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Abstract: This paper explores the possibilities of point cloud reduction using  insensitive support vector regression 

(-SVR).  -SVR is a technique that can carry out the regression using different kernel functions (sigmoid, radial 

basis function, B-spline, spline, etc.) and it is suitable for detection of flat regions and regions with high curvature 

in scanned data. Using  -SVR the density of preserved points is adaptive – preserved points are denser at highly 

curved region and rare at flat regions. Adjusting the error cost in the regression, the number of preserved points 

can be fine tuned. 
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1. INTRODUCTION  

 

 The application of reverse engineering (RE) of the 

freeform shaped parts is rapidly dispersing over the 

years. Besides the reproduction of parts when original 

drawings are not available, RE is applied in the design 

of new products (e.g., in automotive industry where the 

sheet metal forming tools for car bodies are created 

based on wooden or clay models; in consumer products 

industry where aesthetic design is important; in 

generation of custom made accessories and prostheses 

for human) [1].  

 During the first step of RE, the surface of the 

physical object is digitalized and 3D point cloud is 

obtained. Contemporary measurement devices [2] and 

especially ones based on lasers have high measurement 

speed and resolution, giving large and dense point 

clouds at output. Although the sampling rate of 

measurement device can be adjusted according to the 

character of digitalized surface, the operator usually 

acquires as many points as possible because he is not 

sure about the needed density of points for adequate 

reconstruction of certain parts of scanned surface. 

Generally, a significantly larger amount of point cloud 

data is acquired than one that is sufficient and that can 

be efficiently handled during surface reconstruction. In 

order to operate with reconstructed surfaces at 

reasonable computational cost, the amount of point data 

should be reduced. 

 The easiest solution for data reduction is uniform 

downsampling. Nevertheless, in order to preserve the 

shape of original surface points, highly curved regions 

in point cloud should have high density, while for 

relatively flatter areas lover point density is acceptable. 

In order to address given issues a number of data point 

reduction techniques have been proposed. 

 The simplest way to create a surface model from 

point cloud is to generate a polygonal mesh over it. 

Consequently, the first methods for data point reduction 

were based on simplification of polygonal meshes [3] 

(the research has origins in image processing), while 

recent methods are based on direct cloud point data 

reduction. The most of the methods for direct cloud 

point data reduction are based on the estimation of the 

importance of each point in the cloud. For the 

importance evaluation different measures are used e.g., 

deviation of normal vectors in the vicinity of the point 

[4, 5], Hausdoff distance [6], and maximum deviation 

distance [7]. In order to improve decision making fuzzy 

logic has been employed [7]. 

 Support vector machines are an emerging technique 

for data regression and classification. In this paper a 

possibility of  insensitive support vector regression (-

SVR) application in data point reduction is explored, 

and a method for point cloud reduction is proposed.  

 

2. SUPPORT VECTOR REGRESSION 

 

Given is the training data set {(x1, y1), (x2, y2) ... (xl, 

yl)} where xi represent independent, and yi dependant 

variables. The goal of -SVR is to find a function f(x) 

that is as flat as possible and that has maximum  

deviation from yi. The errors lower than  are 

insignificant. In other words, all the yi should lie in the 

-tube around f(x). In the case of linear dependence, the 

function f(x) is in the form: 

( ) b,f += ixwx  (1) 

f(x) is flat if w is small. In order to ensure the flatness: 
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should be minimized, subject to: 

−− b,yi ixw  (3) 

Nevertheless, in reality the scenarios in which all of the 

data lie within  tube are extremely rare and 

optimization of the problem (2, 3) is infeasible. In order 

to create f(x), anyway, the violation of the condition 

that all yi are within  tube is allowed. To formalize this 

approach, slack variables i, i
* are introduced and 

optimization problem (2, 3) is reformulated [8]: 
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Constant C introduces the tradeoff between function 

flatness and number of points out of  tube.  

 Optimization problem (4) can be represented in dual 

form [9]: 
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where i, i
* represent Lagrange multipliers. Only for 

|f(xi)-yi| ≥  Lagrange multipliers are nonzero, while for 

vectors (points) inside  tube i, i
* vanish. The vectors 

with nonzero i, i
* are called support vectors. 

 The solution of the problem (5) is given by: 

( ) ixw  
ns

*

ii −=   (6) 

where ns is the number of support vectors, leading to: 

( ) ( ) b,xf
ns

*

ii +−= xxi  (7) 

The presented methodology can be applied for 

nonlinear regression by mapping data from the input 

space into a high-dimensional space where the 

regression is linear. It is worth noting that for 

optimization problem (5), it is enough to know only the 

inner product in the high-dimensional space i.e. it is not 

necessary to define the high-dimensional space in 

explicit form. Rather opposite, it can be defined using 

kernel K(x, xi), which represents inner product in the 

space of higher dimension. Introducing K(x, xi), 

problem (5) becomes: 
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while the function f(x) is defined by: 

( ) ( ) ( ) b,Kxf
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*
ii +−= xxi  (9) 

and it is a hyperplane in the high-dimensional space. 

 The kernel can be any function that satisfies the 

conditions of Mercer’s theorem [8]. For example, these 

are polynomial kernels, Gauss kernel, sigmoid kernel, 

some wavelets. New kernels can be defined by 

summing or multiplication of simpler kernels. 

 For the application at hand, two kernels are of the 

significance. The first is the B-spline of order 2n + 1, 

defined by 2n + 1 convolution of unit interval: 
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where 1X denotes indicator function on the set X and  

is the convolution. 

