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The FT-IR spectra of the stable C76 and C84 isomers of D2 symmetry, isolated by the new, advanced extraction and chromatographic
methods and processes, were recorded by the KBr technique, over the relevant region from 400 to 2000 cm−1, at room temperature.
All the observed infrared bands are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations
for these fullerenes, which is presented in this article, as the evidence of their validity. The molar absorptivity 𝜀 and the integrated
molar absorptivity 𝜓 of their IR absorption bands were determined and reported together with the relative intensities. Excellent
agreement is found between the relative intensities of the main and characteristic absorption maxima calculated from 𝜀𝜆 and from
the𝜓𝜆 values in adequate integration ranges.These results are significant for the identification and quantitative determination of the
C76-D2 and C84-D2:22 fullerenes, either in natural resources on Earth and in space or in artificially synthesized and biomaterials,
electronic, optical, and biomedical devices, sensors, polymers, optical limiters, solar cells, organic field effect transistors, special
lenses, diagnostic and therapeutic agents, pharmaceutical substances in biomedical engineering, and so forth.

1. Introduction

Fullerenes C60 and C70 were detected in a series of astrophys-
ical objects and space environments [1–6], such as certain
planetary [7, 8] and protoplanetary [9] nebulae, postasymp-
totic giant branch stars, young stellar objects [10], reflection
nebulae [11], certain R-Coronae Borealis stars, and carbon
rich stars [12–16], as well as in some resources on Earth
[17, 18]. The identification and quantitative assessment of
thesemolecules, both in natural and in artificially synthesized
materials, weremade possible by themeasurement of their IR
spectra, the dependence of these spectra on temperature, the
molar absorptivity, and integrated molar absorptivity of their
absorption bands [2–26].

It is expected that also higher fullerenes can be found in
space, besides C60 and C70. Calculations [27] suggest that, on
a per carbon atom basis [1], higher fullerenes are thermo-
dynamically even more stable than C60, C70 [28], and from
the hydrogenated derivatives fulleranes [17, 18, 29–31]. Their
formation through coalescence of smaller fullerenes [32]

and by laser ablation of carbon [17–19, 33, 34] also leads to
the conclusion about their possible presence in nature.

For the qualitative detection of C76 andC84 fullerenes, the
knowledge of the infrared band position and band widths, as
well as the evolution of these parameters with temperature,
is necessary. This need was fulfilled, for instance, by the
previous works [1, 35–42] in the infrared spectroscopy of C76
and C84, whereas quantitative assessment of these fullerenes
requires knowledge about intensities of their IR absorption
bands, which is provided in the current work.

In the first phase of this research, the only stable C76-D2
isomer [43–45] and the most abundant, stable isomer of the
higher fullerene C84 with D2 symmetry, C84-D2:22 [46–54],
were isolated from carbon soot, by new and advanced chro-
matographic methods and processes [35–42], in comparison
to previous methods for the separation of higher fullerenes
under pressure [55–63].Their IR (KBr) spectra were recorded
over the entire relevant region, from 400 to 2000 cm−1 in
transparence mode [35–42], and in the absorption mode in
this article.
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A comparison of the experimentally observed vibrational
frequencies in the IR absorption spectra of the isolated
C76-D2 and C84-D2:22 samples [35, 38] with the semiem-
pirical QCFF/PI, DFT, as well as TB potential theoretical
calculations for these fullerenes [44, 45, 48–50], is presented
in this article, indicating their validity.

In this work also, the molar extinction coefficients and
the integrated molar extinction coefficients of their main and
characteristic IR absorption bands were determined.

These data are important for the qualitative and quanti-
tative determination of the C76-D2 and C84-D2:22 isomers,
either in natural resources on Earth and in space or in arti-
ficially synthesized materials, electronic and optical devices,
diagnostic and therapeutic agents for the applications in
biomedical engineering, and so forth.

2. Experimental Methods

In the first phase of this research, C60, C70 [24–26], and
the higher fullerenes, mainly C76 and C84 [35–42], were
Soxhlet-extracted with a series of different and previously
unapplied solvents or combinations of solvents from the
samples of carbon soot, produced by electric arc (MER
Corporation, Tucson, USA). The extraction procedures were
performed until the complete disappearance of color in a
Soxhlet extraction thimble. Solvents used were n-heptane,
toluene, chlorobenzene, p-xylene, a mixture of o/m/p-xylene,
and pyridine, as well as the successive use of toluene and
chlorobenzene and p-xylene and pyridine. The yields, as
well as the compositions of all the extracts, were deter-
mined by spectroscopic and chromatographic methods. The
procedures for increases of fullerenes yields, as well as for
additional selective extraction of higher order fullerenes,
were found [24–26, 35–42].

