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Abstract

Gaussian quadrature formulas with multiple nodes and their op-
timal extensions for computing the Fourier coefficients, in expansions
of functions with respect to a given system of orthogonal polynomials,
are considered. A numerically stable construction of these quadratures
is proposed. Error bounds for these quadrature formulas are derived.
We present a survey of recent results on this topic.
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1 Introduction

Let {Pk}∞k=0 be a system of orthonormal polynomials on [a, b] with respect to
a weight function ω (integrable, non-negative function on [a, b] that vanishes
only at isolated points). The approximation of f by the partial sums Sn(f)
of its series expansions f(x) =

∑∞
k=0 ak(f)Pk(x) with respect to a given

system of orthonormal polynomials {Pk}∞k=0 is a classical way of recovery of
f . The numerical computation of the coefficients ak(f),

ak(f) =

∫ b

a
ω(t)Pk(t)f(t) dt,

requires the use of a quadrature formula. Evidently, an application of the
n-point Gaussian quadrature formula with respect to the weight ω will give
the exact result for all polynomials of degree at most 2n−k−1, k < 2n−1.

Following Bojanov and Petrova [1] and using the same notation, we
consider quadrature formulas of the type

∫ b

a
ω(t)Pk(t)f(t) dt ≈

n∑
j=1

νj−1∑
i=0

cjif
(i)(xj), a < x1 < · · · < xn < b, (1)
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where νj are given natural numbers (multiplicities) and Pk(t) is a monic
polynomial of degree k.

In [1], for the sake of convenience, Bojanov and Petrova defined the
formula (1) to be Gaussian, if it has maximal algebraic degree of precision
ADP.

Let

πn(R) :=

{
P (t) : P (t) =

n∑
k=0

dkt
k, dk ∈ R

}
represents the space of all polynomials in one variable of degree at most n.
Bojanov and Petrova [1, Section 2] discuss general remarks concerning Gaus-
sian quadrature formulas with multiple nodes, since the study of formulas
of type (1) for Fourier coefficients can be reduced to the study of standard
multiple node quadratures. We repeat the following theorem established by
Ghizzetti and Ossicini [2].

Theorem 1.1 For any given set of odd multiplicities ν1, . . . , νn (νj = 2sj +
1, sj ∈ N0, j = 1, . . . , n), there exists a unique quadrature formula of the
form ∫ b

a
ω(t)f(t) dt ≈

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj), a ≤ x1 < . . . < xn ≤ b,

of ADP = ν1+ . . .+ νn+n−1, which is the well known Chakalov-Popoviciu
quadrature formula. The nodes x1, . . . , xn of this quadrature are determined
uniquely by the orthogonality property∫ b

a
ω(t)

n∏
k=1

(t− xk)
νkQ(t) dt = 0, ∀Q ∈ πn−1(R).

The corresponding (monic) orthogonal polynomial
∏n

k=1(t−xk) is known
in the classical literature as σ-orthogonal polynomial, with σ = σn =
(s1, . . . , sn), where n indicates the size of the array.

Bojanov and Petrova [1] describe the connection between quadratures
with multiple nodes and formulas of type (1). For the system of nodes
x := (x1, . . . , xn) with corresponding multiplicities ν̄ := (ν1, . . . , νn), they
define the polynomials

Λ(t;x) :=

n∏
m=1

(t− xm), Λj(t;x) :=
Λ(t;x)

t− xj
, Λν̄(t;x) :=

n∏
m=1

(t− xm)νm ,

set x
νj
j := (xj , . . . , xj) [xj repeats νj times], j = 1, . . . , n, denote by g[x1, . . . , xm]

the divided difference of g at the points x1, . . . , xm, and state and prove the
following important theorem which reveals the relation between the standard
quadratures and the quadratures for Fourier coefficients.
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Theorem 1.2 For any given sets of multiplicities µ̄ := (µ1, . . . , µk) and
ν̄ := (ν1, . . . , νn), and nodes y1 < · · · < yk, x1 < · · · < xn, there exists a
quadrature formula of the form∫ b

a
ω(t)Λµ̄(t;y)f(t) dt ≈

n∑
j=1

νj−1∑
i=0

cjif
(i)(xj), (2)

with ADP = N if and only if there exists a quadrature formula of the form∫ b

a
ω(t)f(t) dt ≈

k∑
m=1

µm−1∑
λ=0

bmλf
(λ)(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj), (3)

which has degree of precision N + µ1 + · · · + µk. In the case ym = xj for
some m and j, the corresponding terms in both sums combine in one term
of the form

µm+νj−1∑
λ=0

dmλf
(λ)(ym).

