.39 × 10−3)+ −5.00 × 103 (3.20 × 101)− −5.21 × 103 (2.76 × 10−12)+ −5.06 × 103 (1.48 × 100)−
50 −5.07 × 103 (4.98 × 10−12) −5.21 × 103 (1.39 × 10−3)+ −5.00 × 103 (3.20 × 101)− −5.21 × 103 (2.76 × 10−12)+ −5.06 × 103 (1.48 × 100)−
100 −7.19 × 103 (2.71 × 10−10) −7.34 × 103 (1.73 × 10−3)+ −6.95 × 103 (6.80 × 101)− −7.34 × 103 (9.19 × 10−12)+ −7.10 × 103 (1.43 × 101)−

f24

10 −1.95 × 102 (4.25 × 100) −1.01 × 102 (8.63 × 10−1)− −1.81 × 102 (1.32 × 101)− −1.69 × 102 (6.91 × 100)− −1.40 × 102 (8.36 × 100)−
30 −8.71 × 102 (6.20 × 100) −9.60 × 102 (2.03 × 10−3)+ −9.60 × 102 (2.51 × 10−4)+ −9.60 × 102 (8.04 × 10−13)+ −8.65 × 102 (3.59 × 100)−
50 −8.71 × 102 (6.20 × 100) −9.60 × 102 (2.03 × 10−3)+ −9.60 × 102 (2.51 × 10−4)+ −9.60 × 102 (8.04 × 10−13)+ −8.65 × 102 (3.59 × 100)−
100 −1.71 × 103 (9.79 × 100) −1.95 × 103 (3.90 × 10−3)− −1.95 × 103 (5.76 × 10−4)− −1.95 × 103 (6.89 × 10−13)− −1.69 × 103 (6.59 × 100)−

f25

10 −1.86 × 102 (3.33 × 101) −1.22 × 102 (2.78 × 10−2)− −1.32 × 102 (2.51 × 101)− −1.42 × 102 (1.50 × 101)− −1.23 × 102 (8.76 × 100)−
30 −8.46 × 102 (8.61 × 100) −8.62 × 102 (3.14 × 10−5)+ −8.37 × 102 (5.53 × 100)− −8.62 × 102 (1.15 × 10−12)+ −7.99 × 102 (9.93 × 100)−
50 −8.46 × 102 (8.61 × 100) −8.62 × 102 (3.14 × 10−5)+ −8.37 × 102 (5.53 × 100)− −8.62 × 102 (1.15 × 10−12)+ −7.99 × 102 (9.93 × 100)−
100 −1.31 × 103 (1.21 × 101) −1.40 × 103 (7.49 × 10−5)− −1.40 × 103 (2.50 × 101)− −1.40 × 103 (9.19 × 10−13)− −1.25 × 103 (1.55 × 101)−

f26

10 −7.92 × 102 (1.58 × 10−2) −7.87 × 102 (6.90 × 10−1)− −7.92 × 102 (3.21 × 10−2)− −7.92 × 102 (7.73 × 10−2)− −7.92 × 102 (1.66 × 10−1)−
30 −2.85 × 103 (1.10 × 10−1) −2.78 × 103 (2.42 × 101)− −2.77 × 103 (4.85 × 101)− −2.77 × 103 (3.19 × 101)− −2.77 × 103 (6.42 × 101)−
50 −2.85 × 103 (1.10 × 10−1) −2.78 × 103 (2.42 × 101)− −2.77 × 103 (4.85 × 101)− −2.77 × 103 (3.19 × 101)− −2.77 × 103 (6.42 × 101)−
100 −2.62 × 103 (1.55 × 10−2) −2.62 × 103 (2.39 × 10−7)− −2.62 × 103 (2.02 × 10−12)− −2.62 × 103 (2.30 × 10−12)− −2.58 × 103 (1.50 × 101)−

f27

10 −3.25 × 103 (1.82 × 102) −3.18 × 103 (2.23 × 10−2)≈ −3.11 × 103 (1.53 × 102)− −3.37 × 103 (2.52 × 100)+ −3.14 × 103 (1.96 × 102)−
30 −1.01 × 104 (8.65 × 101) −1.10 × 104 (2.59 × 10−2)+ −1.02 × 104 (9.68 × 101)+ −1.05 × 104 (1.11 × 102)+ −9.64 × 103 (1.43 × 102)−
50 −1.01 × 104 (8.65 × 101) −1.10 × 104 (2.59 × 10−2)+ −1.02 × 104 (9.68 × 101)+ −1.05 × 104 (1.11 × 102)+ −9.64 × 103 (1.43 × 102)−
100 −1.47 × 104 (1.69 × 102) −1.70 × 104 (7.29 × 10−2)≈ −1.49 × 104 (1.56 × 102)− −1.50 × 104 (5.29 × 102)+ −1.41 × 104 (2.32 × 102)−
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Table 2. Cont.

