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Abstract

In this paper, Gaussian rules for some modified Chebyshev weights
introduced by Gautschi and Li in 1993 are considered. Our main
concern is providing efficient estimations for the error of quadrature.
Those estimations are checked by means of some numerical examples.
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1 Introduction

In [1], the authors considered a polynomial modification of a given positive
measure dσ supported on the real axis. Namely, if n ∈ N and πn is the
orthogonal polynomial of degree n with respect to dσ, they deal with the
new sequence of polynomials {π̂m,n}, being orthogonal with regard to the
modified measure dσ̂n = π2

n dσ . While in general is quite difficult getting
explicit expressions for the induced orthogonal polynomials, it is not hard
when dealing with the four Chebyshev weights, as pointed out by the authors
in [1]. This new family of polynomials, hereafter referred to as “induced”
orthogonal polynomials, has a number of applications in constructive ap-
proximation of functions, which justifies the interest in studying quadrature
rules for approximating integrals with some kind of modified weights. In
this note, we focus in estimating the error of Gauss rules for this modified
weights in the case of the four Chebyshev weights, and the different bounds
we obtain are tested by means of numerical examples.

The problem of estimating the quadrature error for Gauss–type rules
has been thoroughly studied in the literature; to only cite a few, see the
references [2]–[7].
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2 Main Results

Throughout this note, we deal with integrals of the form

Iσ(f) = I(f ;σ, n) =

∫
f(t) dσ̂n(t) ,

where dσ̂n = π2
n dσ , and dσ is one of the four Chebyshev weights, namely

dσ[1](t) =
dt√

1− t2
, dσ[2](t) =

√
1− t2 dt ,

dσ[3](t) =

√
1− t
1 + t

dt , dσ[4](t) =

√
1 + t

1− t
dt .

by means of Gauss rules

Im(f) =
m∑
j=1

Am,j f(tm,j) , m = 1, 2, . . . ,

which means that the nodes {tm,j} are the zeros of the induced orthogonal
polynomial {π̂m,n} . While for the case where i = 1 and n = 1, whose
related weight will be referred hereafter to as dσ[I] , Gauss rules with an
arbitrary number m are considered, otherwise we restrict ourselves to the
case where m = n for the sake of simplicity. In addition, since the orthogonal
polynomials with respect to the measures dσ[3] and dσ[4] are easily connected
to each other, only the results for dσ[3] are shown.

In this sense, our main concern is estimating the error of quadrature. It
is well–known that in the usual case where the integrand f is analytic in
a neighborhood Ω of a compact interval, say [−1, 1], this error admits the
representation

Rm(f) = Iσ(f)− Im(f) =
1

2πi

∮
Γ
Km(z) f(z) dz ,

where the kernel Km is given by

Km(z) =
%m,n(z)

π̂m,n
, %m,n(z) =

∫ 1

−1

πm(t)

z − t
w(t) dt ,

Γ being any closed smooth contour contained in Ω and surrounding the real
interval [−1, 1]. As usual, elliptic contours with foci at ±1 and sum of the
semi–axes equal to ρ > 1, are considered. These level contours admit the
expression

Eρ = {z ∈ C : |φ(z)| = |z +
√
z2 − 1| = ρ} ,

where the branch of
√
z2 − 1 is taken so that |φ(z)| > 1 for |z| > 1.

Next, we state our main results. For details about their proofs, as well as
other possible error bounds, see [5]. On the sequel, we denote ρf = sup{ρ >
1 : f is analytic on Dρ} .
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Theorem 2.1 The following L∞–type bounds for the error, where ‖f‖Eρ =
max
z∈Eρ

, hold.

r
[I]
1 (f) = inf

ρ∗<ρ<ρf

πa1

(
ρ2 + 1 + (−1)m/2

(
ρm+2 + ρm

)) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

ρm+2 (ρ− ρ−1)
(∑m/2

j=0 (−1)jρm−2j +
∑(m−1)/2

j=0 (−1)jρ2j−m
) ,

if m is even, and

r
[I]
1 (f) = inf

ρ∗<ρ<ρf

πa1

(
(m+ 2)ρ2 +m

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

mρm+2 (ρ− ρ−1)
(∑(m−1)/2

j=0 (−1)j m−2j
m ρm−2j +

∑(m−1)/2
j=0 (−1)j m−2j

m ρ2j−m
)

if m is odd. In the same way,

r
(1)
1 (f) = inf

ρ∗<ρ<ρf

πa1

(
3ρ2n + 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22n−2ρ3n (ρ− ρ−1) (ρn + ρ−n)
. (1)

r
(2)
1 (f) = inf

ρ∗<ρ<ρf

πa1

(
2ρ2n+2 − ρ2n − 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22nρ3n+2 (ρ− ρ−1) (ρn + ρ−n)
, n > 1.

