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Abstract

Some integrals Im over m-dimensional regions can be approximated
by cubature formulas Gm

n constructed by the product of Gauss quadra-
ture rules Gn. Using corresponding Gauss-Kronrod rules K2n+1 or

corresponding generalized averaged Gauss rules Ĝ2n+1 instead of Gn,

we construct cubature formulas Km
2n+1 and Ĝm

2n+1. In order to esti-
mate the error |Im − Gm

n | we use the differences |Km
2n+1 − Gm

n | and

|Ĝm
2n+1 −Gm

n |.
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1 Introduction

Consider the quadrature formula (q.f.) of the form

I(f) =

∫
R
f(t)dµ(t) ≈ Qn(f) =

n∑
k=1

ωkf(tk).

The unique optimal interpolatory q.f. with n nodes and (algebraic) de-
gree of exactnes 2n−1 is Gauss q.f. Gn. The nodes of Gn are the eigenvalues
and the weights are proportional to the squares of the first components of
the corresponding eigenvectors of tridiagonal symmetric Jacobi matrix with
diagonal elements α0, ..., αn−1 and subdiagonal elements

√
β1, ...,

√
βn−1,

where αs and βs are coefficient of the three-term recurrence relation, satis-
fied by the monic orthogonal polynomials.

In order to (economically) estimate the error |I − Gn| we can use the
differences |K2n+1 −Gn| and |Ĝ2n+1 −Gn|. K2n+1 is corresponding Gauss-
Kronrod q.f. with degree of exactness 3n + 1, and Ĝ2n+1 is corresponding
generalized averaged Gauss q.f. with degree of exactness 2n + 2, both with
2n + 1 nodes (n nodes of Gn form a subset). K2n+1 has higher degree of
exactness, but Ĝ2n+1 exists in some situations when K2n+1 does not and
its numerical construction is simpler – Spalević in [2] proposed effective
numerical procedure for constructing Ĝ2n+1, where tridiagonal symmetric
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matrix has diagonal elements α0, ..., αn−1;αn;αn−1, ..., α0 and subdiagonal
elements

√
β1, ...,

√
βn−1;

√
βn;

√
βn+1;

√
βn−1, ...,

√
β1.

Some integrals Im =
∫

Ωm f(x)ω(x)dx, ω(x) ≥ 0, x = (x1, ..., xm) ∈ Rm,
m ≥ 2, over m-dimensional regions Ωm, can be approximated by cubature
formulas (c.f.) Gm

n constructed by the product of q.f. Gn. In order to
estimate the error |Im −Gm

n | we first extend Gm
n to Km

2n+1 and Ĝm
2n+1, and

than use the differences |Km
2n+1 − Gm

n | and |Ĝm
2n+1 − Gm

n |, where Km
2n+1

denotes c.f. constructed by the product of corresponding q.f. K2n+1, and
Ĝm

2n+1 denotes c.f. constructed by the product of corresponding q.f. Ĝ2n+1.

2 Main Results

In all considered cases we first introduce Gm
n constructed by the product

of Gn (according to [1]). Km
2n+1 and Ĝm

2n+1 can be introduced analogously,

using corresponding K2n+1 and Ĝ2n+1 instead od Gn. In all examples we
first solve Im analytically, and than show results for |Im−Gm

n |, |Im−Km
2n+1|,

|Km
2n+1 − Gm

n |, |Im − Ĝm
2n+1|, |Ĝm

2n+1 − Gm
n |, for different values of n. All

results are calculated with 40 significant decimal digits.
Cube: Cm = {x ∈ Rm | − 1 ≤ xl ≤ 1, l = 1, ...,m}. Integral of each

variable xl, l = 1, ...,m, can be approximated by n-point Gauss q.f. Gn with
Legendre weight function ω(t) = 1 on [−1, 1],∫ 1

−1
ϕ(t)dt ≈

n∑
k=1

ωkϕ(tk),

which leads to c.f.

Im ≈ Gm
n =

n∑
k1,...,km=1

ωk1 · · ·ωkm · f(tk1 , ..., tkm).

Gm
n has nm, while corresponding Km

2n+1 and Ĝm
2n+1 have (2n+1)m nodes.

Selected results are shown in table 1.
Simplex: Tm = {x ∈ Rm | xl ≥ 0, l = 1, ...,m, x1 + · · · + xm ≤ 1}.