In the second phase, C60, C70, and the higher fullerenes
C76 and C84 (the only stable C60-Ih, C70-D5h, and C76-D2
isomers of the first three mentioned fullerenes and the most
abundant, stableC84 isomer ofD2 symmetry)were chromato-
graphically separated from the obtained soot extracts on the
activatedAl2O3 columns, by new and advancedmethods [35–
42].

The main difference and advancement of these methods
[35–42], in comparison to previous methods under pressure
[55–63], is the isolation of the purified stable isomers of the
higher fullerenes C76 and C84 (the C76-D2 and C84-D2:22
isomers), successively after the basic fullerenes, in one phase
of each of the processes, under atmospheric pressure and
smaller flow of 1.5mL/min, in increased milligrams yields.
The other advantages of the developed methods [35, 42] are
the use of significantly smaller amounts of the initial mate-
rials, as well as less expensive laboratory equipment. In these
methods [35, 42], the entirematerials and energy expense, the
time spent on the purification processes, and environmental
pollution were decreased, using smaller amounts of less toxic
solvents. The yields and the purities of the isolated fullerenes
were increased or maximized [35, 36, 39].

Purification of the higher fullerenes under pressure,
on a preparative scale, either by flash chromatography or
by HPLC, generally required larger amounts of the initial
materials and repeated chromatographies, and the fullerenes
were obtained in smaller yields [55–63].

In our new methods [35–42], the elution was performed
continuouslywith several different original, defined gradients
of solvents: from pure hexane or 5% toluene in hexane to
pure toluene. The amounts of the initial materials used were
as follows: fullerenes extracts, 10mg, and finely granulated
Al2O3, 50 g, activated for 2 h at 105

∘C, and eluent (1.5 to 1.75 L)
per chromatographic separation [35–42]. Starting from 10mg
of the soluble soot extract, in average ca. 1mg of C76 and
ca. 1mg of C84 were isolated in purified form per one
chromatographic process, or up to few milligrams in some
cases. The time spent on the purification processes was from
16.7 to 19.4 h [36, 39].

For comparison, using flash chromatography to separate
fullerenes [55], on alumina, with hexane or 5% toluene in
hexane as eluent, required about 50 times larger quantities
of the initial materials, such as 500mg of crude fullerenes
extract, 2500mg of alumina, and about 12.5 L of solvent for
one chromatographic fraction, C60, or 75 L for six chromato-
graphic fullerene fractions, per one chromatography and the
large size of columns. The entire time of this purification
process, including repeated chromatographies, was 66 hours
and purified higher fullerenes were obtained in lower yields.
From the total amount of 2500mg of toluene soluble soot
extract, 12mg of C76 and 2mg of C84 were isolated.

From these data, it follows [36, 39] that 21 times larger
amounts of the initialmaterials (extract, stationary phase, and
solvent) and 2 times longer time are needed for obtaining 1 g
of purified C76, and 125 times larger amounts of the initial
materials and 10 times longer time are required for obtaining
1 g of purified C84 by the mentioned flash chromatography
process [54], in comparison to our protocols [35–42].

In the previous method under pressure [57, 58], the
purified basic and higher fullerenes were eluted according
to their molecular weights on the monomeric ODS column,
using large volumes of solvents, in comparison to our new
methods [35–42]. Several tens of liters of a mixture of toluene
and methanol (55 : 45, v/v) per chromatography were used,
at a flow rate of 40mL/min [57, 58]. In the new methods
[35–42], under atmospheric pressure and smaller flow rate
of 1.5mL/min, significantly smaller volumes of solvents were
used for the elution of the purified basic and higher fullerenes
in one phase, 1.5 to 1.75 L per chromatography.

The IR spectra of all the chromatographically purified
fractions of the basic and the higher fullerenes from this
research, as well as of the obtained soot extracts, were previ-
ously recorded on a Perkin Elmer FT-IR 1725 X spectrometer
by the KBr pellet technique, from 400 to 4000 cm−1, at a
resolution of 1 cm−1, in the transparencemode [24–26, 36, 37,
39–42].

