Hindawi Journal of Nanomaterials Volume 2017, Article ID 4360746, 10 pages https://doi.org/10.1155/2017/4360746

Research Article

The IR Spectra, Molar Absorptivity, and Integrated Molar Absorptivity of the C_{76} - D_2 and C_{84} - D_2 :22 Isomers

Tamara Jovanović, Duro Koruga, and Branimir Jovančićević

Correspondence should be addressed to Tamara Jovanović; tamara.jovanovic@sbb.rs

Received 4 February 2017; Revised 20 February 2017; Accepted 22 February 2017; Published 5 March 2017

Academic Editor: Xuping Sun

Copyright © 2017 Tamara Jovanović et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The FT-IR spectra of the stable C_{76} and C_{84} isomers of D_2 symmetry, isolated by the new, advanced extraction and chromatographic methods and processes, were recorded by the KBr technique, over the relevant region from 400 to 2000 cm⁻¹, at room temperature. All the observed infrared bands are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations for these fullerenes, which is presented in this article, as the evidence of their validity. The molar absorptivity ε and the integrated molar absorptivity ψ of their IR absorption bands were determined and reported together with the relative intensities. Excellent agreement is found between the relative intensities of the main and characteristic absorption maxima calculated from ε_{λ} and from the ψ_{λ} values in adequate integration ranges. These results are significant for the identification and quantitative determination of the C_{76} - D_2 and C_{84} - D_2 :22 fullerenes, either in natural resources on Earth and in space or in artificially synthesized and biomaterials, electronic, optical, and biomedical devices, sensors, polymers, optical limiters, solar cells, organic field effect transistors, special lenses, diagnostic and therapeutic agents, pharmaceutical substances in biomedical engineering, and so forth.

1. Introduction

Fullerenes C_{60} and C_{70} were detected in a series of astrophysical objects and space environments [1–6], such as certain planetary [7, 8] and protoplanetary [9] nebulae, postasymptotic giant branch stars, young stellar objects [10], reflection nebulae [11], certain R-Coronae Borealis stars, and carbon rich stars [12–16], as well as in some resources on Earth [17, 18]. The identification and quantitative assessment of these molecules, both in natural and in artificially synthesized materials, were made possible by the measurement of their IR spectra, the dependence of these spectra on temperature, the molar absorptivity, and integrated molar absorptivity of their absorption bands [2–26].

It is expected that also higher fullerenes can be found in space, besides C_{60} and C_{70} . Calculations [27] suggest that, on a per carbon atom basis [1], higher fullerenes are thermodynamically even more stable than C_{60} , C_{70} [28], and from the hydrogenated derivatives fulleranes [17, 18, 29–31]. Their formation through coalescence of smaller fullerenes [32]

and by laser ablation of carbon [17–19, 33, 34] also leads to the conclusion about their possible presence in nature.

For the qualitative detection of $\rm C_{76}$ and $\rm C_{84}$ fullerenes, the knowledge of the infrared band position and band widths, as well as the evolution of these parameters with temperature, is necessary. This need was fulfilled, for instance, by the previous works [1, 35–42] in the infrared spectroscopy of $\rm C_{76}$ and $\rm C_{84}$, whereas quantitative assessment of these fullerenes requires knowledge about intensities of their IR absorption bands, which is provided in the current work.

In the first phase of this research, the only stable C_{76} - D_2 isomer [43–45] and the most abundant, stable isomer of the higher fullerene C_{84} with D_2 symmetry, C_{84} - D_2 :22 [46–54], were isolated from carbon soot, by new and advanced chromatographic methods and processes [35–42], in comparison to previous methods for the separation of higher fullerenes under pressure [55–63]. Their IR (KBr) spectra were recorded over the entire relevant region, from 400 to 2000 cm $^{-1}$ in transparence mode [35–42], and in the absorption mode in this article.

¹Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia

 $^{^2}$ Department of Applied Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

A comparison of the experimentally observed vibrational frequencies in the IR absorption spectra of the isolated C_{76} - D_2 and C_{84} - D_2 :22 samples [35, 38] with the semiempirical QCFF/PI, DFT, as well as TB potential theoretical calculations for these fullerenes [44, 45, 48–50], is presented in this article, indicating their validity.

In this work also, the molar extinction coefficients and the integrated molar extinction coefficients of their main and characteristic IR absorption bands were determined.

These data are important for the qualitative and quantitative determination of the C_{76} - D_2 and C_{84} - D_2 :22 isomers, either in natural resources on Earth and in space or in artificially synthesized materials, electronic and optical devices, diagnostic and therapeutic agents for the applications in biomedical engineering, and so forth.

2. Experimental Methods

In the first phase of this research, C_{60} , C_{70} [24–26], and the higher fullerenes, mainly C_{76} and C_{84} [35-42], were Soxhlet-extracted with a series of different and previously unapplied solvents or combinations of solvents from the samples of carbon soot, produced by electric arc (MER Corporation, Tucson, USA). The extraction procedures were performed until the complete disappearance of color in a Soxhlet extraction thimble. Solvents used were *n*-heptane, toluene, chlorobenzene, p-xylene, a mixture of o/m/p-xylene, and pyridine, as well as the successive use of toluene and chlorobenzene and p-xylene and pyridine. The yields, as well as the compositions of all the extracts, were determined by spectroscopic and chromatographic methods. The procedures for increases of fullerenes yields, as well as for additional selective extraction of higher order fullerenes, were found [24-26, 35-42].

In the second phase, C_{60} , C_{70} , and the higher fullerenes C_{76} and C_{84} (the only stable C_{60} -Ih, C_{70} - D_{5h} , and C_{76} - D_{2} isomers of the first three mentioned fullerenes and the most abundant, stable C_{84} isomer of D_{2} symmetry) were chromatographically separated from the obtained soot extracts on the activated $Al_{2}O_{3}$ columns, by new and advanced methods [35–42].

The main difference and advancement of these methods [35-42], in comparison to previous methods under pressure [55-63], is the isolation of the purified stable isomers of the higher fullerenes C_{76} and C_{84} (the C_{76} - D_2 and C_{84} - D_2 :22 isomers), successively after the basic fullerenes, in one phase of each of the processes, under atmospheric pressure and smaller flow of $1.5 \, \text{mL/min}$, in increased milligrams yields. The other advantages of the developed methods [35, 42] are the use of significantly smaller amounts of the initial materials, as well as less expensive laboratory equipment. In these methods [35, 42], the entire materials and energy expense, the time spent on the purification processes, and environmental pollution were decreased, using smaller amounts of less toxic solvents. The yields and the purities of the isolated fullerenes were increased or maximized [35, 36, 39].

Purification of the higher fullerenes under pressure, on a preparative scale, either by flash chromatography or by HPLC, generally required larger amounts of the initial materials and repeated chromatographies, and the fullerenes were obtained in smaller yields [55–63].