Approximating integral of each variable xl, l = 1, ...,m, by n-point Gauss
q.f. Gn with Jacobi weight function ω(t) = (1− t)m−l, l = 1, ...,m, on [0, 1],∫ 1

0
(1− t)m−lϕ(t)dt ≈

n∑
k=1

ωk,m−lϕ(tk,m−l), l = 1, ...,m,

we get c.f.

Im ≈ Gm
n =

n∑
k1,...,km=1

ωk1,m−1 · · ·ωkm,0 · f(Π(k1), ...,Π(k1, ..., km)),
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I2 =
∫ 1
−1

∫ 1
−1 cos(x1 + x2)dx1dx2 = (2 sin 1)2 ≈ 2.832...

n |I2 −G2
n| |I2 −K2

2n+1| |K2
2n+1 −G2

n| |I2 − Ĝ2
2n+1| |Ĝ2

2n+1 −G2
n|

2 2.391e-02 2.979e-07 2.391e-02 2.979e-07 2.391e-02

4 9.455e-07 3.794e-16 9.455e-07 1.086e-13 9.455e-07

6 5.095e-12 8.249e-26 5.095e-12 4.534e-20 5.095e-12

I7 =
∫ 1
−1 · · ·

∫ 1
−1 cos(x1 + · · ·+ x7)dx1 · · · dx7 = (2 sin 1)7 ≈ 38.237...

n |I7 −G7
n| |I7 −K7

2n+1| |K7
2n+1 −G7

n| |I7 − Ĝ7
2n+1| |Ĝ7

2n+1 −G7
n|

2 1.118 1.408e-05 1.118 1.408e-05 1.118

4 4.468e-05 1.792e-14 4.468e-05 5.131e-12 4.468e-05

Table 1: Selected results for integrals over m-dimensional cube.

I3 =
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0
dx1dx2dx3

(1+x1+x2+x3)3
= 8 ln 2−5

16 ≈ 0.034...

n |I3 −G3
n| |I3 −K3

2n+1| |K3
2n+1 −G3

n| |I3 − Ĝ3
2n+1| |Ĝ3

2n+1 −G3
n|

2 1.237e-04 1.353e-08 1.237e-04 6.196e-08 1.237e-04

4 1.285e-07 2.513e-14 1.285e-07 7.961e-12 1.285e-07

6 1.167e-10 2.024e-18 1.167e-10 2.337e-15 1.167e-10

I4 =
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

∫ 1−x1−x2−x3

0
dx1dx2dx3dx4

(1+x1+x2+x3+x4)4
= 24 ln 2−16

144 ≈ 0.004...

n |I4 −G4
n| |I4 −K4

2n+1| |K4
2n+1 −G4

n| |I4 − Ĝ4
2n+1| |Ĝ4

2n+1 −G4
n|

2 1.959e-05 1.131e-09 1.959e-05 1.179e-08 1.960e-05

4 2.111e-08 - - 1.661e-12 2.111e-08

6 1.937e-11 - - 5.015e-16 1.937e-11

Table 2: Selected results for integrals over m-dimensional simplex.

Π(k1) = tk1,m−1,

Π(k1, ..., kl) = (1− tk1,m−1) · · · (1− tkl−1,m−l+1)tkl,m−l, l = 2, ...,m.

Gm
n has nm, while corresponding Km

2n+1 and Ĝm
2n+1 have (2n+1)m nodes.

Selected results are shown in table 2. In the cases of I4, n = 4, 6, q.f.
K2n+1 doesn’t exist and c.f. K4

2n+1 can’t be constructed.
Sphere: Sm = {x ∈ Rm | x2

1 + · · ·+x2
m = r2}. If we introduce spherical

coordinates r, ϕ1, ..., ϕm−1, than replace integral of variable ϕm−1 by (2n)-
point rectangle formula and approximate integral of each variable ϕm−l−2,
l = 0, ...,m− 3, by n-point Gauss q.f. Gn with Gegenbauer weight function
ω(t) = (1− t2)l/2, l = 0, ...,m− 3, on [−1, 1],∫ 1

−1
(1− t2)l/2ϕ(t)dt ≈

n∑
k=1

ωk,lϕ(tk,l), l = 0, ...,m− 3,
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S3 : x2
1 + x2

