Error Estimates for Some Product Gauss Rules

Davorka Jandrlić¹, Miodrag Spalević¹, Jelena Tomanović¹

Abstract

Some integrals I^m over m-dimensional regions can be approximated by cubature formulas G_n^m constructed by the product of Gauss quadrature rules G_n . Using corresponding Gauss-Kronrod rules K_{2n+1} or corresponding generalized averaged Gauss rules \widehat{G}_{2n+1} instead of G_n , we construct cubature formulas K_{2n+1}^m and \widehat{G}_{2n+1}^m . In order to estimate the error $|I^m - G_n^m|$ we use the differences $|K_{2n+1}^m - G_n^m|$ and $|\widehat{G}_{2n+1}^m - G_n^m|$.

2010 Mathematics Subject Classifications: 65D30, 65D32. Keywords: Cubature rules, Products of Gauss, Gauss-Kronrod and generalized averaged Gauss formulas.

1 Introduction

Consider the quadrature formula (q.f.) of the form

$$I(f) = \int_{\mathbb{R}} f(t)d\mu(t) \approx Q_n(f) = \sum_{k=1}^{n} \omega_k f(t_k).$$

The unique optimal interpolatory q.f. with n nodes and (algebraic) degree of exactnes 2n-1 is Gauss q.f. G_n . The nodes of G_n are the eigenvalues and the weights are proportional to the squares of the first components of the corresponding eigenvectors of tridiagonal symmetric Jacobi matrix with diagonal elements $\alpha_0, ..., \alpha_{n-1}$ and subdiagonal elements $\sqrt{\beta_1}, ..., \sqrt{\beta_{n-1}}$, where α s and β s are coefficient of the three-term recurrence relation, satisfied by the monic orthogonal polynomials.

In order to (economically) estimate the error $|I - G_n|$ we can use the differences $|K_{2n+1} - G_n|$ and $|\widehat{G}_{2n+1} - G_n|$. K_{2n+1} is corresponding Gauss-Kronrod q.f. with degree of exactness 3n+1, and \widehat{G}_{2n+1} is corresponding generalized averaged Gauss q.f. with degree of exactness 2n+2, both with 2n+1 nodes (n nodes of G_n form a subset). K_{2n+1} has higher degree of exactness, but \widehat{G}_{2n+1} exists in some situations when K_{2n+1} does not and its numerical construction is simpler – Spalević in [2] proposed effective numerical procedure for constructing \widehat{G}_{2n+1} , where tridiagonal symmetric

matrix has diagonal elements $\alpha_0,...,\alpha_{n-1};\alpha_n;\alpha_{n-1},...,\alpha_0$ and subdiagonal elements $\sqrt{\beta_1},...,\sqrt{\beta_{n-1}};\sqrt{\beta_n};\sqrt{\beta_{n+1}};\sqrt{\beta_{n-1}},...,\sqrt{\beta_1}$.

Some integrals $I^m = \int_{\Omega^m} f(\mathbf{x})\omega(\mathbf{x})d\mathbf{x}$, $\omega(\mathbf{x}) \geq 0$, $\mathbf{x} = (x_1, ..., x_m) \in \mathbb{R}^m$, $m \geq 2$, over m-dimensional regions Ω^m , can be approximated by cubature formulas (c.f.) G_n^m constructed by the product of q.f. G_n . In order to estimate the error $|I^m - G_n^m|$ we first extend G_n^m to K_{2n+1}^m and \widehat{G}_{2n+1}^m , and than use the differences $|K_{2n+1}^m - G_n^m|$ and $|\widehat{G}_{2n+1}^m - G_n^m|$, where K_{2n+1}^m denotes c.f. constructed by the product of corresponding q.f. K_{2n+1} , and \widehat{G}_{2n+1}^m denotes c.f. constructed by the product of corresponding q.f. \widehat{G}_{2n+1} .

2 Main Results

In all considered cases we first introduce G_n^m constructed by the product of G_n (according to [1]). K_{2n+1}^m and \widehat{G}_{2n+1}^m can be introduced analogously, using corresponding K_{2n+1} and \widehat{G}_{2n+1} instead od G_n . In all examples we first solve I^m analytically, and than show results for $|I^m - G_n^m|$, $|I^m - K_{2n+1}^m|$, $|K_{2n+1}^m - G_n^m|$, $|I^m - \widehat{G}_{2n+1}^m|$, $|\widehat{G}_{2n+1}^m - G_n^m|$, for different values of n. All results are calculated with 40 significant decimal digits.