ICDEBOA HPSOBOA jDE BOA SHADE

Mean (STD) Sign

f28

10 −6.04 × 103 (5.49 × 101) −6.26 × 103 (3.34 × 10−2)+ −6.04 × 103 (7.17 × 101)≈ −6.03 × 103 (6.97 × 101)− −6.03 × 103 (8.59 × 101)−
30 −2.28 × 104 (2.39 × 102) −2.43 × 104 (9.75 × 10−2)+ −2.26 × 104 (4.68 × 102)− −2.14 × 104 (5.24 × 102)− −2.20 × 104 (1.00 × 103)−
50 −2.28 × 104 (2.39 × 102) −2.43 × 104 (9.75 × 10−2)+ −2.26 × 104 (4.68 × 102)− −2.14 × 104 (5.24 × 102)− −2.20 × 104 (1.00 × 103)−
100 −5.38 × 104 (9.93 × 102) −5.82 × 104 (1.43 × 10−1)+ −5.21 × 104 (9.93 × 102)≈ −4.84 × 104 (1.62 × 103)− −5.00 × 104 (2.77 × 103)−

f29

10 −1.02 × 109 (2.43 × 101) −1.02 × 109 (8.96 × 103)− −1.02 × 109 (4.15 × 105)− −1.02 × 109 (5.55 × 102)− −1.02 × 109 (2.84 × 104)−
30 −7.37 × 109 (1.52 × 102) −7.37 × 109 (1.15 × 105)− −7.37 × 109 (2.92 × 106)− −7.37 × 109 (3.85 × 10−6)+ −7.37 × 109 (5.95 × 105)−
50 −7.37 × 109 (1.52 × 102) −7.37 × 109 (1.15 × 105)− −7.37 × 109 (2.92 × 106)− −7.37 × 109 (3.85 × 10−6)+ −7.37 × 109 (5.95 × 105)−
100 −2.71E+10 (2.79 × 102) −2.71E+10 (1.27 × 105)− −2.70E+10 (2.40 × 107)− −2.71E+10 (0.00 × 100)− −2.71E+10 (1.92 × 106)−

f30

10 −4.40 × 108 (7.29 × 101) −4.40 × 108 (3.37 × 104)− −4.40 × 108 (4.53 × 102)− −4.40 × 108 (2.77 × 102)− −4.40 × 108 (4.99 × 102)−
30 −6.15 × 108 (9.26 × 102) −6.15 × 108 (3.91 × 103)+ −6.15 × 108 (4.38 × 104)− −6.15 × 108 (6.02 × 10−7)+ −6.14 × 108 (7.08 × 104)−
50 −6.15 × 108 (9.26 × 102) −6.15 × 108 (3.91 × 103)+ −6.15 × 108 (4.38 × 104)− −6.15 × 108 (6.02 × 10−7)+ −6.14 × 108 (7.08 × 104)−
100 −3.02 × 109 (1.73 × 103) −3.02 × 109 (2.04 × 104)− −3.02 × 109 (9.39 × 105)− −3.02 × 109 (9.63 × 10−7)− −3.02 × 109 (1.23 × 106)−
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Based on the findings in Table 2, we observe that the proposed ICDEBOA algorithm
outperforms other well-known algorithms on the large number of considered benchmark
objective functions, and only on several isolated cases does the proposed algorithm has
worse or similar performance to other considered algorithms. It should be noted that the
ICDEBOA algorithm outperformed the SHADE algorithm on all considered problems.
Results demonstrated that the HPSOBOA algorithm is in terms of performance right
behind the ICDEBOA algorithm in the majority of cases, and successfully outperformed the
ICDEBOA algorithm on f23 and f28 over all dimensions, and on f6 HPSODEBOA showed
similar performance to ICDEBOA. On D = 10 and D = 100, the HPSOBOA achieved
better solutions on functions f11, f13, f23 and f28. Over dimensions D = 30 and D = 50,
the HPSOBOA showed better performance over composition functions f23, f24, f25, f27.
The proposed and HPSOBOA algorithm achieved similar performance for D = 30 and
50 over simple multi-modal functions f4, f6, f9, f11 and f13, as well as for D = 10 and 100
over functions f6, f7, f14 and f27. The jDE algorithm performed better than ICDEBOA on
D = 30 and 50 on composite functions f24 and f27, while the algorithms demonstrated
similar performance on function f28, D = 10. The original BOA algorithm outperformed
the proposed method on f23 and f27 functions over all dimensions, and f24 and f25 on
D = 30 and 50. Since the proposed method ICDEBOA had significantly better performance
than other algorithms in the majority of cases, especially compared to BOA and SHADE, it
further proves the validity of the proposed hybridization.