In our new methods [35–42], the elution was performed continuously with several different original, defined gradients of solvents: from pure hexane or 5% toluene in hexane to pure toluene. The amounts of the initial materials used were as follows: fullerenes extracts, 10 mg, and finely granulated Al_2O_3 , 50 g, activated for 2 h at 105° C, and eluent (1.5 to 1.75 L) per chromatographic separation [35–42]. Starting from 10 mg of the soluble soot extract, in average ca. 1 mg of C_{76} and ca. 1 mg of C_{84} were isolated in purified form per one chromatographic process, or up to few milligrams in some cases. The time spent on the purification processes was from 16.7 to 19.4 h [36, 39].

For comparison, using flash chromatography to separate fullerenes [55], on alumina, with hexane or 5% toluene in hexane as eluent, required about 50 times larger quantities of the initial materials, such as 500 mg of crude fullerenes extract, 2500 mg of alumina, and about 12.5 L of solvent for one chromatographic fraction, C_{60} , or 75 L for six chromatographic fullerene fractions, per one chromatography and the large size of columns. The entire time of this purification process, including repeated chromatographies, was 66 hours and purified higher fullerenes were obtained in lower yields. From the total amount of 2500 mg of toluene soluble soot extract, 12 mg of C_{76} and 2 mg of C_{84} were isolated.

From these data, it follows [36, 39] that 21 times larger amounts of the initial materials (extract, stationary phase, and solvent) and 2 times longer time are needed for obtaining 1 g of purified $\rm C_{76}$, and 125 times larger amounts of the initial materials and 10 times longer time are required for obtaining 1 g of purified $\rm C_{84}$ by the mentioned flash chromatography process [54], in comparison to our protocols [35–42].

In the previous method under pressure [57, 58], the purified basic and higher fullerenes were eluted according to their molecular weights on the monomeric ODS column, using large volumes of solvents, in comparison to our new methods [35–42]. Several tens of liters of a mixture of toluene and methanol (55:45, v/v) per chromatography were used, at a flow rate of 40 mL/min [57, 58]. In the new methods [35–42], under atmospheric pressure and smaller flow rate of 1.5 mL/min, significantly smaller volumes of solvents were used for the elution of the purified basic and higher fullerenes in one phase, 1.5 to 1.75 L per chromatography.

The IR spectra of all the chromatographically purified fractions of the basic and the higher fullerenes from this research, as well as of the obtained soot extracts, were previously recorded on a Perkin Elmer FT-IR 1725 X spectrometer by the KBr pellet technique, from 400 to $4000\,\mathrm{cm}^{-1}$, at a resolution of $1\,\mathrm{cm}^{-1}$, in the transparence mode [24–26, 36, 37, 39–42].

The IR spectra of the $\rm C_{76}$ - $\rm D_2$ and $\rm C_{84}$ - $\rm D_2$:22 samples, isolated by the new and advanced chromatographic methods [35–42], were also recorded on a Thermo Scientific FT-IR spectrometer Nicolet IR-6700, by the KB disk technique, in

the range of 400–2000 cm⁻¹, at a resolution of 1 cm⁻¹, in the transparence mode [35, 38], as well as in the absorption mode in this article.

2.1. Measurement of the Molar Absorptivity and Integrated Molar Absorptivity of C_{76} - D_2 and C_{84} - D_2 :22. Chromatographically isolated C_{76} - D_2 (0.249 mg) and C_{84} - D_2 :22 (0.270 mg) were mixed with 70.8 mg and with 77.8 mg of KBr, respectively. The obtained powder was compressed at the 4 tons/cm² with the Perkin Elmer press.

The resulting pellets were placed in the FT-IR spectrometer. Measurements of the intensities (heights) of the absorption bands, as well as of the integrated band intensities of $\rm C_{76}$ - $\rm D_2$ and $\rm C_{84}$ - $\rm D_2$:22, with automatic subtraction of the baseline, were made possible through the OMNIC software from Thermo Scientific, dedicated to the FT-IR spectrometer. This software has also been recently used for the measurement of relative intensities of IR absorption bands of $\rm C_{60}$ and $\rm C_{70}$ [4].

The masses of the resulting pellets were 71.0 mg and 78.1 mg, and the percentages of carbon determined by the elemental analysis were 0.351 and 0.346. Their measured thicknesses (b) were 0.67 mm \sim 0.07 cm and 0.74 mm \sim 0.07 cm, the diameters (R) were 0.7 cm, and the half diameters (r) were 0.35 cm.

The volumes of the pellets (V) were determined from the abovementioned r and b parameters, by the equation $V = r^2 \pi b$. The obtained values of the volumes, as well as the thicknesses of pellets, were also confirmed using KBr density (2.753 g/cm³) [4] and the masses of pellets.

Concentrations (c) of fullerenes C_{76} and C_{84} in the pellets, as the number of moles per unit of volume, were calculated using the masses of C_{76} and C_{84} in the pellets, their molar masses of 912.76 g/mol and 1008.84 g/mol, and the volumes of pellets.

The $(bc)^{-1}$ values were determined for the C_{76} - D_2 and the C_{84} - D_2 :22 samples in KBr pellets from the abovementioned experimental parameters. The $(bc)^{-1}$ value found for C_{76} - D_2 was $1409.7 \text{ L} \cdot \text{cm}^{-1} \cdot \text{mol}^{-1}$ and the $(bc)^{-1}$ value found for C_{84} - D_2 :22 was $1436.0 \text{ L} \cdot \text{cm}^{-1} \cdot \text{mol}^{-1}$.

3. Results and Discussion

In the recent works [1, 35–42], the IR spectra of the higher fullerenes C_{76} and C_{84} and their stable isomers of D_2 symmetry have been studied. The dependence on temperature of the position and width of their infrared absorption bands has been determined [1, 35]. The molar extinction coefficients and integrated molar absorptivity of the infrared absorption spectra of C_{60} and C_{70} , as well as of related hydrogenated derivatives, fulleranes, have also been recently determined [2–5]. However, neither the molar absorptivity nor the integrated band intensity of C_{76} - D_2 and C_{84} - D_2 :22 has been reported.

Determination of molar absorptivity of the isolated higher fullerenes, in $L \cdot cm^{-1} \cdot mol^{-1}$, at a given wavenumber, ε_{λ} , was achieved through (1), previously applied for C_{60} and C_{70} , as well as for hydrogenated fullerenes [2–6, 64],

according to Lambert and Beer law, using the absorbance A_{λ} read at a given wavenumber:

$$\varepsilon_{\lambda} = A_{\lambda} \left(bc \right)^{-1}. \tag{1}$$

The determined values of $(bc)^{-1}$ for both the C_{76} - D_2 and the C_{84} - D_2 :22 samples are reported in the Experimental Methods.