The IR spectra of the C76-D2 and C84-D2:22 samples,
isolated by the new and advanced chromatographic methods
[35–42], were also recorded on a Thermo Scientific FT-IR
spectrometer Nicolet IR-6700, by the KB disk technique, in
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the range of 400–2000 cm−1, at a resolution of 1 cm−1, in the
transparencemode [35, 38], as well as in the absorptionmode
in this article.

2.1. Measurement of the Molar Absorptivity and Inte-
grated Molar Absorptivity of C76-D2 and C84-D2:22. Chro-
matographically isolated C76-D2 (0.249mg) and C84-D2:22
(0.270mg) were mixed with 70.8mg and with 77.8mg of KBr,
respectively. The obtained powder was compressed at the
4 tons/cm2 with the Perkin Elmer press.

The resulting pellets were placed in the FT-IR spec-
trometer. Measurements of the intensities (heights) of the
absorption bands, as well as of the integrated band intensities
of C76-D2 and C84-D2:22, with automatic subtraction of the
baseline, were made possible through the OMNIC software
fromThermo Scientific, dedicated to the FT-IR spectrometer.
This software has also been recently used for the measure-
ment of relative intensities of IR absorption bands of C60 and
C70 [4].

The masses of the resulting pellets were 71.0mg and
78.1mg, and the percentages of carbon determined by the ele-
mental analysis were 0.351 and 0.346. Their measured thick-
nesses (𝑏) were 0.67mm∼0.07 cm and 0.74mm∼0.07 cm, the
diameters (𝑅) were 0.7 cm, and the half diameters (𝑟) were
0.35 cm.

The volumes of the pellets (𝑉) were determined from
the abovementioned 𝑟 and 𝑏 parameters, by the equation
𝑉 = 𝑟2𝜋𝑏. The obtained values of the volumes, as well as the
thicknesses of pellets, were also confirmed using KBr density
(2.753 g/cm3) [4] and the masses of pellets.

Concentrations (𝑐) of fullerenes C76 andC84 in the pellets,
as the number of moles per unit of volume, were calculated
using the masses of C76 and C84 in the pellets, their molar
masses of 912.76 g/mol and 1008.84 g/mol, and the volumes
of pellets.

The (𝑏𝑐)−1 values were determined for the C76-D2 and the
C84-D2:22 samples in KBr pellets from the abovementioned
experimental parameters. The (𝑏𝑐)−1 value found for C76-D2
was 1409.7 L⋅cm−1⋅mol−1 and the (𝑏𝑐)−1 value found for
C84-D2:22 was 1436.0 L⋅cm−1⋅mol−1.

3. Results and Discussion

In the recent works [1, 35–42], the IR spectra of the higher
fullerenes C76 and C84 and their stable isomers of D2 sym-
metry have been studied. The dependence on temperature
of the position and width of their infrared absorption bands
has been determined [1, 35].Themolar extinction coefficients
and integrated molar absorptivity of the infrared absorption
spectra of C60 and C70, as well as of related hydrogenated
derivatives, fulleranes, have also been recently determined
[2–5]. However, neither the molar absorptivity nor the
integrated band intensity of C76-D2 and C84-D2:22 has been
reported.

Determination of molar absorptivity of the isolated
higher fullerenes, in L⋅cm−1⋅mol−1, at a given wavenumber,
𝜀𝜆, was achieved through (1), previously applied for C60
and C70, as well as for hydrogenated fullerenes [2–6, 64],

according to Lambert and Beer law, using the absorbance𝐴𝜆
read at a given wavenumber:

𝜀𝜆 = 𝐴𝜆 (𝑏𝑐)−1 . (1)

The determined values of (𝑏𝑐)−1 for both the C76-D2 and
the C84-D2:22 samples are reported in the Experimental
Methods.

It was found that the peak height measurements that
correspond to the absorbance 𝐴 are sensitive to changes
in the resolution of the spectrometers used [2–6, 64]. The
measurement of the integrated intensity that corresponds to
the total area below a given absorption band is much less
sensitive to instrumental resolution than the peak height
measurement [2–6, 64].

Thus, the absorbance and the integrated band intensities
in the obtained original IR spectra of the isolated C76-D2
and C84-D2:22 samples were determined using the OMNIC
software of our spectrometer, in both cases subtracting
automatically the baseline.