Cube: $C^m = \{x \in \mathbb{R}^m \mid -1 \le x_l \le 1, \ l = 1, ..., m\}$. Integral of each variable $x_l, \ l = 1, ..., m$, can be approximated by n-point Gauss q.f. G_n with Legendre weight function $\omega(t) = 1$ on [-1, 1],

$$\int_{-1}^{1} \varphi(t)dt \approx \sum_{k=1}^{n} \omega_k \varphi(t_k),$$

which leads to c.f.

$$I^{m} \approx G_{n}^{m} = \sum_{k_{1},...,k_{m}=1}^{n} \omega_{k_{1}} \cdots \omega_{k_{m}} \cdot f(t_{k_{1}},...,t_{k_{m}}).$$

 G_n^m has n^m , while corresponding K_{2n+1}^m and \widehat{G}_{2n+1}^m have $(2n+1)^m$ nodes. Selected results are shown in table 1.

Simplex: $T^m = \{ \boldsymbol{x} \in \mathbb{R}^m \mid x_l \geq 0, \ l = 1, ..., m, \ x_1 + \cdots + x_m \leq 1 \}$. Approximating integral of each variable $x_l, \ l = 1, ..., m$, by n-point Gauss q.f. G_n with Jacobi weight function $\omega(t) = (1-t)^{m-l}, \ l = 1, ..., m$, on [0, 1],

$$\int_{0}^{1} (1-t)^{m-l} \varphi(t) dt \approx \sum_{k=1}^{n} \omega_{k,m-l} \varphi(t_{k,m-l}), \quad l = 1, ..., m,$$

we get c.f.

$$I^m \approx G_n^m = \sum_{k_1,...,k_m=1}^n \omega_{k_1,m-1} \cdots \omega_{k_m,0} \cdot f(\Pi(k_1),...,\Pi(k_1,...,k_m)),$$

I^2	$I^{2} = \int_{-1}^{1} \int_{-1}^{1} \cos(x_{1} + x_{2}) dx_{1} dx_{2} = (2\sin 1)^{2} \approx 2.832$					
\overline{n}	$ I^2 - G_n^2 $	$ I^2 - K_{2n+1}^2 $	$ K_{2n+1}^2 - G_n^2 $	$ I^2 - \widehat{G}_{2n+1}^2 $	$ \widehat{G}_{2n+1}^2 - G_n^2 $	
2	2.391e-02	2.979e-07	2.391e-02	2.979e-07	2.391e-02	
4	9.455e-07	3.794e-16	9.455e-07	1.086e-13	9.455e-07	
6	5.095e-12	8.249e-26	5.095e-12	4.534e-20	5.095e-12	
I^7	$I^7 = \int_{-1}^{1} \cdots \int_{-1}^{1} \cos(x_1 + \cdots + x_7) dx_1 \cdots dx_7 = (2\sin 1)^7 \approx 38.237$					
n	$ I^7 - G_n^7 $	$ I^7 - K_{2n+1}^7 $	$ K_{2n+1}^7 - G_n^7 $	$ I^7 - \widehat{G}_{2n+1}^7 $	$ \widehat{G}_{2n+1}^{7} - G_{n}^{7} $	
2	1.118	1.408e-05	1.118	1.408e-05	1.118	
4	4.468e-05	1.792e-14	4.468e-05	5.131e-12	4.468e-05	

Table 1: Selected results for integrals over m-dimensional cube.

I^3	$I^{3} = \int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}} \frac{dx_{1}dx_{2}dx_{3}}{(1+x_{1}+x_{2}+x_{3})^{3}} = \frac{8 \ln 2 - 5}{16} \approx 0.034$					
n	$ I^3 - G_n^3 $	$ I^3 - K_{2n+1}^3 $	$ K_{2n+1}^3 - G_n^3 $	$ I^3 - \widehat{G}_{2n+1}^3 $	$ \widehat{G}_{2n+1}^3 - G_n^3 $	
2	1.237e-04	1.353e-08	1.237e-04	6.196e-08	1.237e-04	
4	1.285e-07	2.513e-14	1.285e-07	7.961e-12	1.285e-07	
6	1.167e-10	2.024e-18	1.167e-10	2.337e-15	1.167e-10	
I^4	$I^{4} = \int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}} \int_{0}^{1-x_{1}-x_{2}-x_{3}} \frac{dx_{1}dx_{2}dx_{3}dx_{4}}{(1+x_{1}+x_{2}+x_{3}+x_{4})^{4}} = \frac{24 \ln 2 - 16}{144} \approx 0.004$					
n	$ I^4 - G_n^4 $	$ I^4 - K_{2n+1}^4 $	$ K_{2n+1}^4 - G_n^4 $	$ I^4 - \widehat{G}_{2n+1}^4 $	$ \widehat{G}_{2n+1}^4 - G_n^4 $	
2	1.959e-05	1.131e-09	1.959e-05	1.179e-08	1.960e-05	
4	2.111e-08	-	-	1.661e-12	2.111e-08	
6	1.937e-11	-	-	5.015e-16	1.937e-11	

