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Abstract

Some integrals I™ over m-dimensional regions can be approximated
by cubature formulas G} constructed by the product of Gauss quadra-
ture rules G,,. Using corresponding Gauss-Kronrod rules Ky, or

corresponding generalized averaged Gauss rules G, instead of G,,,

we construct cubature formulas K3}, and G35}, ;. In order to esti-
mate the error [I™ — G7'| we use the differences |K3}, |, — G| and

G — G-
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1 Introduction

Consider the quadrature formula (q.f.) of the form
1) = [ $@0du(0) ~ Qu(H) = St (t).
R k=1

The unique optimal interpolatory q.f. with n nodes and (algebraic) de-
gree of exactnes 2n—1 is Gauss q.f. G;,. The nodes of G,, are the eigenvalues
and the weights are proportional to the squares of the first components of
the corresponding eigenvectors of tridiagonal symmetric Jacobi matrix with
diagonal elements ag,...,a,_1 and subdiagonal elements /B1, ..., v/Bn-1,
where as and (s are coefficient of the three-term recurrence relation, satis-
fied by the monic orthogonal polynomials.

In order to (economically) estimate the error |I — G,,| we can use the
differences |Ka,+1 — Gy| and |@2n+1 — Gp|. Kop41 is corresponding Gauss-
Kronrod q.f. with degree of exactness 3n + 1, and égn_H is corresponding
generalized averaged Gauss q.f. with degree of exactness 2n + 2, both with
2n 4+ 1 nodes (nAnodes of G, form a subset). Ko, 1 has higher degree of
exactness, but G, exists in some situations when Ky, does not and
its numerical construction is simpler — Spalevi¢ in [2] proposed effective
numerical procedure for constructing Go,11, where tridiagonal symmetric



matrix has diagonal elements «ay, ..., @p—1; an; @p—1, ..., ¢ and subdiagonal

elements v/B1, ..., / Bn—=1: vV Bni v/ Bt 13 v/ Br—1, sV B1

Some integrals I = [, f(z)w(x)dz, w(x) >0, x = (z1,...,xy) € R™,
m > 2, over m-dimensional regions (2™, can be approximated by cubature
formulas (c.f.) G} constructed by the product of q.f. G,. In order to
estimate the error |[I™ — G}'| we first extend G}}' to K3, | and @gzm, and
than use the differences |K3,  , — G}'| and ]@S}Hl — G|, where K3} |
denotes c.f. constructed by the product of corresponding q.f. Ka,41, and
G2n 41 denotes c.f. constructed by the product of corresponding q.f. G2n+1

2 Main Results

In all considered cases we first introduce G}' constructed by the product
of Gy, (according to [I]). K3, ., and an 41 can be introduced analogously,

using corresponding Ko,41 and G2n+1 instead od G,,. In all examples we
first solve I"™ analytically, and than show results for [I" —G'|, |[I™ — K3} 4],

|Kgy o — G, (1™ — @%+1|, |é§}z+1 — G|, for different values of n. All
results are calculated with 40 significant decimal digits.

Cube: C" ={x e R" | —1 <2, <1, 1=1,...,m}. Integral of each
variable x;, [ = 1, ..., m, can be approximated by n-point Gauss q.f. G,, with
Legendre weight function w(t) =1 on [—1, 1],

1 n
/ p(t)dt ~ Y wipp(ty),
-1 k=1

which leads to c.f.

n

Im%Gan Z Wiy Wk, -f(tkl,...,tkm).
klv---vkmzl

G} has n™, while corresponding K3} and an 41 have (2n4-1)" nodes.

Selected results are shown in table [Il

Simplex: T = {x e R™ |2, >0, I =1,...,m, x1 + -+ + 2, < 1}.
Approximating integral of each variable x;, | = 1,...,m, by n-point Gauss
a.f. Gy, with Jacobi weight function w(t) = (1 —)™~! 1 =1,...,m, on [0, 1],

1 n
/ (1 - t)m_lgp(t)dt ~ Zwk,m—lgp(tk,m—l)a l=1,...,m,
0 k=1

we get c.f.

MG = Y Whmet s Whyo o STk, e, TR s o)),
ki,....km=1



I’ = fil fil cos(x + xo)dridre = (25in1)? ~ 2.832...

n | | —GA || = K3, | | K5, — Gal | 12— G344 | G3,4, — G

n n+1
2 | 2.391e-02 | 2.979e-07 2.391e-02 2.979e-07 2.391e-02
4 1 9.455e-07 | 3.794e-16 9.455e-07 1.086e-13 9.455e-07
6 | 5.095e-12 | 8.249e-26 5.095e-12 4.534e-20 5.095e-12

I" = f_ll - f_ll cos(wy + -+ x7)dry - - -dry = (2sin1)7 ~ 38.237...