The integrated molar absorptivity of the C76-D2
and C84-D2:22 fullerenes, expressed in cmmol−1 or
10−5 kmmol−1, was determined by (2), previously applied for
the basic fullerenes, as well as for fulleranes [2–6, 64]:

Ψ = ∫ 𝜀𝜆𝑑𝜆. (2)

In this equation, 𝜆 is the wavelength and 𝜀𝜆 is the molar
absorptivity measured with a spectrometer with unlimited
resolution, integrated over the whole band. In practice, by
substituting (1) into (2), we get [2–6, 64]

Ψ = (𝑏𝑐)−1 ∫𝐴𝜆𝑑𝜆. (3)

The original, characteristic, representative IR spectrum of
the isolated sample of the C76-D2 isomer is obtained in this
article in the absorption mode, Figure 1, for determination of
the molar absorptivity and integrated molar absorptivity of
its absorption bands, which is important for the quantitative
assessment of this fullerene and represents the main work of
this article. It was previously provided in transparence mode,
in supplementalmaterial of our article [35], for the qualitative
determination.

The main three, most intense, dominant C76 maxima,
registered in this research [35–42], appear at 967, 1082, and
1187 cm−1, with some weak, distinct shoulders. Character-
istic, sharp absorption bands unique to C76 occur in the
first relevant part at 893 and 823 cm−1, with a neighboring
shoulder at 792 cm−1. Several other bands are present at
703 cm−1 with a shoulder at 742 cm−1, at 605 cm−1 with the
shoulders at 647 and 665 cm−1, and at 484 cm−1 with the
shoulders at 538, 462, 456, and 426 cm−1. Pronounced and
intense bands are present in the higher frequency region
at 1386 cm−1 with the shoulders at 1397 and 1364 cm−1, at
1493 cm−1 with a neighboring shoulder band at 1462 cm−1, as
a doublet, and at 1735 cm−1. Maximum at 1312 cm−1 appears
with the neighboring shoulders at 1273 and 1248 cm−1, as
a triplet. Complete absorption in this spectrum [35] is in
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Figure 1: The IR spectrum of C76-D2 in a mode.

agreement with the theoretical calculations for C76-D2, as
well as for its dianion [44, 45].

In the previous articles [35, 37], a comparison of the
experimentally observed absorption frequencies in the IR
spectra of the chromatographically isolated C76-D2 samples,
recorded on Perkin Elmer [37, 40–42] and on Thermo
Scientific FT-IR spectrometer Nicolet IR-6700 at room tem-
perature [35], with the semiempirical QCFF/PI theoretical
calculations for this fullerene [35, 37, 40–42, 44], as well as
with the IR spectra of C76, recorded on three different tem-
peratures between −180∘C and +250∘C [1, 35], was presented.
On the basis of the obtained excellent agreement [35, 37, 40–
42, 44], the validity of both the experimental results [35, 37,
40–42] and thementioned theoretical calculations for C76-D2
[44] was indicated [35, 37, 44]. In themore recent article [35],
a larger number of experimentally registered vibrational fre-
quencies of C76 were presented and theoretically confirmed
[35, 44].

There is also a good agreement between the absorption
bands in our infrared spectra at room temperature [35–
42] and the recent spectra of C76-D2 at three different
temperatures [1]. Only some smaller shifts, as well as some
changes of their relative intensitieswith the temperature, were
observed [1, 35].

In this article, a comparison of the experimentally
obtained vibrational frequencies (cm−1) in the IR absorption
spectra of the chromatographically isolated C76-D2 samples
(IR1-IR3), recorded from 400 to 2000 cm−1, on a Thermo
Scientific FT-IR spectrometer Nicolet IR-6700 [35], with the
different theoretical calculations, by the QCFF/PI method
(Calc. 1, from 286 to 1668 cm−1) [44] and DFT method
for C76 (Calc. 2, from 206.7 to 1602.7 cm−1) [45], as well
as for C76

2− (Calc. 3, from 195.7 to 1556.0 cm−1) [45], is
presented in Table 1. Excellent agreement is obtained between
the experimental results [35] and all the aforementioned
theoretical calculations for this fullerene [44, 45], as the
evidence of their validity.

Table 1: Experimentally obtained vibrational frequencies (cm−1) of
C76-D2 [35] and theoretically calculated values between 400 and
2000 cm−1 [44, 45].