Using the Wilcoxon signed-rank test, the performance of the proposed ICDEBOA
algorithm is compared to the performance of other algorithms that have been considered.
Table 3 displays the statistical and comparative findings of the Wilcoxon signed-rank test
applied to the CEC2014 benchmark problems.

Table 3. The results of performing Wilcoxon test on CEC2014 objective functions for all consid-
ered methods.

D Algorithms R+ R− p Value + ≈ − Dec.

10

ICDEBOA vs. BOA 432 33 5.97× 10−6 28 2 0 +
ICDEBOA vs. SHADE 465 0 1.86× 10−9 30 0 0 +
ICDEBOA vs. HPSOBOA 412 53 7.91× 10−5 21 5 4 +
ICDEBOA vs. jDE 465 0 1.86× 10−9 29 0 1 +

30

ICDEBOA vs. BOA 398 67 3.45× 10−4 24 6 0 +
ICDEBOA vs. SHADE 465 0 1.86× 10−9 30 0 0 +
ICDEBOA vs. HPSOBOA 292 173 2.29× 10−1 17 6 7 ≈
ICDEBOA vs. jDE 443 22 9.98× 10−7 28 2 0 +

50

ICDEBOA vs. BOA 398 67 3.45× 10−4 24 6 0 +
ICDEBOA vs. SHADE 465 0 1.86× 10−9 30 0 0 +
ICDEBOA vs. HPSOBOA 334 131 3.64× 10−2 17 5 8 ≈
ICDEBOA vs. jDE 443 22 9.98× 10−7 28 2 0 +

100

ICDEBOA vs. BOA 398 67 3.45× 10−4 28 2 0 +
ICDEBOA vs. SHADE 465 0 1.86× 10−9 30 0 0 +
ICDEBOA vs. HPSOBOA 320.5 144.5 8.70× 10−2 22 4 4 +
ICDEBOA vs. jDE 434 31 4.42× 10−6 29 0 1 +

Based on the obtained results in Table 3, we observe that the ICDEBOA algorithm
provides significantly better performance comapred to other considered algorithms on all
dimensions. Compared to conventional BOA and SHADE algorithms, we observe improve-
ment of performance, which further confirms the validity of the proposed hybridization.
On D = 30 and D = 50 ICDEBOA achieved similar performance to HPSOBOA algorithm;
however, the proposed algorithm has the higher value R+ compared to R−.

Moreover, the Friedman test is used to assess if there is a statistically significant differ-
ence between performance of considered algorithms. In this way, Table 4 shows the average
rankings of the Friedman test for each method studied on the different functions and
dimensions of the CEC2014 benchmark problems. Here, the first-place rank is displayed in
bold, and underline id used to denoted second one.
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Table 4. Results of the performance comparison using Friedman test with significance α = 0.05 on
CEC2014 test problems.

Algorithm 10D 30D 50D 100D Mean Ranking Rank

ICDEBOA 1.23 1.77 1.67 1.75 1.60 1
HPSOBOA 3.50 2.60 2.97 2.65 2.93 2

jDE 3.07 3.10 3.00 3.10 3.07 3
BOA 3.37 3.60 3.50 3.57 3.51 4

SHADE 3.83 3.93 3.87 3.93 3.89 5
Friedman p-value 2.90× 10−10 4.50× 10−7 1.01× 10−6 5.34× 10−7

The results in Table 4, show that the obtained Friedman p values are less than signif-
icance α in each considered case. The results demonstrate that the proposed ICDEBOA
algorithm has the best performance among all the algorithms taken for considerations.
The HPSOBOA algorithm shows the second-best performance. According to statistical
analysis, hybridising DE and BOA algorithms improves optimization performance while
overcoming their drawbacks. The expanded mutation operators, which incorporate butter-
fly algorithms equations for position updating, and the inclusion of a chaotic map to the
sensory fragrance greatly improve the ICDEBOA method, proving the usefulness of the
introduced changes.