2 + x2
3 = 1, I3 =

∫
S3 e

x1dx = 2π(e− 1/e) ≈ 14.768...

n |I3 −G3
n| |I3 −K3

2n+1| |K3
2n+1 −G3

n| |I3 − Ĝ3
2n+1| |Ĝ3

2n+1 −G3
n|

2 4.842e-02 5.748e-07 4.842e-02 5.748e-07 4.842e-02

4 1.854e-06 7.429e-16 1.854e-06 2.123e-13 1.854e-06

6 9.855e-12 1.583e-25 9.855e-12 8.746e-20 9.855e-12

Table 3: Selected results for integrals over m-dimensional sphere.

we get c.f.

Im ≈ Gm
n = rm−1π

n

2n∑
k=1

n∑
k1,...,km−2=1

ωk1,m−3 · · ·ωkm−2,0·

·F (r, ϕ1,k1 , ..., ϕm−2,km−2 ,
π

n
k),

F (r, ϕ1, ..., ϕm−1) = f(r cosϕ1, ..., r sinϕ1 · · · sinϕm−1),

ϕm−l−2,k = arccos tk,l, l = 0, ...,m− 3.

Gm
n has 2nm−1, while corresponding Km

2n+1 and Ĝm
2n+1 have 2(2n+1)m−1

nodes.
Selected results are shown in table 3.
Ball: Bm = {x ∈ Rm | x2

1 + · · · + x2
m ≤ 1}. Im can be approximated

by linear combination of n integrals over m-dimensional spheres of different
radii,

Im ≈
n∑

i=1

Bi

∫
Sm
i

f(x)dx, Sm
i = {x ∈ Rm | x2

1 + · · ·+ x2
m = r2

i }.

If m is even, than r2
i = τi, 2Bir

m−1
i = λi, i = 1, ..., n, where τi and λi are

nodes and weights of Gauss q.f.∫ 1

0
tm/2−1ϕ(t)dt ≈

n∑
i=1

λiϕ(τi).

If m is odd, than ri = τi, Bir
m−1
i = λi, i = 1, ..., n, where τi and λi are

nodes and weights of Gauss q.f.∫ 1

−1
tm−1ϕ(t)dt ≈

n∑
i=−n
i 6=0

λiϕ(τi).

c.f. takes the form

Im ≈ Gm
n =

π

2n

n∑
i=1

Bir
m−1
i

4n∑
k=1

2n∑
k1,...,km−2=1

ωk1,m−3 · · ·ωkm−2,0·

·F (ri, ϕ1,k1 , ..., ϕm−2,km−2 ,
π

2n
k).
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B4 : x2
1 + · · ·+ x2

4 ≤ 1, I4 =
∫
B4

√
(x2

2 + x2
3 + x2

4)17dx = 524288
4849845π ≈ 0.339...

n |I4 −G4
n| |I4 −K4

2n+1| |K4
2n+1 −G4

n| |I4 − Ĝ4
2n+1| |Ĝ4

2n+1 −G4
n|

2 1.084e-01 7.329e-06 1.084e-01 6.606e-05 1.084e-01

4 9.084e-05 9.728e-13 9.084e-05 4.984e-11 9.084e-05

6 4.369e-10 3.459e-16 4.369e-10 1.409e-14 4.369e-10

Table 4: Selected results for integrals over m-dimensional ball.

Gm
n has (2n)m, while corresponding Km

2n+1 and Ĝm
2n+1 have

(4n+ 2)(4n+ 1)m−1 nodes.
Selected results are shown in table 4.

3 Conclusion

As expected, with the increase of n precision of all three c.f. Gm
n , Km

2n+1,

Ĝm
2n+1 increases. Also expected, both Km

2n+1 and Ĝm
2n+1 have better accuracy

than Gm
n , while Km

2n+1 has better (or the same) accuracy than Ĝm
2n+1.

Both differences |Km
2n+1−Gm

n | and |Ĝm
2n+1−Gm

n | give very good estimates

of error |Im − Gm
n |. Ĝm

2n+1 exists in some situations when Km
2n+1 does not,

and it’s numerical construction is simpler than the construction of Km
2n+1

(since the construction of Ĝ2n+1 is simpler than the construction of K2n+1).
So, Ĝm

2n+1 might be a better choice than Km
2n+1 for estimating error of Gm

n .
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