(2)

r
(3)
1 (f) = inf

ρ∗<ρ<ρf

πa1

(
2ρ2n+1 + ρ2n + 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22nρ3n+1 (ρ− ρ−1) (ρn + ρ−n)
,

(3)
where ρ∗ > 1 is a value obtained empirically (see [5] for details), and it was
shown to be relatively closed to 1 in all the cases.

Theorem 2.2 The following upper bounds for the error of quadrature, based
on the Fourier–Chebyshev expansion of the error, hold.

r
(1)
2 (f) = inf

1<ρ<ρf

π

22n−2

1

ρ2n − 1
‖f‖Eρ , n ≥ 1. (4)

r
(2)
2 (f) = inf

1<ρ<ρf

π

22n

(
1

ρ2n − 1
+

1

2ρ2n+2

)
‖f‖Eρ . (5)

r
(3)
2 (f) = inf

1<ρ<ρf

π

22n

(
1

ρ2n − 1

)
‖f‖Eρ . (6)

Theorem 2.3 The following L1–type bounds for the error of quadrature
also hold.

r
(1)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n−1

√
7ρ−2n + 9ρ2n

ρ4n − 1
‖f‖Eρ . (7)
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r
(2)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n+1

√
ρ2n−4 + 4ρ2n + 3ρ−2n−4

ρ4n − 1
‖f‖Eρ . (8)

r
(3)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n+1

√
ρ2n−2 + 4ρ2n + 3ρ−2n−2

ρ4n − 1
‖f‖Eρ . (9)

3 Numerical experiments and Conclusion

Now, we are concerned with checking the accuracy of the quadratures above,
as well as of the bounds given in previous Theorems 2.1 and 2.2, when the
characteristic example f1(z) = ecos(ωz), ω > 0; it is an entire function and,
thus, ρf = +∞. In the following Tables, the results obtained by applying
our Gauss rules to the Chebyshev weights are displayed, along with the error
bounds provided in the above theorems, as well as the actual values of the

integrals and the errors. In Tables below the error bounds r
(i)
j , i, j = 1, 2, 3 ,

given in (1)–(9), along with the actual values of the errors and the integrals,
are displayed for ω = 1 and some values of n. It is noteworthy that in
general the estimates of the error are quite sharp, as well as the accuracy of
the respective quadrature rules. More numerical results are displayed in [5].

n, ω r
[1]
1 (f1) r

[1]
2 (f1) r

[1]
3 (f1) Error[1] I

[1]
ω (f1)

6, 1 4.856(−9) 3.095(−9) 4.643(−9) 5.596(−10) 3.3409...(−3)
10, 1 3.793(−17) 2.444(−17) 3.666(−17) 3.297(−18) 1.3050...(−5)
15, 1 8.548(−28) 5.545(−28) 8.317(−28) 5.915(−29) 1.2744...(−8)
20, 1 8.371(−39) 5.448(−39) 8.172(−39) 4.922(−40) 1.2446...(−11)

n, ω r
[2]
1 (f1) r

[2]
2 (f1) r

[2]
3 (f1) Error[2] I

[2]
ω (f1)

5, 1 6.844(−8) 6.995(−8) 6.668(−8) 9.110(−9) 3.3409...(−3)
10, 1 6.217(−18) 6.312(−18) 6.111(−18) 5.579(−19) 3.3626...(−6)
15, 1 1.406(−28) 1.423(−28) 1.386(−28) 9.984(−30) 3.1861...(−9)
20, 1 1.379(−39) 1.394(−39) 1.362(−39) 8.296(−41) 3.1115...(−12)

n, ω r
[3]
1 (f1) r

[3]
2 (f1) r

[3]
3 (f1) Error[3] I

[3]
ω (f1)

5, 1 7.797− 8) 6.666(−8) 6.707(−8) 1.785(−8) 6.6819...(−3)
10, 1 6.896(−18) 6.110(−18) 6.136(−18) 1.099(−18) 6.5253...(−6)
15, 1 1.542(−28) 1.386(−28) 1.391(−28) 1.972(−29) 6.3723...(−9)
20, 1 1.502(−39) 1.362(−19) 1.366(−19) 1.641(−40) 6.2230...(−12)
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quadrature formulae for the modified weight functions of Chebyshev
type, preprint math.NA/1809.10130v1.
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