n | 7= GH | T = K3 | | 1B,y = Gol | 11T = Ghq ] | |Gy — Gl
2| 1.118 1.408e-05 1.118 1.408e-05 1.118
4 | 4.468e-05 | 1.792e-14 4.468e-05 5.131e-12 4.468e-05
Table 1: Selected results for integrals over m-dimensional cube.
3 1 (l=a1 pl—z1— dz 1 dzad _ 8ln2-5 _
P=JJo " b " mniasey =16~ 0-034..
n |I3 — GEL| ‘IS — K§n+1| |K§n+1 — G§1| |I3 — G§n+1| |G§n+1 — G?L|
2 | 1.237e-04 | 1.353e-08 1.237e-04 6.196e-08 1.237e-04
4 | 1.285e-07 | 2.513e-14 1.285e-07 7.961e-12 1.285e-07
6 | 1.167e-10 | 2.024e-18 1.167e-10 2.337e-15 1.167e-10
— T fT=a1 [I—z1—a2 [I—Z1—aa— dz1 dasdzsd _ 24In2-16 .
I'= fo 0 B fo v 0 v (1+£1+;§+m;3f;4)4 = =i ~0.004...
n | =GRl | T = Koy | | B = Gl [ 1T = G| | 1G4 — G
2 | 1.959¢-05 | 1.131e-09 1.959e-05 1.179e-08 1.960e-05
4 | 2.111e-08 | - - 1.661e-12 2.111e-08
6 | 1.937e-11 | - - 5.015e-16 1.937e-11

Table 2: Selected results for integrals over m-dimensional simplex.

(k1) = tky m—1,
H(kl, PN kl) = (1 - tlﬁ,m—l) s (1 - tkzl_l,m—l—l—l)tkl,m—la [ = 2, ey MM

G} has n'™, while corresponding K3 ; and ég}m have (2n+1)™ nodes.

Selected results are shown in table In the cases of I*, n = 4,6, q.f.
Kony1 doesn’t exist and c.f. K3, can’t be constructed.

Sphere: S™ = {x € R™ | 23 +---+ 22 = r?}. If we introduce spherical
coordinates 7, 1, ..., ®m—1, than replace integral of variable ¢,,—1 by (2n)-
point rectangle formula and approximate integral of each variable y,,_;_o,
1=0,...,m—3, by n-point Gauss q.f. G,, with Gegenbauer weight function
wt)=1—-t)Y2 1=0,...,m—3, on [-1,1],

1 n
/ (1 - tQ)l/QQD(t)dt ~ Zwk’,l@(tk,l)a l= Oa sy T — 37
-1 k=1



S3iaf+ad+a=1,

I = [ose"da = 2m(e — 1/e) ~ 14.768...

n | P =G | 1P = KS | | 1KG, = Gol | 1P = G341 | 1G4 — Gi
2 | 4.842e-02 | 5.748e-07 4.842e-02 5.748e-07 4.842e-02
4 | 1.854e-06 | 7.429e-16 1.854e-06 2.123e-13 1.854e-06
6 | 9.855e-12 | 1.583e-25 9.855e-12 8.746e-20 9.855e-12
Table 3: Selected results for integrals over m-dimensional sphere.
we get c.f.

Im~Ggr

T 2n n
m = Tm—li 2 : 2 :
n

k=1k1,....kpm_o=1

Wk1,m—3 " Why,_2,0

T
'F(Tv Sol,klv seey Qome,km,Qa Ek)7
F(ryp1, ooy @m—1) = f(rcosey,...,rsin; - - - sin 1),
Pm—1—2 = arccosty;, [=0,..,m—3.

G has 2n™ 1, while corresponding K%' | and @SZLH have 2(2n+1)m~!
nodes.

Selected results are shown in table [31

Ball: B" = {x € R™ | 22 4+ --- + 22, < 1}. I™ can be approximated
by linear combination of n integrals over m-dimensional spheres of different
radii,

NZB (x)dz, —{xcR™ |34 - +22 =12}
: Sm

If m is even, than r? = 7, QBirzm_l =N,1=1,...,
nodes and weights of Gauss q.f.

1 n
/0 "2 p(t)dt =Y Niep(Ti).
=1

n, where 7; and \; are

n, where 7; and A; are

If m is odd, than r; = 7, Birlm_l =N, 1=1,..,
nodes and weights of Gauss q.f.

1
/ t" Lo (t)dt
-1

= Z Xip(Ti)-

i#0

c.f. takes the form

m%G?L@_

ZBrml >y

k=1k1,....km—2=1

Wky,m—3 """ Wy _2,0°

T
'F(Tiv Plkrs o Pm—2,km_2s %k)

4



B:iai+--+af <1,

I I R R

524288 -~ (.339...

4849845
n | =Gl | ' = K5 | | K5,y — Gal | ' = G5l | 1Goy — Gl
2 [ 1.084¢-01 | 7.3200-06 | 1.084c-01 6.606¢-05 | 1.084e-01
4 9.084¢-05 | 9.728¢-13 | 9.084¢-05 1.984c-11 | 9.084¢-05
6 | 4.369¢-10 | 3.459¢-16 | 4.369¢-10 1.409e-14 | 4.369¢-10

Table 4: Selected results for integrals over m-dimensional ball.

G} has (2n)™, while corresponding K3}, and G 41 have
(4n + 2)(4n + 1)™~1 nodes.
Selected results are shown in table [l

3 Conclusion

As expected, with the increase of n precision of all three c.f. G}', K3 1,
G5, .1 increases. Also expected, both K37 | and G5, | | have better accuracy
than G7', while K3} | has better (or t}le same) accuracy than G%}, ;.

Both differences | K3, | —G7'| and |GY,, | — G} give very good estimates

of error [I"™ — G}'|. G4, exists in some situations when K3, does not,
and it’s numerical construction is simpler than the construction of K3}

(since the construction of 62n+1 is simpler than the construction of Ka,11).
So, G5, .1 might be a better choice than K3} for estimating error of G;'.
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