10.2. Evaluation of Accuracy of Localization

This section presents the results of the numerical simulations of localization perfor-
mance comparison between the ICDEBOA alg., proposed in this work, and the widely
applied CWLS, DE, and BOA methods on the considered TDOA based passive target
localization problem. The goal of this section is to verify the proposed improvements intro-
duced in ICDEBOA algorithm and its efficiency on the considered localization problem.
In order to measure the localization efficiency, the algorithms are evaluated through RMSE
performance and compared to the derived CRLB, as it represents the lower bound on the
variance of any unbiased estimator. To measure the localization accuracy, the RMSE is
employed, which can be calculated as

RMSE =

√√√√ 1
Nm

N

∑
n=1

∥∥x̂(n) − x
∥∥2

2, (68)

where x is the location of target which is known, x̂(n) is the estimate of the target position
and Nm = 1000 denotes how much Monte Carlo simulation iterations are made for fixed σ2.

It has been shown that some algorithms are sensitive to relative target–transmitter–
receiver positions in the localization process, which leads to the singularity and bad
solutions. To analyze how this relative position affects the localization performance of
the considered algorithms, we consider three characteristic cases in the simulation. Thus,
in the first four simulations, the transmitters are fixed to locations xt

1 =
[
100 100

]T

m, xt
2 =

[
100 −100

]T m, xt
3 =

[
−100 100

]Tm, and xt
4 =

[
−100 −100

]T m, and as
stated in Section 3, we place the receiver in the center of the introduced coordinate system.
The arrangement of transmitters forms a convex polygon, and we firstly consider how
the placement of the target near the centroid of the figure formed by transmitter locations,
at x =

[
20 30

]T, affect the localization. Then, in the second simulation the position of

the target is moved outside the convex figure formed by transmitters at x =
[
120 130

]T .
Finally, we consider the case when we assign the target a random location in the area
150× 150m2 in each run of the simulation.

The results of the first simulation scenario are depicted in the Figure 4 as the functional
relationship between the measurement noise p = 10 log

(
σ2) and RMSE performance and

compared to the CRLB.
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Figure 4. RMSE performance of different algorithms vs. p for first simulation case.

From the Figure 4 it can be concluded that the proposed ICDEBOA algorithm attains
the CRLB and outperforms other considered methods on a whole considered range of
measurement noise p. The performance of DE and BOA algorithms is slightly above
the CRLB, while the CWLS algorithm showed the worse performance, especially when
p > 30 dB.

Figure 5 presents the results of the second scenario, where we place the target in the
position outside of polygon formed by transmitter locations. Here, the RMSE performances
of considered algorithms are plotted as a function of the measurement noise, and compared
to the CRLB.
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Figure 5. Plot of the obtained RMSE curves in relation to the measurement noise for second simula-
tion case.
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Based on the results in Figure 5 we observe that even in this case the proposed ICDE-
BOA algorithm is able to attain the CRLB accuracy and show better performance with
regard to other algorithms taken for simulation. In this case, the DE and BOA algorithm
show a slight degradation in performance, compared to the previous case, which is ob-
served in the bigger discrepancy from the CRLB. Again, the CWLS method has the worst
performance among all algorithms.

In Figure 6 the results of the third simulation case, which considers a random place-
ment of target in the area 150× 150 m2 in each simulation iteration, are depicted as a
function RMSE of p.
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Figure 6. The results obtained for the third simulation case depicted in the form of RMSE performance
of different algorithms vs. p.

Based on the results of the third simulation scenario depicted in Figure 6, we observe
that the ICDEBOA algorithm is able to reach the CRLB accuracy, while outperforming
CWLS, DE and BOA algorithms. In this case, it is notable that there is a higher discrepancy
between the CRLB and the DE, BOA, and CWLS algorithms’ RMSE performance curves.
As in previous cases, the CWLS showed the lowest accuracy, with the curve high above
the CRLB.