It was found that the peak height measurements that correspond to the absorbance A are sensitive to changes in the resolution of the spectrometers used [2–6, 64]. The measurement of the integrated intensity that corresponds to the total area below a given absorption band is much less sensitive to instrumental resolution than the peak height measurement [2–6, 64].

Thus, the absorbance and the integrated band intensities in the obtained original IR spectra of the isolated $\rm C_{76}$ -D₂ and $\rm C_{84}$ -D₂:22 samples were determined using the OMNIC software of our spectrometer, in both cases subtracting automatically the baseline.

The integrated molar absorptivity of the C_{76} - D_2 and C_{84} - D_2 :22 fullerenes, expressed in cm mol⁻¹ or 10^{-5} km mol⁻¹, was determined by (2), previously applied for the basic fullerenes, as well as for fulleranes [2–6, 64]:

$$\Psi = \int \varepsilon_{\lambda} d\lambda. \tag{2}$$

In this equation, λ is the wavelength and ε_{λ} is the molar absorptivity measured with a spectrometer with unlimited resolution, integrated over the whole band. In practice, by substituting (1) into (2), we get [2–6, 64]

$$\Psi = (bc)^{-1} \int A_{\lambda} d\lambda. \tag{3}$$

The original, characteristic, representative IR spectrum of the isolated sample of the $\mathrm{C}_{76}\text{-}\mathrm{D}_2$ isomer is obtained in this article in the absorption mode, Figure 1, for determination of the molar absorptivity and integrated molar absorptivity of its absorption bands, which is important for the quantitative assessment of this fullerene and represents the main work of this article. It was previously provided in transparence mode, in supplemental material of our article [35], for the qualitative determination.

The main three, most intense, dominant C₇₆ maxima, registered in this research [35–42], appear at 967, 1082, and 1187 cm⁻¹, with some weak, distinct shoulders. Characteristic, sharp absorption bands unique to C₇₆ occur in the first relevant part at 893 and 823 cm⁻¹, with a neighboring shoulder at 792 cm⁻¹. Several other bands are present at 703 cm⁻¹ with a shoulder at 742 cm⁻¹, at 605 cm⁻¹ with the shoulders at 647 and 665 cm⁻¹, and at 484 cm⁻¹ with the shoulders at 538, 462, 456, and 426 cm⁻¹. Pronounced and intense bands are present in the higher frequency region at 1386 cm⁻¹ with the shoulders at 1397 and 1364 cm⁻¹, at 1493 cm⁻¹ with a neighboring shoulder band at 1462 cm⁻¹, as a doublet, and at 1735 cm⁻¹. Maximum at 1312 cm⁻¹ appears with the neighboring shoulders at 1273 and 1248 cm⁻¹, as a triplet. Complete absorption in this spectrum [35] is in

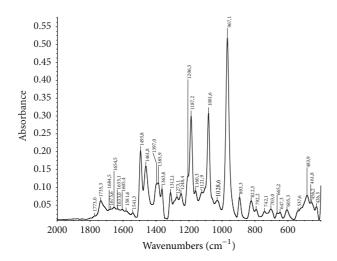


FIGURE 1: The IR spectrum of C_{76} - D_2 in a mode.

agreement with the theoretical calculations for C_{76} - D_2 , as well as for its dianion [44, 45].

In the previous articles [35, 37], a comparison of the experimentally observed absorption frequencies in the IR spectra of the chromatographically isolated C₇₆-D₂ samples, recorded on Perkin Elmer [37, 40-42] and on Thermo Scientific FT-IR spectrometer Nicolet IR-6700 at room temperature [35], with the semiempirical QCFF/PI theoretical calculations for this fullerene [35, 37, 40-42, 44], as well as with the IR spectra of C₇₆, recorded on three different temperatures between -180°C and +250°C [1, 35], was presented. On the basis of the obtained excellent agreement [35, 37, 40– 42, 44], the validity of both the experimental results [35, 37, 40-42] and the mentioned theoretical calculations for C_{76} - D_2 [44] was indicated [35, 37, 44]. In the more recent article [35], a larger number of experimentally registered vibrational frequencies of C₇₆ were presented and theoretically confirmed [35, 44].

There is also a good agreement between the absorption bands in our infrared spectra at room temperature [35–42] and the recent spectra of C_{76} - D_2 at three different temperatures [1]. Only some smaller shifts, as well as some changes of their relative intensities with the temperature, were observed [1, 35].

In this article, a comparison of the experimentally obtained vibrational frequencies (cm $^{-1}$) in the IR absorption spectra of the chromatographically isolated $\rm C_{76}$ - $\rm D_2$ samples (IR1-IR3), recorded from 400 to 2000 cm $^{-1}$, on a Thermo Scientific FT-IR spectrometer Nicolet IR-6700 [35], with the different theoretical calculations, by the QCFF/PI method (Calc. 1, from 286 to 1668 cm $^{-1}$) [44] and DFT method for $\rm C_{76}$ (Calc. 2, from 206.7 to 1602.7 cm $^{-1}$) [45], as well as for $\rm C_{76}^{2-}$ (Calc. 3, from 195.7 to 1556.0 cm $^{-1}$) [45], is presented in Table 1. Excellent agreement is obtained between the experimental results [35] and all the aforementioned theoretical calculations for this fullerene [44, 45], as the evidence of their validity.

Table 1: Experimentally obtained vibrational frequencies (cm $^{-1}$) of C_{76} - D_2 [35] and theoretically calculated values between 400 and 2000 cm $^{-1}$ [44, 45].

2000 CIII	[44, 43].				
IR1 ^a	IR2 ^a	IR3ª	Calc. 1 ^b	Calc. 2 ^c	Calc. 3 ^c
1635.1	1631.4	1633.1	1635		
1605.4			1607	1602.7	
1581.6			1582	1581.4	
	1557.9		1556		1556.0
		1551.5	1549		1555.7
1541.3	1541.6			1541.4	
1493.8	1492.7	1493.4	1494	1489.7	1494.9
1461.8	1460.2	1461.1	1464	1463.9	1463.4
1397.0	1399.8	1398.7	1401		1400.5
1385.9	1385.4	1385.6	1388	1386.5	1390.7
1363.8	1363.1	1364.2	1369	1365.1	1366.0
1312.1	1311.4	1312.4	1312	1310.9	1309.4
		1275.6		1275.7	1275.9
1273.1			1270	1274.0	
	1263.1		1259		1262.5
1248.4	1247.5	1247.6	1253	1249.4	1246.4
	1210.5	1208.6			1208.7
1206.3			1204		
1187.2	1185.0	1187.0	1189	1180.4	1189.2
1160.3		1161.6	1165	1157.7	1162.2
1121.9	1121.8	1122.0	1124	1126.1	1125.7
	1100.9		1100		1101.5
1081.6	1081.8	1081.6	1079	1072.3	1090.3
	1057.2	1056.4	1058	1054.7	1065.4
1028.6	1030.4		1027		1026.5
		1024.2		1024.9	
967.1	968.4	967.0	971	942.1	991.5
893.3	891.8	892.2	895	897.7	894.1
822.5	821.1	823.4	823	821.0	827.1
792.2	796.4		799	808.7	795.0
		788.8	787	781.7	787.0
742.1		742.9	746	742.0	741.3
	739.9		735	739.6	740.2
	704.0	704.8	707	704.9	704.5
703.0				702.4	703.5
665.2	663.6		667	665.4	665.2
		661.1	662		660.6
647.3	648.3	645.8	652	642.7	650.3
605.3	604.6	602.9	596		596.8
537.6	538.8		543	538.5	536.9
		532.7	534	531.3	535.6
	494.1		494	493.8	494.5
483.9		486.6	485	485.8	486.5
	476.4		477	476.7	479.2
461.8		460.6	460		459.2
456.2			457	456.3	456.9
	451.8		454	452.2	454.0
		436.0		434.8	436.0