IR1a IR2a IR3a Calc. 1b Calc. 2c Calc. 3c
1635.1 1631.4 1633.1 1635
1605.4 1607 1602.7
1581.6 1582 1581.4

1557.9 1556 1556.0
1551.5 1549 1555.7

1541.3 1541.6 1541.4
1493.8 1492.7 1493.4 1494 1489.7 1494.9
1461.8 1460.2 1461.1 1464 1463.9 1463.4
1397.0 1399.8 1398.7 1401 1400.5
1385.9 1385.4 1385.6 1388 1386.5 1390.7
1363.8 1363.1 1364.2 1369 1365.1 1366.0
1312.1 1311.4 1312.4 1312 1310.9 1309.4

1275.6 1275.7 1275.9
1273.1 1270 1274.0

1263.1 1259 1262.5
1248.4 1247.5 1247.6 1253 1249.4 1246.4

1210.5 1208.6 1208.7
1206.3 1204
1187.2 1185.0 1187.0 1189 1180.4 1189.2
1160.3 1161.6 1165 1157.7 1162.2
1121.9 1121.8 1122.0 1124 1126.1 1125.7

1100.9 1100 1101.5
1081.6 1081.8 1081.6 1079 1072.3 1090.3

1057.2 1056.4 1058 1054.7 1065.4
1028.6 1030.4 1027 1026.5

1024.2 1024.9
967.1 968.4 967.0 971 942.1 991.5
893.3 891.8 892.2 895 897.7 894.1
822.5 821.1 823.4 823 821.0 827.1
792.2 796.4 799 808.7 795.0

788.8 787 781.7 787.0
742.1 742.9 746 742.0 741.3

739.9 735 739.6 740.2
704.0 704.8 707 704.9 704.5

703.0 702.4 703.5
665.2 663.6 667 665.4 665.2

661.1 662 660.6
647.3 648.3 645.8 652 642.7 650.3
605.3 604.6 602.9 596 596.8
537.6 538.8 543 538.5 536.9

532.7 534 531.3 535.6
494.1 494 493.8 494.5

483.9 486.6 485 485.8 486.5
476.4 477 476.7 479.2

461.8 460.6 460 459.2
456.2 457 456.3 456.9

451.8 454 452.2 454.0
436.0 434.8 436.0
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Table 1: Continued.

IR1a IR2a IR3a Calc. 1b Calc. 2c Calc. 3c
426.5 429.3 425.3

405.2 406 405.0 399.3
aReference [35].
bReference [44].
cReference [45].

The IR spectra of all the chromatographically isolated
samples of the C76-D2 isomer from this research, recorded
on the twomentioned spectrometers, have similar properties.
All the observed vibrational frequencies and the general
pattern of these spectra [35–42] are in agreement with the
semiempirical QCFF/PI [44] and DFT theoretical calcula-
tions for C76-D2 [45], as well as for its dianion C76-D2

2− [45].
The achieved agreement between our experimental

results [35–42] and all the aforementioned theoretical pre-
dictions of the IR absorption frequencies of C76-D2 [44, 45],
which is presented in this article in Table 1 and Figure 1
[35, 44, 45], is better in comparison to previous, partial
experimental results for the obtained C76 samples, from other
separation processes, by other IR techniques [59–62].

It is important to mention that the obtained generally
good correlation between the overall configuration of absorp-
tion and all the observed vibrational frequencies in our recent
experimental IR spectra for the neutral C76-D2 [35–42] and
the next obtained infrared multiphoton electron detachment
(IR-MPED) spectrum of the unsolved gas phase dianion
C76-D2

2− [45], as well as with the adequate most recent
B3LYP/TZVP DFT calculations, presented in this article in
Table 1, Figure 1 [35, 45], provides significant experimental
evidence [35–42] that the dianionic molecule retains its
overall symmetry (i.e., D2 point group) with

1A1 ground state
with respect to the neutral cage [45].

From the IR spectrum of C76-D2 in a mode, presented in
Figure 1, the absorbance values 𝐴𝜆, as well as the integrated
absorbance values of the absorption bands, were determined
using the OMNIC software.

The molar absorptivity 𝜀𝜆, calculated according to (1),
the integrated molar absorptivity Ψ𝜆, calculated according to
(3), and the integration ranges of absorption bands of this
fullerene are reported in Table 2.

It can also be seen from Table 2 that excellent agreement
is found between the relative intensities of the main and
characteristic absorption maxima of C76-D2 computed from
𝜀𝜆 and from the Ψ values, in adequate integration ranges,
taking as 100 the most intense vibration mode of C76-D2 at
the frequency of 967 cm−1.