If we compare the results in Figure 4 through Figure 6 and analyze the obtained
RMSE values under different conditions, we find that the considered algorithms had the
performance closest to the CRLB in the first simulation case when we placed the target in
the area surrounded by transmitters. Alternatively, we observe the biggest descrepency
from the CRLB in the case when the target is not surrounded by transmitters, as shown
in Figure 5. In addition, it is observed that the proposed ICDEBOA algorithm holds the
CRLB accuracy for the entire considered range of p in all of the scenarios that have been
considered for simulation.

Further investigation into the localization performance of different approaches is con-
ducted by considering the localization error of considered algorithm trough the cumulative
distribution functions (CDFs) when the measurement noise is σ2 = 10 m2. The localization
error (LE) is introduced for CDF analysis as the Euclidean norm of the actual and estimated
positions discrepancy, and it is computed as

LE =
∥∥∥x̂(n) − x

∥∥∥
2
, ∀n ∈ {1, . . . , Nm} (69)
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The CDFs of the localization error for the considered algorithms for the passive target
positioned as in the first simulation scenario are presented in Figure 7 as a function of LE.
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Figure 7. The obtained CDFs of LE for considered passive TDOA-based localization problem.

Based on the results shown in Figure 7, we can observe that the proposed ICDEBOA
algorithm provides localization accuracy of less than 2.5 m for the 90% CDF percentile, while
the BOA, DE, and CWLS algorithms achieve LEs of less than 2.74 m, 2.66 m, and 3.12 m,
respectively, for the same case. So, we can say that the ICDEBOA algorithm improves LE
by 9.6% compared to BOA, by 6.4% compared to DE, and by 24% compared to the CWLS
method, proving that it has improved performance.

Lastly, we look at how the accuracy of the localization changes as the number of
transmitters involved in localization increases. Consider N j transmitters that are uniformly
dispersed on a circle of a radius R = 80

√
2, such that the coordinate of each transmitter can

be obtained as

xt
i =

[
R cos 2π/N j

i
R sin 2π/N j

i

]
, i ∈

{
1, 2, . . . , N j

}
(70)

where we fix the target inside the circle formed by transmitters near the center at the
coordinates x =

[
20 30

]Tm.
The functional changes of RMSE curves with the change of the number of transmitters

employed in the localization for the considered algorithms are displayed in Figure 8, along
with the appropriate CRLB, for the variance of measurement noise σ2 = 1 m2.

Figure 8 shows that as the number of transmitters grows from 4 to 10, the RMSE
performance of all algorithms under consideration improves noticeably. We observe that
the proposed method is able to reach CRLB accuracy in each of the cases. Furthermore, we
observe that CWLS algorithm deviates from the CRLB accuracy. If we consider the cases of
lowest number of employed transmitters (4) and the case of highest number of transmitters
(18) taken for simulation, we observe the improvement in accuracy of location estimation
of 52.4% in the proposed method.

Based on simulation results, we came to the conclusion that the proposed ICDEBOA
algorithm’s performance was less affected by large-scale changes in measurement noise
and network topologies than other algorithms we looked at.
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Figure 8. The change in RMSE performance of the considered algorithms with the increase in the
participating transmitters for measurement noise variance σ2 = 1 m2.

11. Conclusions

This paper investigates the TDOA-based localization of a passive target in the presence
of noise, which is in general a complex and multimodal problem. To solve this problem,
the evolutionary algorithms DE and BOA are hybridized, resulting in the ICDEBOA algo-
rithm. This paper aims to investigate the proposed ICDEBOA algorithm’s performance
and capabilities on the considered passive localization problem, with a focus on the high
measurement noise case, where conventional algorithms perform poorly. In the ICDEBOA
algorithm, a composite roulette wheel is introduced to the DE algorithm and employed in a
new mutation operator to choose the appropriate mutation scheme for current optimization
state. Using BOA expressions for particle movement to generate a mutant vector in the DE
algorithm yields a hybrid algorithm that takes advantage of the BOA algorithm’s strong
local search capability. In addition, an adaptive method incorporating chaos theory is used
to update the BOA algorithm’s sensory fragrance, and adaptive parameter adjudication
strategies from the SHADE algorithm are implemented in the DE algorithm. In order
to perform the comparison of the localization performance with several well-known al-
gorithms, the CRLB is derived for the considered problem of localization. In addition,
to evaluate the optimization performance of the ICDEBOA algorithm and compare to state-
of-the-art methods, a set of CEC2014 test functions are employed and statistical comparison
is performed.