70	1	0 1
IARIE	١.	Continued.
IADLE	1.	Commude.

IR1 ^a	IR2ª	IR3ª	Calc. 1 ^b	Calc. 2 ^c	Calc. 3 ^c
426.5	429.3				425.3
		405.2	406	405.0	399.3

^aReference [35]

The IR spectra of all the chromatographically isolated samples of the C_{76} - D_2 isomer from this research, recorded on the two mentioned spectrometers, have similar properties. All the observed vibrational frequencies and the general pattern of these spectra [35–42] are in agreement with the semiempirical QCFF/PI [44] and DFT theoretical calculations for C_{76} - D_2 [45], as well as for its diamion C_{76} - D_2 ²⁻ [45].

The achieved agreement between our experimental results [35–42] and all the aforementioned theoretical predictions of the IR absorption frequencies of C_{76} - D_2 [44, 45], which is presented in this article in Table 1 and Figure 1 [35, 44, 45], is better in comparison to previous, partial experimental results for the obtained C_{76} samples, from other separation processes, by other IR techniques [59–62].

It is important to mention that the obtained generally good correlation between the overall configuration of absorption and all the observed vibrational frequencies in our recent experimental IR spectra for the neutral C_{76} - D_2 [35–42] and the next obtained infrared multiphoton electron detachment (IR-MPED) spectrum of the unsolved gas phase dianion C_{76} - D_2 ^{2–} [45], as well as with the adequate most recent B3LYP/TZVP DFT calculations, presented in this article in Table 1, Figure 1 [35, 45], provides significant experimental evidence [35–42] that the dianionic molecule retains its overall symmetry (i.e., D_2 point group) with 1A_1 ground state with respect to the neutral cage [45].

From the IR spectrum of C_{76} - D_2 in a mode, presented in Figure 1, the absorbance values A_{λ} , as well as the integrated absorbance values of the absorption bands, were determined using the OMNIC software.

The molar absorptivity ε_{λ} , calculated according to (1), the integrated molar absorptivity Ψ_{λ} , calculated according to (3), and the integration ranges of absorption bands of this fullerene are reported in Table 2.

It can also be seen from Table 2 that excellent agreement is found between the relative intensities of the main and characteristic absorption maxima of C_{76} - D_2 computed from ε_{λ} and from the Ψ values, in adequate integration ranges, taking as 100 the most intense vibration mode of C_{76} - D_2 at the frequency of 967 cm⁻¹.

The original, characteristic, representative IR absorption spectrum of the isolated sample of the isomer C_{84} - D_2 :22 is obtained in this article in the absorption mode, Figure 2, for determination of the molar absorptivity and integrated molar absorptivity of its absorption bands, which is important for its quantitative determination, as the main work of this article. It was previously provided in transparence mode [35], for qualitative determination.

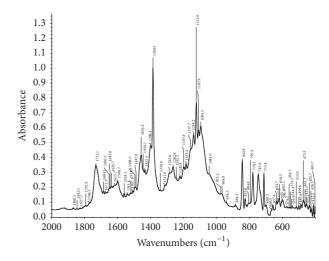


FIGURE 2: The IR spectrum of C_{84} - D_2 :22 in a mode.

A group of sharp, characteristic absorption bands is present between ca. 700 and 840 cm $^{-1}$ [35–42], at 711, 746, 779, and 843 cm $^{-1}$, followed by the bands at 635 and 473 cm $^{-1}$ in the first relevant part. Dominant and pronounced $\rm C_{84}^{-}\rm D_2:22$ maxima appear in the higher frequency region, between ca. 1390 and 1120 cm $^{-1}$, as well as a group around $1600~\rm cm^{-1}$. The main, most intense band is present at $1385~\rm cm^{-1}$, followed by the bands at $1263~\rm cm^{-1}$ and $1122~\rm cm^{-1}$. Intense bands also appear at $1456-1465~\rm cm^{-1}$, $1599-1616~\rm cm^{-1}$, and $1731~\rm cm^{-1}$. The entire absorption in this spectrum [35] corresponds to the theoretical predictions for $\rm C_{84}^{-1}\rm D_2:22$ [48–50].

In the previous article [35], a comparison of the experimentally observed absorption frequencies in the IR spectra of the chromatographically isolated C_{84} - D_2 :22 samples, recorded on a Thermo Scientific FT-IR spectrometer Nicolet IR-6700 at room temperature [35, 38], with the semiempirical QCFF/PI theoretical calculations for this fullerene [48], as well as with the IR spectra of C_{84} (mixture of isomers), recorded on three different temperatures between –180°C and +250°C [1, 35], was presented. On the basis of the obtained excellent agreement [35, 38, 48], the validity of both the experimental results [35, 38] and the mentioned theoretical calculations [48] was indicated [35].

Most of the absorption maxima in our IR spectra of C_{84} - D_2 :22 at room temperature [35–42] are also in good agreement with the recent IR spectra of C_{84} (mixture of isomers) at different temperatures between –180°C and +250°C [1], as presented in the previous article [1, 35, 38]. However, significant changes of relative intensities of the main bands, as well as some shifts, were observed [1, 35].

In this article, a comparison of the experimentally obtained vibrational frequencies (cm $^{-1}$) in the IR absorption spectra, of the chromatographically isolated C_{84} - D_2 :22 samples (IR1-IR3), recorded from 400 to 2000 cm $^{-1}$, on a Thermo Scientific FT- IR spectrometer Nicolet IR-6700

^bReference [44].

^cReference [45].