The original, characteristic, representative IR absorption
spectrum of the isolated sample of the isomer C84-D2:22 is
obtained in this article in the absorption mode, Figure 2, for
determination of themolar absorptivity and integratedmolar
absorptivity of its absorption bands, which is important for its
quantitative determination, as the main work of this article.
It was previously provided in transparence mode [35], for
qualitative determination.
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Figure 2: The IR spectrum of C84-D2:22 in a mode.

A group of sharp, characteristic absorption bands is
present between ca. 700 and 840 cm−1 [35–42], at 711,
746, 779, and 843 cm−1, followed by the bands at 635
and 473 cm−1 in the first relevant part. Dominant and
pronounced C84-D2:22 maxima appear in the higher fre-
quency region, between ca. 1390 and 1120 cm−1, as well as
a group around 1600 cm−1. The main, most intense band
is present at 1385 cm−1, followed by the bands at 1263 cm−1
and 1122 cm−1. Intense bands also appear at 1456–1465 cm−1,
1599–1616 cm−1, and 1731 cm−1. The entire absorption in this
spectrum [35] corresponds to the theoretical predictions for
C84-D2:22 [48–50].

In the previous article [35], a comparison of the exper-
imentally observed absorption frequencies in the IR spec-
tra of the chromatographically isolated C84-D2:22 samples,
recorded on a Thermo Scientific FT-IR spectrometer Nicolet
IR-6700 at room temperature [35, 38], with the semiempirical
QCFF/PI theoretical calculations for this fullerene [48], as
well as with the IR spectra of C84 (mixture of isomers),
recorded on three different temperatures between−180∘Cand
+250∘C [1, 35], was presented. On the basis of the obtained
excellent agreement [35, 38, 48], the validity of both the
experimental results [35, 38] and the mentioned theoretical
calculations [48] was indicated [35].

Most of the absorption maxima in our IR spectra of
C84-D2:22 at room temperature [35–42] are also in good
agreement with the recent IR spectra of C84 (mixture of iso-
mers) at different temperatures between −180∘C and +250∘C
[1], as presented in the previous article [1, 35, 38]. However,
significant changes of relative intensities of the main bands,
as well as some shifts, were observed [1, 35].

In this article, a comparison of the experimentally
obtained vibrational frequencies (cm−1) in the IR absorp-
tion spectra, of the chromatographically isolated C84-D2:22
samples (IR1-IR3), recorded from 400 to 2000 cm−1, on
a Thermo Scientific FT- IR spectrometer Nicolet IR-6700
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Table 2: The relative intensities of the absorption bands of C76-D2 computed from 𝜀𝜆 and from the Ψ values in adequate integration ranges.

] (cm−1) 𝜀𝜆 (L cm−1mol−1) Rel. int. [𝜀𝜆] Int. range (cm−1) Ψ (Kmmol−1) Rel. int. [Ψ]
1735.3 88.810 12.1 1770–1699 1.841 12.1
1493.8 286.167 39.1 1505–1451 5.947 39.1
1385.9 159.295 21.8 1397–1348 3.320 21.8
1312.1 119.824 16.4 1319–1242 2.504 16.5
1187.2 420.087 57.4 1227–1144 8.710 57.3
1081.6 434.184 59.3 1140–1005 9.029 59.3
967.1 731.629 100 997–925 15.212 100
893.3 101.498 13.9 912–850 2.136 14.0
822.5 87.401 11.9 850–772 1.818 11.9
703.0 54.978 7.5 763–680 1.135 7.5
605.3 54.273 7.4 674–596 1.147 7.5
483.9 109.956 15.0 550–418 2.285 15.0

[35, 38], with the different theoretical calculations for this
fullerene, by the QCFF/PI method (Calc. 1, from 179 to
1711 cm−1) [48], DFT (Calc. 2, from 211 to 1674 cm−1) [49],
and TB potential method (Calc. 3, from 190 to 1726 cm−1)
[50], is presented in Table 3. Excellent agreement between
the experimental results [35, 38] and the aforementioned
theoretical calculations for this fullerene [48–50] provides the
evidence of their validity.

The IR spectra of all the chromatographically isolated
samples of the isomer C84-D2:22 from this research, recorded
on the mentioned spectrometers, have similar properties. All
the observed vibrational frequencies and the overall appear-
ance of these spectra [35–42] are in excellent agreement
with the semiempirical QCFF/PI, DFT, and TB potential
calculations for this fullerene [48–50].

The achieved agreement between our experimental
results [35–42] and the aforementioned theoretical predic-
tions for this molecule [48–50], which is presented in this
article in Table 3 and Figure 2 [35, 38, 48–50], is better in
comparison to previous experimental results for the obtained
C84 samples (partially separated isomers) from other separa-
tion processes, by other IR techniques [60–63]. This was also
mentioned in the previous article [38].