Table 2: Selected results for integrals over m-dimensional simplex.

$$\Pi(k_1) = t_{k_1,m-1},$$

$$\Pi(k_1, ..., k_l) = (1 - t_{k_1,m-1}) \cdots (1 - t_{k_{l-1},m-l+1}) t_{k_l,m-l}, \quad l = 2, ..., m.$$

 G_n^m has n^m , while corresponding K_{2n+1}^m and \widehat{G}_{2n+1}^m have $(2n+1)^m$ nodes. Selected results are shown in table 2. In the cases of I^4 , n=4,6, q.f. K_{2n+1} doesn't exist and c.f. K_{2n+1}^4 can't be constructed.

 K_{2n+1} doesn't exist and c.f. K_{2n+1}^4 can't be constructed. **Sphere**: $S^m = \{x \in \mathbb{R}^m \mid x_1^2 + \dots + x_m^2 = r^2\}$. If we introduce spherical coordinates $r, \varphi_1, \dots, \varphi_{m-1}$, than replace integral of variable φ_{m-1} by (2n)-point rectangle formula and approximate integral of each variable φ_{m-l-2} , $l = 0, \dots, m-3$, by n-point Gauss q.f. G_n with Gegenbauer weight function $\omega(t) = (1-t^2)^{l/2}, \ l = 0, \dots, m-3, \ \text{on } [-1,1],$

$$\int_{-1}^{1} (1 - t^2)^{l/2} \varphi(t) dt \approx \sum_{k=1}^{n} \omega_{k,l} \varphi(t_{k,l}), \quad l = 0, ..., m - 3,$$

$S^3: x_1^2 + x_2^2 + x_3^2 = 1, I^3 = \int_{S^3} e^{x_1} d\mathbf{x} = 2\pi (e - 1/e) \approx 14.768$					
n	$ I^3 - G_n^3 $	$ I^3 - K_{2n+1}^3 $	$ K_{2n+1}^3 - G_n^3 $	$ I^3 - \widehat{G}_{2n+1}^3 $	$ \widehat{G}_{2n+1}^3 - G_n^3 $
2	4.842e-02	5.748e-07	4.842e-02	5.748e-07	4.842e-02
4	1.854e-06	7.429e-16	1.854e-06	2.123e-13	1.854e-06
6	9.855e-12	1.583e-25	9.855e-12	8.746e-20	9.855e-12

Table 3: Selected results for integrals over m-dimensional sphere.

we get c.f.

$$I^{m} \approx G_{n}^{m} = r^{m-1} \frac{\pi}{n} \sum_{k=1}^{2n} \sum_{k_{1}, \dots, k_{m-2}=1}^{n} \omega_{k_{1}, m-3} \cdots \omega_{k_{m-2}, 0} \cdot F(r, \varphi_{1, k_{1}}, \dots, \varphi_{m-2, k_{m-2}}, \frac{\pi}{n} k),$$

$$F(r, \varphi_{1}, \dots, \varphi_{m-1}) = f(r \cos \varphi_{1}, \dots, r \sin \varphi_{1} \cdots \sin \varphi_{m-1}),$$

 G_n^m has $2n^{m-1}$, while corresponding K_{2n+1}^m and \widehat{G}_{2n+1}^m have $2(2n+1)^{m-1}$

 $\varphi_{m-l-2,k} = \arccos t_{k,l}, \quad l = 0, ..., m-3.$

Selected results are shown in table 3.