$\nu (\mathrm{cm}^{-1})$	$\varepsilon_{\lambda} (L \text{ cm}^{-1} \text{ mol}^{-1})$	Rel. int. $[\varepsilon_{\lambda}]$	Int. range (cm ⁻¹)	$\Psi (\text{Km mol}^{-1})$	Rel. int. [Ψ]
1735.3	88.810	12.1	1770-1699	1.841	12.1
1493.8	286.167	39.1	1505-1451	5.947	39.1
1385.9	159.295	21.8	1397-1348	3.320	21.8
1312.1	119.824	16.4	1319-1242	2.504	16.5
1187.2	420.087	57.4	1227-1144	8.710	57.3
1081.6	434.184	59.3	1140-1005	9.029	59.3
967.1	731.629	100	997–925	15.212	100
893.3	101.498	13.9	912-850	2.136	14.0
822.5	87.401	11.9	850-772	1.818	11.9
703.0	54.978	7.5	763-680	1.135	7.5
605.3	54.273	7.4	674–596	1.147	7.5
483.9	109.956	15.0	550-418	2.285	15.0

Table 2: The relative intensities of the absorption bands of C_{76} - D_2 computed from ε_{λ} and from the Ψ values in adequate integration ranges.

[35, 38], with the different theoretical calculations for this fullerene, by the QCFF/PI method (Calc. 1, from 179 to 1711 cm⁻¹) [48], DFT (Calc. 2, from 211 to 1674 cm⁻¹) [49], and TB potential method (Calc. 3, from 190 to 1726 cm⁻¹) [50], is presented in Table 3. Excellent agreement between the experimental results [35, 38] and the aforementioned theoretical calculations for this fullerene [48–50] provides the evidence of their validity.

6

The IR spectra of all the chromatographically isolated samples of the isomer C_{84} - D_2 :22 from this research, recorded on the mentioned spectrometers, have similar properties. All the observed vibrational frequencies and the overall appearance of these spectra [35–42] are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations for this fullerene [48–50].

The achieved agreement between our experimental results [35–42] and the aforementioned theoretical predictions for this molecule [48–50], which is presented in this article in Table 3 and Figure 2 [35, 38, 48–50], is better in comparison to previous experimental results for the obtained C_{84} samples (partially separated isomers) from other separation processes, by other IR techniques [60–63]. This was also mentioned in the previous article [38].

From the IR spectrum of C_{84} - D_2 :22 in a mode, presented in Figure 2, the absorbance values A_{λ} , as well as the integrated absorbance values of the absorption bands, were determined using the OMNIC software.

The molar absorptivity ε_{λ} , as well as the integrated molar absorptivity Ψ_{λ} , calculated according to (1) and (3), and the integration ranges of the absorption bands of this fullerene are presented in Table 4.

Also in this case, as can be seen from Table 4, excellent agreement is found between the relative intensities of the main and characteristic absorption maxima of C_{84} - D_2 :22 calculated from ε_{λ} and from the Ψ values, in adequate integration ranges, taking as 100 the most intense vibration mode of C_{84} - D_2 :22 at the frequency of 1385 cm⁻¹.

4. Conclusion

In this research, the stable C_{76} and C_{84} isomers of D_2 symmetry were isolated from carbon soot, by new and advanced chromatographic methods and processes [35–42]. The IR-KBr spectra of the isolated fullerenes were obtained over the entire fullerenes fingerprint region, $400-2000 \, \text{cm}^{-1}$, on a Thermo Scientific FT-IR spectrometer, in transparence mode [35, 38], as well as in the absorption mode in this article.

Based on comparison of the experimentally observed infrared absorption frequencies of the isolated C_{76} - D_2 and C_{84} - D_2 :22 samples [35, 38] with the semiempirical QCFF/PI, DFT, and TB potential calculations for these fullerenes [44, 45, 48–50] and the obtained excellent agreement [35, 38, 44, 45, 48–50], presented in this article, the validity of both the experimental results [35, 38] and all the mentioned theoretical calculations [44, 45, 48–50] is confirmed. These research results can be used for their qualitative determination.

The molar extinction coefficients and the integrated molar extinction coefficients of the IR absorption bands of the C_{76} - D_2 and C_{84} - D_2 :22 isomers were determined at room temperature in KBr matrix. Excellent agreement is found between the relative intensities of the main and characteristic absorption maxima of these fullerenes calculated from the ε_{λ} values and from the ψ_{λ} values in adequate integration ranges. These results can be used for their quantitative determination.

All the obtained data are important for the identification and quantitative assessment of the C_{76} - D_2 and C_{84} - D_2 :22 isomers, either in natural resources on Earth and in space or in artificially synthesized materials, electronic and optical devices, such as polymers, composites, nanophotonic and biocompatible materials, optical limiters, sensors, special lenses with optical absorption properties closer to human eye light sensitivity, diagnostic and therapeutic agents, pharmaceutical substances, and biomaterials.

Table 3: Experimentally obtained vibrational frequencies (cm $^{-1}$) of C_{84} - D_2 :22 [35, 38] and theoretically calculated values between 400 and 2000 cm $^{-1}$ [48–50].

IR2a,b IR1a IR3a Calc. 1c Calc. 2^d Calc. 3e 1731.1 1731.6 1734.9 1726 1688.8 1684.5 1686.1 1685 1672 1671.5 1671.8 1667 1671 1650.3 1650.9 1647 1652 1645.0 1646 1635.7 1638 1636 1635 1634.3 1633.0 1628 1615.8 1615.7 1613 1616 1612 1601.6 1602.3 1603 1598.7 1596 1600 1558.1 1558.5 1559.8 1564 1558 1561 1541.1 1541.0 1541.6 1544 1539 1541 1518.5 1522 1520 1518 1512.9 1512 1507.3 1506.0 1509.2 1501 1509 1500 1491.5 1494.0 1493.2 1492 1495 1490 1487.0 1486 1464.9 1463.7 1466 1465 1464 1456.4 1454.2 1461 1453 1448 1444.1 1446 1445 1438 1433.4 1433 1439 1403.3 1406 1403 1399.8 1398.4 1398 1395 1384.5 1384.6 1383 1384 1384 1377.1 1376 1339.8 1342.8 1340 1340 1339 1311.6 1311.2 1308 1313 1304.2 1303.3 1302 1307 1306 1289.8 1290 1290 1285.0 1284.1 1287 1283 1263.8 1262.3 1265 1262.8 1272 1265 1242.3 1241 1240 1244 1220.8 1219 1221 1222 1201.1 1207 1203 1201 1197.8 1195 1194 1196 1186.6 1187 1185 1158 1157.7 1158 1161 1169.7 1165 1170 1166 1138.2 1137.7 1139 1141 1146 1121.9 1122.0 1122.7 1129 1130 1133 1107.9 1104.9 1113 1094.5 1098.2 1099 1044.0 1041 1044 1038 973.2 975.5 973 938.5 937.1 941 889.6 896 896 895 882 884.2 884 880 1035.9 1036 1030.5 1029.4 1029 1030 1030

TABLE 3: Continued.