In the results of statistical comparison performed on CEC2014 test problems we ob-
serve that the algorithm proposed in this paper shows improved optimization performance.
Regarding the localization accuracy, the proposed ICDEBOA algorithm successfully attains
the CRLB and outperforms the CWLS, BOA, and SHADE algorithms in that aspect. In
the case of a variation of the network topology, we observe that the ICDEBOA algorithm
always achieves CRLB and is not affected with the network topology change.

The focus of upcoming research will be on energy-efficient network structure and
performance evaluation in a non-line-of-sight environment. Analyzing the sensitivity to
parameter changes can help the optimization process be further improved.
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Appendix A

The first partial derivative of Equation (8) is

∂ ln L
∂x

= − 1
2σ2

∂

∂x

(
(r̃− d(x))T(r̃− d(x))

)
=

1
σ2

∂rg(x)
T

∂x
HT(r̃− d(x)) (A1)

where
rg(x) =

[
‖xr − x‖

∥∥xt
1 − x

∥∥ . . .
∥∥xt

N − x
∥∥]T , (A2)

and

H =
[
1NIN

]
=


1 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 1

. (A3)

Based on the expression in Equation (A1), we conclude that the componental partial
derivative is

∂ ln L
∂x

=
1
σ2

(
∂rg(x)

∂x

)T

HT(r̃− d(x)). (A4)

Then, the first element of matrix F(x) is

F11 = E

[
∂ ln L

∂x

(
∂ ln L

∂x

)T
]

= E

[
1
σ4

(
∂rg(x)

∂x

)T

H(r̃− d(x))(r̃− d(x))TH
(

∂rg(x)
∂x

)]

=
1
σ2

(
∂rg(x)

∂x

)T

HTH
(

∂rg(x)
∂x

)
.

(A5)

Analogus to this the remaining elements of F(x) are

F12 = F21 = E

[(
∂ ln L

∂x

)(
∂ ln L

∂y

)T
]
=

1
σ2

(
∂rg(x)

∂x

)T

HTH
(

∂rg(x)
∂y

)
, (A6)

F22 = E

[(
∂ ln L

∂y

)(
∂ ln L

∂y

)T
]
=

1
σ2

(
∂rg(x)

∂y

)T

HTH
(

∂rg(x)
∂y

)
. (A7)



Appl. Sci. 2023, 13, 684 35 of 38

If we take ∂rg(x)
∂x , the following is obtained

∂rg(x)
∂x

=



x−xr
‖x−xr‖2

y−yr
‖x−xr‖2

x−xt
1

‖x−xt
1‖2

y−yt
1

‖x−xt
1‖2

...
...

x−xt
N

‖x−xt
N‖2

y−yt
N

‖x−xt
N‖2


, (A8)

Then, the expressions in Equations (A5)–(A7) are simplified to

F11 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖2
+

x− xt
i∥∥x− xt

i

∥∥
2

)2

, (A9)

F12 = F21 =
1
σ2

N

∑
i=1

(
x− xr

‖x− xr‖2
+

x− xt
i∥∥x− xt

i

∥∥
2

)(
y− yr

‖x− xr‖2
+

y− yt
i∥∥x− xt

i

∥∥
2

)
, (A10)

F22 =
1
σ2

N

∑
i=1

(
y− yr

‖x− xr‖2
+

y− yt
i∥∥x− xt

i

∥∥
2

)2

. (A11)

Appendix B

Substituting Equation (23) into the Equation (24), the Lagrange multiplier must satisfy

bTWA
(

ATWA + λS
)−1

S
(

ATWA + λS
)−1

ATWb = 0. (A12)

Using eigenvalue decomposition, the matrix ATWAS can be diagonalized as follows

ATWAS = ΣDΣ−1, (A13)

where D = diag{ζ1, ζ2, ζ3} and ζi, i = 1, 2, 3, are the eigenvalues of the matrix ATWAS,
and Σ is the matrix composed of the eigenvectors. Substituting Equation (A13) into(
ATWA + λS

)−1, yields the following equation(
ATWA + λS

)−1
= SΣ(D + λI)−1Σ−1. (A14)

Substituting this expression into Equation (A12), which after some manipulation, can
be expressed in the form of λ as

αααT(D + λI)−2βββ = 0, (A15)

where ααα = ΣTSATWb = [α1 α2 α3]
T and βββ = [β1 β2 β3]

T . As a result of Equation (A15),
we have Equation (26), which is a polynomial equation of the fourth degree.
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