 The second is the spline kernel of order k having N 

knots located at ts, which is defined by: 
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3. APPLICATION OF -SVR IN DATA POINT 

REDUCTION 

 

 Point data cloud is usually, due to the nature of 

scanning process, structured into cross sectional curves. 

Otherwise, it can be restructured using projections on 

cross section planes. -SVR can be applied to each 

cross section and the function f(x) can be obtained. 

 The fact that function f(x) is as flat as possible in 

high dimensional space, i.e. it conforms as much as 

possible to selected kernel in initial space, can be used 

for determination of regions where the scanned line is 

not highly curved. In these regions the number of 

support vectors will be very small. In order to preserve 

the curvature, the points can be uniformly 

downsampled with predefined step. 

 On the other hand, in regions with high curvature, 

-SVR will not be able to fit all the points inside the  

tube and the number of support vectors will be higher. 

In these areas support vectors can be preserved points. 

 Due to the unknown curvature, the best kernels for 

-SVR of freeform surface scans are B-spline and 

spline. In this paper B-spline is opted to use. The other 

two parameters that should be set in order to carry out 

-SVR are error margin  and error cost C. 

 

 

Fig. 1. Identified support vectors on synthesized signals 

for different values of parameter C (=0.3)  



a)  

 

b)   

c)  

Fig. 2. a) Scanning device; b) A photo of scanned gas 

turbine blade; c) Obtained point cloud 

 

 The value of  is related to the accuracy of scanning 

device and surface characteristics’ tolerance and can be 

easily defined. The parameter C introduces the tradeoff 

between flatness and number of support vectors, i.e. 

preserved points, and it can be used for tuning the 

number of points that will be preserved in highly 

curved areas. The lower C will lead to higher number 

of preserved points, and vice versa. 

 Figure 1. shows an example of the -SVR carried 

out with different values of C on a curve synthesized in 

Matlab. In order to get closer to the reality the curve is 

noised with 20dB of white noise. It can be observed 

that with the decrease of C the curvature of regression 

line is lower and the number of preserved points 

(support vectors) in highly curved regions is higher. 

 

4. TURBINE BLADE EXAMPLE 

 

This Section considers a real world example of the gas 

turbine blade (Figure 2b). The pressure side of the 

blade represents smooth freeform surface, while its root 

has high curvature. The surface on the pressure side is 

scanned using set-up shown in Figure 2a. The scanning 

device – laser  OptoNCDT1700-100 is put on the 2d 

Cartesian manipulator. Laser measuring range is 

100mm with 14 bit resolution. Measurement error due 

to the tilt angles is 0.5% at ±30. The accuracy of  

 

Fig. 3. a) Original points in cross section at x=28mm; 

b-d) Preserved points in the same cross section 

 

manipulator is significantly lower: ±0.1mm. The 

surface is scanned along y axis in successive cross 

sections with the step of 0.2mm. Scanning speed was 

100mm/s, and sampling rate 625Hz, which gives 

resolution of 0.16mm. The obtained point cloud has 

417,500 points and it is presented in Figure 2c.  

 Points are structured into cross sections along which 

the scanning is performed. Each of the obtained curves 

is subjected to -SVR as previously described. 

Parameter  is set to 0.1mm, in accordance with 

scanning device accuracy. Parameter C, on the other 

hand is varied (Table 1). 

 -SVR gives support vectors that represent the 

points that should be preserved. Nevertheless in smooth 

areas support vectors are infrequent. Thus, in regions 

where the distance between two subsequent support 

vectors along abscissa was lower than 8mm the original 

signal was uniformly downsampled by 8mm (50 

samples). In highly curved regions support vectors are 

dense and only they are preserved. 



 Point data scanned in one typical cross section at 

x=28mm are shown in Figure 3a. Applying -SVR 

together with uniform downsampling where needed, 

the number of points is adaptively reduced. The points 

on the pressure side surface are reduced by higher rate, 

while at highly curved area at blade root the number of 

preserved points is higher. Reduced point data for 

C=10,000, C=100,000 and C=1,000,000 are shown in 

Figure 3b, 3c and 3d, respectively. 

 The points in x direction are downsampled 

uniformly by 10 – the cross sections with the step of 

2mm are taken. The number and percentage of 

preserved points for different values of the cost  

 

 

Fig. 4. Reduced point clouds and polygonal meshes 

 

C 
# of preserved 

points  

% of preserved 

points - a* 

% of preserved 

points - b** 

10,000 5185 1.24 23.05 

100,000 3351 0.80 14.9 

1,000,000 3020 0.72 13.43 

Table 1. Number and percentage of preserved points 

 
* Initial number of points in cloud: a = 417500 
** Number of points after downsampling along x and 

excluding points with z=0: b=22491 

parameter C are shown in Table 1, while reduced point 

clouds together with polynomial meshes created in 

Catia are shown in Figure 4. 

 

5. CONCLUSION 

 

This paper proposed a method for adaptive data point 

reduction based on -SVR. It has been shown that SVR 

represents a tool that can be effectively used for higher 

reduction of data points at flat and lower reduction at 

highly curved areas. Cost parameter C is suitable for 

fine tuning of the number of preserved points. The B-

spline kernel was selected as suitable for regression of 

freeform curves. Nevertheless, B-spline is prone to 

oscillation at smooth areas as can be observed in Fig. 

3b-3d (y=70-100mm). In order to address this 

shortcoming the use of combination of spline and B-

spline kernel could be explored.  

 The main shortcoming of the proposed method is 

the computation cost of SVR optimization problem, 

which is very high even with the application of 

sequential minimization algorithm. 
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