IR1ª	IR2 ^{a,b}	IR3ª	Calc. 1 ^c	Calc. 2 ^d	Calc. 3
842.8	842.1	843.1	843	840	846
825.8			827	826	825
	823.1		823		823
		819.9	822		822
		808.5		809	810
804.8	800.9		806		804
778.5	777.5	776.7	777	771	777
		756.1	755	756	756
745.6	743.1			744	746
		742.1	740	740	
		721.9	720	721	728
711.4	711.3		713	711	709
699.3	700.0	700.0	699	698	698
634.7	632.4	633.0	633	636	631
618.5	616.3	616.8	618	619	621
	605.4				604
602.1					601
596.8		597.3		598	599
	593.5		593		
574.2		575.5	575		
	569.8		568	570	569
558.7		559.8	558		557
	548.2	546.6		548	
544.4					545
539.9		538.5	539		537
	535.2	535.4	535	533	536
515.9	515.3	517.2	518	514	515
	501.7	503.0	507	504	
499.6			501	499	499
	490.6	492.8		491	493
485.4	486.6	485.6	483	484	489
	476.0	476.8	479		476
473.3			472	474	473
462.3	463.6	461.7	461	461	459
455.1	455.7	455.3	454	454	453
451.1	451.2	450.0	451	449	449
	433.9	433.3		434	
	439.8		440	439	
435.7	/ 10	435.5	437	438	437
412.2		412.5	-21	-20	413
401.7	401.0	401.9	398		400

^aReference [35].

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

^bReference [38].

^cReference [48].

^dReference [49].

eReference [50].

ν (cm ⁻¹)	$\varepsilon_{\lambda} (\text{L cm}^{-1} \text{mol}^{-1})$	Rel. int. $[\varepsilon_{\lambda}]$	Int. range (cm ⁻¹)	$\Psi (\text{Km mol}^{-1})$	Rel. int. [Ψ]
1731.1	498.288	34.7	1753–1719	2.389	34.7
1598.7	344.637	24.0	1626-1572	1.657	24.1
1456.4	598.807	41.7	1475-1447	2.872	41.7
1384.5	1435.989	100	1392-1370	6.886	100
1262.8	483.928	33.7	1299-1232	2.328	33.8
1121.9	1102.810	76.8	1131-1102	5.277	76.7
842.8	542.804	37.8	850-836	2.628	38.2
825.8	173.755	12.1	833-813	0.788	11.5
778.5	422.181	29.4	784-768	1.966	28.6
745.6	409.257	28.5	751–722	1.913	27.8
711.4	413.565	28.8	717-705	2.032	29.5
699.3	113.443	7.9	705-682	0.541	7.9
634.7	150.779	10.5	642-613	0.722	10.5
473.3	163.703	11.4	479-459	0.758	11.0

Table 4: The relative intensities of the absorption bands of C_{84} - D_2 :22 calculated from ϵ_{λ} and from the Ψ values in adequate integration ranges.

Acknowledgments

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia and to the University of Belgrade for financial support of this research (Project III 45009).

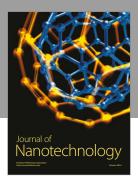
References

8

- F. Cataldo, Y. Hafez, and S. Iglesias-Groth, "FT-IR spectra of fullerenes C₇₆, C₇₈ and C₈₄ at temperatures between −180 °C and +250 °C," Fullerenes Nanotubes and Carbon Nanostructures, vol. 22, no. 10, pp. 901–913, 2014.
- [2] F. Cataldo, S. Iglesias-Groth, and A. Manchado, "Low and high temperature infrared spectroscopy of C₆₀ and C₇₀ fullerenes," *Fullerenes Nanotubes and Carbon Nanostructures*, vol. 18, no. 3, pp. 224–235, 2010.
- [3] S. Iglesias-Groth, F. Cataldo, and A. Manchado, "Infrared spectroscopy and integrated molar absorptivity of C₆₀ and C₇₀ fullerenes at extreme temperatures," *Monthly Notices of the Royal Astronomical Society*, vol. 413, no. 1, pp. 213–222, 2011.
- [4] F. Cataldo, S. Iglesias-Groth, and A. Manchado, "On the molar extinction coefficient and integrated molar absorptivity of the infrared absorption spectra of C₆₀ and C₇₀ fullerenes," *Fullerenes, Nanotubes and Carbon Nanostructures*, vol. 20, no. 3, pp. 191–199, 2012.
- [5] F. Cataldo, S. Iglesias-Groth, and A. Manchado, "Molar extinction coefficient of fullerenes and related hydrogenated derivatives 'fulleranes," *Proceedings of the International Astronomical Union*, vol. 7, no. S283, pp. 324–325, 2011.
- [6] F. Cataldo, S. Iglesias-Groth, D. A. Garcia-Hernandez, and A. Manchado, "Determination of the integrated molar absorptivity and molar extinction coefficient of hydrogenated fullerenes," *Fullerenes Nanotubes and Carbon Nanostructures*, vol. 21, no. 5, pp. 417–428, 2013.
- [7] J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, "Detection of C_{60} and C_{70} in a young planetary nebula," *Science*, vol. 329, no. 5996, pp. 1180–1182, 2010.
- [8] D. A. García-Hernandez, S. Iglesias-Groth, J. A. Acosta-Pulido et al., "The formation of fullerenes: clues from new C60,

- C70, and (possible) planar C24 detections in magellanic cloud planetary nebulae," *Astrophysical Journal Letters*, vol. 737, no. 2, article L30, 2011.
- [9] Y. Zhang and S. Kwok, "Detection of C₆₀ in the protoplanetary nebula IRAS 01005+7910," *The Astrophysical Journal*, vol. 730, no. 2, article no. 126, 2011.
- [10] K. R. G. Roberts, K. T. Smith, and P. J. Sarre, "Detection of C60 in embedded young stellar objects, a Herbig Ae/Be star and an unusual post-asymptotic giant branch star," *Monthly Notices of the Royal Astronomical Society*, vol. 421, no. 4, pp. 3277–3285, 2012
- [11] K. Sellgren, M. W. Werner, J. G. Ingalls, J. D. T. Smith, T. M. Carleton, and C. Joblin, "Confirmation of C_{60} in the reflection nebula NGC 7023," *EAS Publications Series*, vol. 46, pp. 209–214, 2011
- [12] D. A. García-Hernandez, N. K. Rao, and D. L. Lambert, "Are C₆₀ molecules detectable in circumstellar shells of R Coronae Borealis stars?" *Astrophysical Journal*, vol. 729, no. 2, article 126, 2011.
- [13] G. C. Clayton, D. M. Kelly, J. H. Lacy, I. R. Little-Marenin, P. A. Feldman, and P. F. Bernath, "A mid-infrared search for C₆₀ in R coronae borealis stars and IRC+10216," *Astronomical Journal*, vol. 109, no. 5, pp. 2096–2103, 1995.
- [14] G. H. Herbig, "The search for interstellar C₆₀," *Astrophysical Journal*, vol. 542, no. 1, pp. 334–343, 2000.
- [15] S. Iglesias-Groth, "Fullerenes and the 4430 Å diffuse interstellar band," *The Astrophysical Journal*, vol. 661, no. 2, pp. L167–L170, 2007
- [16] B. H. Foing and P. Ehrenfreund, "Detection of two interstellar absorption bands coincident with spectral features of C₆₀," *Nature*, vol. 369, no. 6478, pp. 296–298, 1994.
- [17] S. Hameroff, J. Withers, R. Loufty, M. Sundareshan, and D. Koruga, Fullerene C₆₀: History, Physics, Nanobiology, Nanotechnology, Elsevier Science Publishers, Amsterdam, The Netherlands, 1993.
- [18] A. Hirsch and M. Brettreich, "Chapter 14. Principles and perspectives of fullerene chemistry," in *Fullerenes: Chemistry* and Reactions, vol. 48, pp. 1–48, 383–415, Wiley-VCH, Stuttgart, NY, USA, 2005.