From the IR spectrum of C84-D2:22 in a mode, presented
in Figure 2, the absorbance values𝐴𝜆, as well as the integrated
absorbance values of the absorption bands, were determined
using the OMNIC software.

The molar absorptivity 𝜀𝜆, as well as the integrated molar
absorptivity Ψ𝜆, calculated according to (1) and (3), and the
integration ranges of the absorption bands of this fullerene
are presented in Table 4.

Also in this case, as can be seen from Table 4, excellent
agreement is found between the relative intensities of the
main and characteristic absorption maxima of C84-D2:22
calculated from 𝜀𝜆 and from the Ψ values, in adequate
integration ranges, taking as 100 the most intense vibration
mode of C84-D2:22 at the frequency of 1385 cm

−1.

4. Conclusion

In this research, the stable C76 and C84 isomers of D2
symmetry were isolated from carbon soot, by new and
advanced chromatographic methods and processes [35–42].
The IR-KBr spectra of the isolated fullerenes were obtained
over the entire fullerenes fingerprint region, 400–2000 cm−1,
on a Thermo Scientific FT-IR spectrometer, in transparence
mode [35, 38], as well as in the absorptionmode in this article.

Based on comparison of the experimentally observed
infrared absorption frequencies of the isolated C76-D2 and
C84-D2:22 samples [35, 38] with the semiempirical QCFF/PI,
DFT, and TB potential calculations for these fullerenes [44,
45, 48–50] and the obtained excellent agreement [35, 38, 44,
45, 48–50], presented in this article, the validity of both the
experimental results [35, 38] and all the mentioned theoreti-
cal calculations [44, 45, 48–50] is confirmed. These research
results can be used for their qualitative determination.

The molar extinction coefficients and the integrated
molar extinction coefficients of the IR absorption bands of
the C76-D2 and C84-D2:22 isomers were determined at room
temperature in KBr matrix. Excellent agreement is found
between the relative intensities of the main and characteristic
absorption maxima of these fullerenes calculated from the 𝜀𝜆
values and from the𝜓𝜆 values in adequate integration ranges.
These results can be used for their quantitative determination.

All the obtained data are important for the identification
and quantitative assessment of the C76-D2 and C84-D2:22
isomers, either in natural resources on Earth and in space
or in artificially synthesized materials, electronic and optical
devices, such as polymers, composites, nanophotonic and
biocompatible materials, optical limiters, sensors, special
lenses with optical absorption properties closer to human eye
light sensitivity, diagnostic and therapeutic agents, pharma-
ceutical substances, and biomaterials.
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Table 3: Experimentally obtained vibrational frequencies (cm−1) of
C84-D2:22 [35, 38] and theoretically calculated values between 400
and 2000 cm−1 [48–50].

IR1a IR2a,b IR3a Calc. 1c Calc. 2d Calc. 3e
1731.1 1731.6 1734.9 1726
1684.5 1686.1 1688.8 1685
1671.5 1671.8 1667 1672 1671
1650.3 1650.9 1647 1652
1645.0 1646
1635.7 1638 1636

1634.3 1633.0 1628 1635
1615.7 1615.8 1613 1616 1612

1601.6 1602.3 1603
1598.7 1596 1600
1558.1 1558.5 1559.8 1564 1558 1561
1541.1 1541.0 1541.6 1544 1539 1541
1518.5 1522 1520 1518

1512.9 1512
1507.3 1506.0 1509.2 1501 1509 1500
1494.0 1491.5 1493.2 1492 1495 1490
1487.0 1486

1464.9 1463.7 1466 1465 1464
1456.4 1454.2 1461 1453 1448
1444.1 1446 1445
1433.4 1433 1439 1438

1403.3 1406 1403
1398.4 1399.8 1398 1395
1384.5 1384.6 1383 1384 1384

1377.1 1376
1339.8 1342.8 1340 1340 1339
1311.6 1311.2 1308 1313

1304.2 1303.3 1302 1307 1306
1289.8 1290 1290

1285.0 1284.1 1287 1283
1262.8 1263.8 1262.3 1272 1265 1265
1242.3 1241 1240 1244
1220.8 1219 1221 1222

1201.1 1207 1203 1201
1197.8 1195 1194 1196

1186.6 1187 1185
1157.7 1158 1161 1158

1169.7 1165 1170 1166
1138.2 1137.7 1146 1139 1141
1121.9 1122.0 1122.7 1129 1130 1133
1107.9 1104.9 1113
1094.5 1098.2 1099
1044.0 1041 1044 1038
973.2 975.5 973
938.5 937.1 941

889.6 896 896 895
884.2 884 880 882

1035.9 1036
1030.5 1029.4 1029 1030 1030

Table 3: Continued.