2 Main Results

Let us suppose that the coefficients aji (j = 1, . . . , n; i = 0, . . . , νj − 1) in
(3) are known. By acting as in the first part of the proof of Theorem 2.1 in
[1] we can determine the coefficients cji (j = 1, . . . , n; i = 0, . . . , νj − 1) in
(2). Namely, applying (3) to the polynomial Λµ̄(·;y)f , where f ∈ πN (R),
the first sum in (3) vanishes and we can obtain (see [1, Eq. (2.4)])∫ b

a
ω(t)Λµ̄(t;y)f(t) dt =

n∑
j=1

νj−1∑
i=0

aji
[
Λµ̄(t;y)f(t)

](i)∣∣∣
t=xj

 =
n∑

j=1

νj−1∑
i=0

cjif
(i)(xj),

where

cji =

νj−1∑
s=i

ajs

(
s

i

) [
Λµ̄(t;y)

](s−i)
∣∣∣
t=xj

(j = 1, 2, . . . , n; i = 0, 1, . . . , νj−1).

(4)
In [4], for a Chakalov-Popoviciu quadrature formula of type∫ b

a
ω(t)f(t) dt ≈

n∑
ν=1

2sν∑
i=0

aνif
(i)(xν), (5)

where a ≤ x1 < x2 < · · · < xn ≤ b, it was studied its extension to the
interpolatory quadrature formula∫ b

a
ω(t)f(t) dt ≈

n∑
ν=1

2sν∑
i=0

bνif
(i)(xν) +

m∑
µ=1

2s∗µ∑
j=0

c∗µjf
(j)(x∗µ), (6)
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where xν are the same nodes as in (5), and the new nodes x∗µ and new
weights bνi, c

∗
µj are chosen to maximize the degree of precision of (6), which

is greater than or equal to

n∑
ν=1

(2sν + 1) +
m∑

µ=1

(2s∗µ + 1) +m− 1 = 2

 n∑
ν=1

sν +
m∑

µ=1

s∗µ

+ n+ 2m− 1.

The interpolatory quadrature formula (6) has in general ADP=
∑n

ν=1(2sν+
1) +

∑m
µ=1(2s

∗
µ + 1) − 1 which is higher than the ADP of the quadrature

formula (5), i. e.
∑n

ν=1(2sν + 1) + n− 1, if

2

m∑
µ=1

s∗µ +m > n.

If there exist unique quadrature formulas (5), (6), then Theorem 1.2
implies that there exist unique quadratures for calculating the integrals∫ b

a
ω(t)f(t)πn,σ(t) dt ≈

n∑
ν=1

2sν−1∑
i=0

âνif
(i)(xν), (7)

and∫ b

a
ω(t)f(t)πn,σ(t) dt ≈

n∑
ν=1

2sν−1∑
i=0

b̂νif
(i)(xν) +

m∑
µ=1

2s∗µ∑
j=0

ĉ∗µjf
(j)(x∗µ), (8)

which represent the Fourier coefficients if the given σ-orthogonal polynomial
πn,σ coincides to the corresponding ordinary orthogonal polynomial Pn with
respect to the weight function ω, i.e., πn,σ(t) ≡ Pn(t) on [a, b]. Then, the
error in (7) can be estimated by the well known method of computing the
absolute value of the difference of the quadrature sums in (8) and (7).

Using the above presented method (see (7), (8)) for the case ω(t) =
1/
√
1− t2, t ∈ [−1, 1], we have proved in [5] the following statement.

Theorem 2.1 Let n, s ∈ N and ω(t) = 1/
√
1− t2, t ∈ [−1, 1]. Then, there

exists a unique quadrature formula with multiple nodes for calculating the
corresponding Fourier-Chebyshev coefficients an(f) =

∫ 1
−1 f(t)Tn(t)/

√
1− t2 dt,∫ 1

−1

f(t)Tn(t)√
1− t2

dt ≈
n∑

ν=1

2s−1∑
i=0

Âi,νf
(i)(τν), (9)

with ADP = 2sn+ n− 1, as well as its Kronrod extension∫ 1

−1

f(t)Tn(t)√
1− t2

dt ≈
n∑

ν=1

2s−1∑
i=0

B̂i,νf
(i)(τν) +

n+1∑
j=1

Ĉjf(τ̂j),

with ADP = 2sn+ 2n+ 1.

In the special case when s = 1 the quadrature formula (9) becomes the
well known Micchelli-Rivlin quadrature formula (cf. [3]).
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3 Conclusion

A numerically stable construction of the quadrature formulas with multiple
nodes for Fourier coefficients that is proposed in [4], [5] enables us their
calculation as well as estimation of its error. A part of those results is
presented here.
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