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Introduction 

This paper analyzes the problem of brachistochronic planar motion of a mechanical system with nonlinear 

nonholonomic constraint. The nonholonomic system is represented by two Chaplygin blades [3,4,5,6] of negligible 

dimensions, which impose nonlinear constraint in the form of perpendicularity of velocities. The brachistrochronic 

planar motion is considered, with specified initial and terminal positions, at unchanged value of mechanical energy 

during motion. Differential equations of motion, where the reactions of nonholonomic constraints and control forces 

figure, are obtained on the basis of general theorems of mechanics [8]. Here, this is more convenient to use than 

some other methods of analytical mechanics applied to nonholonomic mechanical systems [9], where a subsequent 

physical interpretation of the multipliers of constraints is required. The formulated brachistochrone problem, with 

adequately chosen quantities of state, is solved as simple a task of optimal control as possible in this case [6,7] by 

applying the Pontryagin maximum principle [1]. The corresponding two-point boundary value problem of the system 

of ordinary nonlinear differential equations is obtained, which has to be numerically solved [2]. Numerical procedure 

for solving the two-point boundary value problem is performed by the method of shooting. On the basis of thus 

obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, 

are defined. Using the Coulomb friction laws [8,9], a minimum required value of the coefficient of sliding friction is 

defined [10], so that the considered system is moving in accordance with nonholonomic bilateral constraints. 

 

Description of the dynamic model of nonlinear nonholonomic system 

In order to develop differential equations of motion of a dynamic model of nonlinear nonholonomic mechanical 

system (henceforth referred to as ‘the system’), as well as for the needs of further considerations, two Cartesian 

reference coordinate systems must be first introduced. The stationary coordinate system Oxyz , whose coordinate 

planeOxy  coincides with the horizontal plane of motion, and the non-stationary coordinate system Aξης attached 

rigidly to the considered system, so that the coordinate plane Aξη coincides with the plane Oxy (see Fig. 1). The axis 

of the non-stationary coordinate system Aξ is defined by the direction AB , that is, B Aξ , whereas unit vectors of 

the non-stationary coordinate system axes are ,λ μ and ν , respectively. The system is composed of two Chaplygin 

blades [3], of negligible masses and dimensions, which impose constraint to the motion of particles A and B, of equal 

masses m , in the form of perpendicularity of the velocities, as shown in Fig. 1. Particles A and B are interconnected 

by a light forks-like structure, which allows the distance constAB ξ .   to change. The configuration of the 

considered system relative to the system Oxyz is defined by a set of Lagrangian coordinates  1 2 3 4q ,q ,q ,q , where 

1q x and
2q y

 
are Cartesian coordinates of the point A,

3q φ is the angle between the axis Ox  and axis Aξ , 

while
4q ξ is the relative coordinate of point B relative to the non-stationary coordinate system. 
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Fig. 1 Nonlinear nonholonomic mechanical system 

Further analysis relates to the case when the motion of point A is constrained in the Aξ axis direction, while the 

motion of point B is constrained in the Aη axis direction, that is, lateral slipping of the points A and B of the system is 

not permissible in the Aξ and Aη axis directions respectively. Due to the imposed constraints to the motion, there 

occur horizontal reactions of nonholonomic constraints at the contact points of the A and B points and horizontal 

plane of motion A AR R λ  and B BR R μ  respectively. In accordance with the constrained motion in the form of 

perpendicularity of the velocities of points A and B, the nonholonomic nonlinear homogeneous constraint has the 

form [3], [4] 

 0 0,B BV u xx yy      (1) 

whereV and u are the velocities of points A and B respectively. Taking into account that the motion of point A is 

constrained in the Aξ axis irection, the second nonholonomic homogeneous constraint can be represented in the form 

as follows 

 cos sin 0x φ y φ= ,  (2) 

and, as a result, the velocityV , of point A, has the Aη axis direction, that is  

 sin cos ,V x φ y φ   (3) 

whereV V μ  . The coordinates of point B relative to the coordinate system Oxyz are 

 cos , sin , 0.B B Bx x ξ φ y y ξ φ z      (4) 

Now, based on nonholonomic constraints (1) and (2), taking into account the relations (3) and (4), the angular 

velocity of the system is determined in the form 

 .
V

φ
ξ

  (5) 

The velocity u , of point B, which has the Aξ axis direction can be expressed, based on relations (2) and (4), in the 

form as follows 

 ,u ξ  (6) 



where u u λ  . As it is well-known, the realization of the brachistochronic motion of mechanical systems can be 

left, in general, to the control forces, whose total power equals zero during brachistochronic motion, which can be 

represented in the form of active control forces, then by the forces of reactions of the constraints or by their mutual 

combinations. For this case, the realization of the brachistochronic motion is achieved by active control forces

 1 1F F t μ and  2 2F F t λ
 

acting at the points A and B respectively, whose power equals zero during the 

brachistochronic motion 

 1 2 0,GP F V F u      (7) 

that is 

 1 2 0.FV F u    (8) 

Differential equations of motion will be developed based on the general theorems of dynamics [6,8,10], that is, by 

applying the theorem of change in momentum of a material system, as well as the theorem of change in moment of 

momentum of a material system for the moving point A, 
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 (9) 

The vector equations (9) have respectively the following, corresponding scalar equations relative to the axes of 

defined non-stationary coordinate system Aξηζ  
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Solving the system of equations (8) and (10), the reactions of nonholonomic constraints, as well as control forces, are 

defined to realize the brachistochronic motion, as a function of defined quantities of state and corresponding 

derivatives 
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During the system brachistochronic motion, the law of the conservation of mechanical energy holds 

   2 2 02
, 0,

T
Φ V u V u

m
     (12) 



where 0T is the kinetic energy of the system at initial time moment 0 0.t 
 

 

 

 

Brachistochronic motion as the problem of optimal control  

 

This section involves the definition of the problem of brachistochronic motion of the system as the problem of 

optimal control. The equations of state that describe the motion of the considered system in the state space can be 

defined in the form 

 

sin , cos ,

,

x V φ y V φ

V
φ ξ = u.