Ball: $B^m = \{ \boldsymbol{x} \in \mathbb{R}^m \mid x_1^2 + \dots + x_m^2 \leq 1 \}$. I^m can be approximated by linear combination of n integrals over m-dimensional spheres of different radii,

$$I^m \approx \sum_{i=1}^n B_i \int_{S_i^m} f(\boldsymbol{x}) d\boldsymbol{x}, \quad S_i^m = \{ \boldsymbol{x} \in \mathbb{R}^m \mid x_1^2 + \dots + x_m^2 = r_i^2 \}.$$

If m is even, than $r_i^2 = \tau_i$, $2B_i r_i^{m-1} = \lambda_i$, i = 1, ..., n, where τ_i and λ_i are nodes and weights of Gauss q.f.

$$\int_0^1 t^{m/2-1} \varphi(t) dt \approx \sum_{i=1}^n \lambda_i \varphi(\tau_i).$$

If m is odd, than $r_i = \tau_i$, $B_i r_i^{m-1} = \lambda_i$, i = 1, ..., n, where τ_i and λ_i are nodes and weights of Gauss q.f.

$$\int_{-1}^{1} t^{m-1} \varphi(t) dt \approx \sum_{\substack{i=-n\\i\neq 0}}^{n} \lambda_{i} \varphi(\tau_{i}).$$

c.f. takes the form

$$I^{m} \approx G_{n}^{m} = \frac{\pi}{2n} \sum_{i=1}^{n} B_{i} r_{i}^{m-1} \sum_{k=1}^{4n} \sum_{k_{1}, \dots, k_{m-2}=1}^{2n} \omega_{k_{1}, m-3} \cdots \omega_{k_{m-2}, 0} \cdot F(r_{i}, \varphi_{1, k_{1}}, \dots, \varphi_{m-2, k_{m-2}}, \frac{\pi}{2n} k).$$

B^4	$B^4: x_1^2 + \dots + x_4^2 \le 1, I^4 = \int_{B^4} \sqrt{(x_2^2 + x_3^2 + x_4^2)^{17}} d\mathbf{x} = \frac{524288}{4849845} \pi \approx 0.339$					
n	$ I^4 - G_n^4 $	$ I^4 - K_{2n+1}^4 $	$ K_{2n+1}^4 - G_n^4 $	$ I^4 - \widehat{G}_{2n+1}^4 $	$ \widehat{G}_{2n+1}^4 - G_n^4 $	
2	1.084e-01	7.329e-06	1.084e-01	6.606e-05	1.084e-01	
4	9.084e-05	9.728e-13	9.084e-05	4.984e-11	9.084e-05	
6	4.369e-10	3.459e-16	4.369e-10	1.409e-14	4.369e-10	

Table 4: Selected results for integrals over m-dimensional ball.

 G_n^m has $(2n)^m$, while corresponding K_{2n+1}^m and \widehat{G}_{2n+1}^m have $(4n+2)(4n+1)^{m-1}$ nodes.

Selected results are shown in table 4.

3 Conclusion

As expected, with the increase of n precision of all three c.f. G_n^m , K_{2n+1}^m , \widehat{G}_{2n+1}^m increases. Also expected, both K_{2n+1}^m and \widehat{G}_{2n+1}^m have better accuracy than G_n^m , while K_{2n+1}^m has better (or the same) accuracy than \widehat{G}_{2n+1}^m .

Both differences $|K_{2n+1}^m - G_n^m|$ and $|\widehat{G}_{2n+1}^m - G_n^m|$ give very good estimates of error $|I^m - G_n^m|$. \widehat{G}_{2n+1}^m exists in some situations when K_{2n+1}^m does not, and it's numerical construction is simpler than the construction of K_{2n+1}^m (since the construction of \widehat{G}_{2n+1} is simpler than the construction of K_{2n+1}^m). So, \widehat{G}_{2n+1}^m might be a better choice than K_{2n+1}^m for estimating error of G_n^m .

Acknowledgements

This reasearch was supported by the Serbian Ministry of Education, Science and Technological Development, Serbia (Research Project: "Methods of numerical and nonlinear analysis with applications" (#174002)).

References

- [1] I. P. Mysovskikh, Interpolatory Cubature Formulas, Moscow: Nauka; 1981 (Russian).
- [2] M. M. Spalević, On generalized averaged Gaussian formulas, Math. Comp. 76 (2007), 1483–1492 (electronic).

¹DEPARTMENT OF MATHEMATICS, FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BELGRADE, SERBIA.

Email(s): {djandrlic,mspalevic,jtomanovic}@mas.bg.ac.rs