[19] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C_{60} : a new form of carbon," *Nature*, vol. 347, no. 6291, pp. 354–358, 1990.

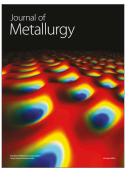

- [20] W. Krätschmer, K. Fostiropoulos, and D. R. Huffman, "The infrared and ultraviolet absorption spectra of laboratoryproduced carbon dust: evidence for the presence of the C₆₀ molecule," *Chemical Physics Letters*, vol. 170, no. 2-3, pp. 167– 170, 1990.
- [21] D. M. Cox, S. Behal, M. Disko et al., "Characterization of C_{60} and C_{70} clusters," *Journal of the American Chemical Society*, vol. 113, no. 8, pp. 2940–2944, 1991.
- [22] D. S. Bethune, G. Meijer, W. C. Tang et al., "Vibrational Raman and infrared spectra of chromatographically separated C_{60} and C_{70} fullerene clusters," *Chemical Physics Letters*, vol. 179, no. 1-2, pp. 181–186, 1991.
- [23] J. P. Hare, T. J. Dennis, H. W. Kroto et al., "The IR spectra of fullerene-60 and -70," *Journal of the Chemical Society, Chemical Communications*, no. 6, pp. 412–413, 1991.
- [24] T. Jovanovic, D. Koruga, B. Jovancicevic, and J. Simic-Krstic, "Modifications of fullerenes extractions and chromatographies with different solvents," *Fullerenes, Nanotubes and Carbon Nanostructures*, vol. 11, no. 4, pp. 383–394, 2003.
- [25] T. Jovanović, D. Koruga, P. Polić, and G. Dević, "Extraction, separation and characterization of fullerenes from carbon soot," *Materials Science Forum*, vol. 413, pp. 59–64, 2003.
- [26] T. Jovanovic, D. Koruga, B. Jovancicevic, and J. Simic-Krstic, "Improvement in separation of nanostructured carbon clusters C₆₀ and C₇₀," *International Journal of Nanoscience*, vol. 2, no. 3, pp. 129–140, 2003.
- [27] J. Cioslowski, "Heats of formation of higher fullerenes from ab initio Hartree-Fock and correlation energy functional calculations," *Chemical Physics Letters*, vol. 216, no. 3-6, pp. 389–393, 1993
- [28] F. Cataldo, G. Strazzulla, and S. Iglesias-Groth, "Stability of C_{60} and C_{70} fullerenes toward corpuscular and γ radiation," *Monthly Notices of the Royal Astronomical Society*, vol. 394, no. 2, pp. 615–623, 2009.
- [29] S. Iglesias-Groth, "Hydrogenated fulleranes and the anomalous microwave emission of the dark cloud LDN 1622," Monthly Notices of the Royal Astronomical Society, vol. 368, no. 4, pp. 1925–1930, 2006.
- [30] F. Cataldo and S. Iglesias-Groth, "On the action of UV photons on hydrogenated fulleranes $C_{60}H_{36}$ and $C_{60}D_{36}$," *Monthly Notices of the Royal Astronomical Society*, vol. 400, no. 1, pp. 291–298, 2009.
- [31] F. Cataldo and S. Iglesias-Groth, Eds., *Fulleranes: The Hydrogenated Fullerenes*, Springer, Berlin, Germany, 2009.
- [32] C. Yeretzian, K. Hansen, F. Diederichi, and R. L. Whetten, "Coalescence reactions of fullerenes," *Nature*, vol. 359, no. 6390, pp. 44–47, 1992.
- [33] B. Kubler, E. Millon, J. J. Gaumet, and J. F. Muller, "Formation of high mass Cn clusters (n > 100) by laser ablation/desorption coupled with mass spectrometry," *Fullerene Science and Technology*, vol. 4, no. 6, pp. 1247–1261, 1996.
- [34] F. Cataldo and Y. Keheyan, "On the mechanism of carbon clusters formation under laser irradiation. The case of diamond grains and solid C₆₀ fullerene," *Fullerenes Nanotubes and Car*bon Nanostructures, vol. 10, no. 4, pp. 313–332, 2002.
- [35] T. Jovanović, D. Koruga, and B. Jovančićević, "Recent advances in IR and UV/VIS spectroscopic characterization of the C₇₆ and C₈₄ isomers of D₂ symmetry," *Journal of Nanomaterials*, vol. 2014, Article ID 701312, 11 pages, 2014.

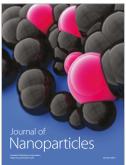
[36] T. Jovanovic and D. Koruga, "Recent advances in chromatographic separation and spectroscopic characterization of the higher fullerenes C₇₆ and C₈₄," Recent Patents on Nanotechnology, vol. 8, no. 1, pp. 62–75, 2014.