IR1a IR2a,b IR3a Calc. 1c Calc. 2d Calc. 3e
842.8 842.1 843.1 843 840 846
825.8 827 826 825

823.1 823 823
819.9 822 822
808.5 809 810

804.8 800.9 806 804
778.5 777.5 776.7 777 771 777

756.1 755 756 756
745.6 743.1 744 746

742.1 740 740
721.9 720 721 728

711.4 711.3 713 711 709
699.3 700.0 700.0 699 698 698
634.7 632.4 633.0 633 636 631
618.5 616.3 616.8 618 619 621

605.4 604
602.1 601
596.8 597.3 598 599

593.5 593
574.2 575.5 575

569.8 568 570 569
558.7 559.8 558 557

548.2 546.6 548
544.4 545
539.9 538.5 539 537

535.2 535.4 535 533 536
515.9 515.3 517.2 518 514 515

501.7 503.0 507 504
499.6 501 499 499

490.6 492.8 491 493
485.4 486.6 485.6 483 484 489

476.0 476.8 479 476
473.3 472 474 473
462.3 463.6 461.7 461 461 459
455.1 455.7 455.3 454 454 453
451.1 451.2 450.0 451 449 449

433.9 433.3 434
439.8 440 439

435.7 435.5 437 438 437
412.2 412.5 413
401.7 401.0 401.9 398 400
aReference [35].
bReference [38].
cReference [48].
dReference [49].
eReference [50].
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Table 4:The relative intensities of the absorption bands of C84-D2:22 calculated from 𝜀𝜆 and from theΨ values in adequate integration ranges.
] (cm−1) 𝜀𝜆 (L cm−1mol−1) Rel. int. [𝜀𝜆] Int. range (cm−1) Ψ (Kmmol−1) Rel. int. [Ψ]
1731.1 498.288 34.7 1753–1719 2.389 34.7
1598.7 344.637 24.0 1626–1572 1.657 24.1
1456.4 598.807 41.7 1475–1447 2.872 41.7
1384.5 1435.989 100 1392–1370 6.886 100
1262.8 483.928 33.7 1299–1232 2.328 33.8
1121.9 1102.810 76.8 1131–1102 5.277 76.7
842.8 542.804 37.8 850–836 2.628 38.2
825.8 173.755 12.1 833–813 0.788 11.5
778.5 422.181 29.4 784–768 1.966 28.6
745.6 409.257 28.5 751–722 1.913 27.8
711.4 413.565 28.8 717–705 2.032 29.5
699.3 113.443 7.9 705–682 0.541 7.9
634.7 150.779 10.5 642–613 0.722 10.5
473.3 163.703 11.4 479–459 0.758 11.0
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[20] W. Krätschmer, K. Fostiropoulos, and D. R. Huffman, “The
infrared and ultraviolet absorption spectra of laboratory-
produced carbon dust: evidence for the presence of the C60
molecule,” Chemical Physics Letters, vol. 170, no. 2-3, pp. 167–
170, 1990.

[21] D. M. Cox, S. Behal, M. Disko et al., “Characterization of C60
and C70 clusters,” Journal of the American Chemical Society, vol.
113, no. 8, pp. 2940–2944, 1991.

[22] D. S. Bethune, G. Meijer, W. C. Tang et al., “Vibrational Raman
and infrared spectra of chromatographically separated C60 and
C70 fullerene clusters,” Chemical Physics Letters, vol. 179, no. 1-2,
pp. 181–186, 1991.

[23] J. P. Hare, T. J. Dennis, H. W. Kroto et al., “The IR spectra of
fullerene-60 and -70,” Journal of the Chemical Society, Chemical
Communications, no. 6, pp. 412–413, 1991.

[24] T. Jovanovic, D. Koruga, B. Jovancicevic, and J. Simic-Krstic,
“Modifications of fullerenes extractions and chromatographies
with different solvents,” Fullerenes, Nanotubes and Carbon
Nanostructures, vol. 11, no. 4, pp. 383–394, 2003.
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