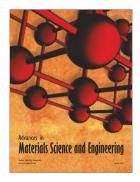
- [37] T. Jovanovic and D. Koruga, "The electronic structure and vibrational frequencies of the stable C_{76} isomer of D_2 symmetry: theory and experiment," *Chemical Physics Letters*, vol. 577, pp. 68–70, 2013.
- [38] T. Jovanovic, D. Koruga, and B. Jovancicevic, "The electronic structure and vibrational frequencies of the stable C₈₄ isomer of D₂ symmetry: theory and experiment," *Diamond and Related Materials*, vol. 44, pp. 44–48, 2014.
- [39] T. Jovanovic, D. Koruga, and B. Jovancicevic, "Advances in chromatographic separation on Al₂O₃ and spectroscopic characterization of the higher fullerenes," *Fullerenes Nanotubes and Carbon Nanostructures*, vol. 22, no. 4, pp. 384–396, 2014.
- [40] T. Jovanovic, D. Koruga, B. Jovancicevic, and J. Simic-Krstic, "Advancement of the process for extraction, chromatography and characterization of fullerenes," *Fullerenes, Nanotubes and Carbon Nanostructures*, vol. 17, no. 2, pp. 135–150, 2009.
- [41] T. Jovanovic, D. Koruga, and B. Jovancicevic, "Isolation and characterization of the higher fullerenes from carbon soot," *Fullerenes Nanotubes and Carbon Nanostructures*, vol. 19, no. 4, pp. 309–316, 2011.
- [42] T. Jovanovic, D. Koruga, B. Jovancicevic, V. Vajs, and G. Devic, "Comparative spectroscopic characterization of the basic and the higher fullerenes," *Fullerenes Nanotubes and Carbon Nanostructures*, vol. 21, no. 1, pp. 64–74, 2013.
- [43] D. E. Manolopoulos, "Faraday communications. Proposal of a chiral structure for the fullerene C₇₆," *Journal of the Chemical Society, Faraday Transactions*, vol. 87, no. 17, pp. 2861–2862, 1991.
- [44] G. Orlandi, F. Zerbetto, P. W. Fowler, and D. E. Manolopoulos, "The electronic structure and vibrational frequencies of the stable C_{76} isomer of D_2 symmetry," *Chemical Physics Letters*, vol. 208, no. 5-6, pp. 441–445, 1993.
- [45] O. Hampe, M. Neumaier, A. D. Boese, J. Lemaire, G. Niedner-Schatteburg, and M. M. Kappes, "Infrared multiphoton electron detachment spectroscopy of C₇₆," *Journal of Chemical Physics*, vol. 131, no. 12, Article ID 124306, 2009.
- [46] D. E. Manolopoulos and P. W. Fowler, "Molecular graphs, point groups, and fullerenes," *The Journal of Chemical Physics*, vol. 96, no. 10, pp. 7603–7614, 1992.
- [47] D. E. Manolopoulos, P. W. Fowler, R. Taylor, H. W. Kroto, and D. R. M. Walton, "Faraday communications. An end to the search for the ground state of C₈₄?" *Journal of the Chemical Society, Faraday Transactions*, vol. 88, no. 20, pp. 3117–3118, 1992.
- [48] F. Negri, G. Orlandi, and F. Zerbetto, "Prediction of the structure and the vibrational frequencies of a C_{84} isomer of D_2 symmetry," *Chemical Physics Letters*, vol. 189, no. 6, pp. 495–498, 1992.
- [49] H. F. Bettinger and G. E. Scuseria, "The infrared vibrational spectra of the two major C_{84} isomers," *Chemical Physics Letters*, vol. 332, no. 1-2, pp. 35–42, 2000.
- [50] B. L. Zhang, C. Z. Wang, and K. M. Ho, "Vibrational spectra of C₈₄ isomers," *Physical Review B*, vol. 47, no. 3, pp. 1643–1646, 1993.
- [51] M. Hulman, T. Pichler, H. Kuzmany, F. Zerbetto, E. Yamamoto, and H. N. Shinohara, "Vibrational structure of C₈₄ and Sc₂@C₈₄ analyzed by IR spectroscopy," *Journal of Molecular Structure*, vol. 408-409, pp. 359–362, 1997.

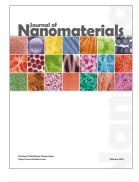
[52] G. Von Helden, I. Holleman, M. Putter, A. J. A. Van Roij, and G. Meijer, "Infrared resonance enhanced multi-photon ionization spectroscopy of C₈₄," *Chemical Physics Letters*, vol. 299, no. 2, pp. 171–176, 1999.

- [53] D. Bakowies, M. Kolb, W. Thiel, S. Richard, R. Ahlrichs, and M. M. Kappes, "Quantum-chemical study of C₈₄ fulleren isomers," Chemical Physics Letters, vol. 200, no. 4, pp. 411–417, 1992.
- [54] T. Nishikawa, T. Kinoshita, S. Nanbu, and M. Aoyagi, "A theoretical study on vibrational spectra of C_{84} fullerenes: results for C_2 , D_2 , and D_{2d} isomers," *Journal of Molecular Structure: THEOCHEM*, vol. 461-462, pp. 453–461, 1999.
- [55] F. Diederich, R. Ettl, Y. Rubin et al., "The higher fullerenes: isolation and characterization of C₇₆, C₈₄, C₉₀, C₉₄, and C₇₀O, an oxide of D_{5h}-C₇₀," *Science*, vol. 252, no. 5005, pp. 548–551, 1991.
- [56] K. Jinno, H. Matsui, H. Ohta et al., "Separation and identification of higher fullerenes in soot extract by liquid chromatography-mass spectrometry," *Chromatographia*, vol. 41, no. 5-6, pp. 353–360, 1995.
- [57] K. Jinno, Y. Sato, H. Nagashima, and K. Itoh, "Separation and identification of higher fullerenes by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry," *Journal of Microcolumn Separations*, vol. 10, no. 1, pp. 79–88, 1998.
- [58] K. Kikuchi, N. Nakahara, M. Honda et al., "Separation, detection, and UV/Visible absorption spectra of fullerenes; C₇₆, C₇₈, and C₈₄," *Chemistry Letters*, vol. 20, no. 9, pp. 1607–1610, 1991.
- [59] K. Kikuchi, N. Nakahara, T. Wakabayashi et al., "Isolation and identification of fullerene family: C_{76} , C_{78} , C_{82} , C_{84} , C_{90} and C_{96} ," Chemical Physics Letters, vol. 188, no. 3-4, pp. 177–180, 1992.
- [60] R. Ettl, I. Chao, F. Diederich, and R. L. Whetten, "Isolation of C₇₆, a chiral D₂ allotrope of carbon," *Nature*, vol. 353, no. 6340, pp. 149–153, 1991.
- [61] R. H. Michel, H. Schreiber, R. Gierden et al., "Vibrational spectroscopy of purified C₇₆," *Berichte der Bunsengesellschaft fur Physikalische Chemie*, vol. 98, no. 7, pp. 975–978, 1994.
- [62] A. G. Avent, D. Dubois, A. Pénicaud, and R. Taylor, "The minor isomers and IR spectrum of [84] fullerene," *Journal of the Chemical Society. Perkin Transactions* 2, no. 10, pp. 1907–1910, 1997.
- [63] T. J. S. Dennis, M. Hulman, H. Kuzmany, and H. Shinohara, "Vibrational infrared spectra of the two major isomers of [84]fullerene: C₈₄D₂(IV) and C₈₄D_{2d}(II)," *Journal of Physical Chemistry B*, vol. 104, no. 23, pp. 5411–5413, 2000.
- [64] N. B. Colthup, L. H. Daly, and S. E. Wiberley, *Introduction to Infrared and Raman Spectroscopy*, Academic Press, San Diego, Calif, USA, 3rd edition, 1990.








Submit your manuscripts at https://www.hindawi.com