ξ

  


 (13) 

The coordinates of initial state , ,x y φ and ξ , as well as the kinetic energy, are defined at the initial position of the 

system on manifolds: 
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 (14) 

as well as the coordinates of end state , ,x y φ and ξ at the terminal position of the system on manifolds: 

 
   
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1 1 1
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 (15) 

where 1t is the value unknown in advance of the final time moment that corresponds to the end state of the system on 

manifolds (15). The brachistochrone problem of the motion of the system described by equations of state (13) 

consists in determining the coordinates of optimal control V and u , as well as their corresponding coordinates of 

state , ,x y φ and ξ , so that the system starting from the initial state on manifolds (14), moves to the end state on 

manifolds (15), with unchanged value of mechanical energy (12), in a minimum time. This can be expressed in the 

form of condition, so that the functional 

 

1

0

,

t

t

I dt   (16) 

in the interval  0 1,t t has a minimum value. 

For the purpose of solving the problem of optimal control, defined by the Pontryagin maximum principle [1], the 

Pontryagin function is developed in the form as follows 

  0 sin cos , ,x y φ ξ
V

H λ λ V φ λ V φ λ λ u μΦ V u
ξ

       (17) 



where 0 const. 0  ,  x yλ , λ λ  , φλ and ξλ are coordinates of the conjugate vector, where it can be taken that 0 1λ   , 

while μ is a multiplier corresponding to the relation (12). Taking into account the boundary conditions (14) and (15), 

as well as the fact that time does not figure explicitly in equations of state (13), the defined problem of optimal 

control can be solved by a straightforward application of Theorem 3, that is, Theorem 1 [1]. 

 

 

Based on the Pontryagin function (17), the conjugate system of differential equations has the form 

 
  2
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 
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 (18) 

where from it follows that const.xλ  and const.yλ 
 

Taking into account that the initial state (14), as well as the end state (15), is completely determined, the 

transversality conditions are identically satisfied.  

If controls belong to an open set, as in this case, the conditions for determining optimal control can be expressed in 

the form 
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 (19) 

When time 1t is not determined in advance, as in this case, in solving the system of equations (13) and (18) in the 

final form, the condition should be added, following a straightfoward application of Theorem 1 [1], that the value of 

the Pontryagin function on the optimal trajectory equals zero for 0 1,t t t     

   0,H t   (20) 

that is, in accordance with the relation (17) 

  1 sin cos , 0.x y φ ξ
V

λ V φ λ V φ λ λ u μΦ V u
ξ

        (21) 

Now, and based on (17), (19) and (21), the value of a multiplier μ is determined, as well as the control functions V

and u in the form as follows 
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Based on condition (20) defined at the initial time moment, as well as (14), (17) and (22), the conjugate vector 

coordinate φλ is determined at the initial time moment 
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where from a global estimate for the coordinate  0ξλ t can be given 
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Now, based on (13), (18) and (22), the basic and conjugate system of differential equations can be created in the 

form 
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Numerical procedure for solving the corresponding two-point boundary value problem of the system of ordinary 

nonlinear differential equations of the first kind (25), based on the known initial state (14) and (23), as well as end 

state (15), is grounded on the method of shooting [2]. The four-parameter shooting consists of determining unknown 

coordinates of the conjugate vector xλ , yλ and  0ξλ t , as well as a minimum required time 1t . The procedure of 

numerical determination of the unknown parameters consists of ‘shooting’ the end-state coordinates (15), at the 

known initial state (14) and (23). The application of shooting method requires an estimate for the interval of 

parameters’ values being determined [10]. On the basis of estimates for the values of the conjugate vector 

coordinates   0ξλ t , given in (24) , it can be claimed that all solutions to the corresponding two-point boundary 

value problem are certainly located within the interval given, thereby the global minimum time in the 

brachistochronic motion of the system. For a concrete case, the estimate for the values of coordinates xλ and yλ cannot 

be given, so all solutions satisfying the maximum principle should be found. For the case of multiple solutions to the 

maximum principle, global minimum is the one corresponding to the minimum time. 

The two-point boundary value problem is solved for the values of the parameters as follows 

 
2

0 12

kgm
2 ,  2kg,  1m, 2rad..

s
T m a φ π /     (26) 



In accordance with (16), the time of the brachistochronic motion of the system, as well as the conjugate vector 

coordinates for the given values of parameters (26) are 1 1.7259s, 1.0941s/m,  1.6746s/mx yt λ λ     and

 0 0.2057s/mξλ t  .
 

 

 
Fig. 2 Trajectories of points A and B 

 

 

Fig. 3 Graphs of angleφ and relative coordinate ξ
 

 
 

Fig. 4 Graphs of control functionsV and u  

 



 

 

 

Fig. 5 Graphs of reactions of nonholonomic constraints AR and BR
 

    

  

Fig. 6 Graphs of control forces 1F and 2F
 

 
 

Dynamic conditions for realizing the brachistochronic motion 

Differential equations of motion of the system (10), that is, the reactions of nonholonomic constraints and control 

forces as well (11), are obtained in accordance with restrictions (1) and (2). Taking this into account, the necessary 

dynamic conditions for realizing the motion of the system in accordance with restrictions (1) and (2) [9,10], based on 

the Coulomb friction laws, are that intensities of the interaction forces between points A and B of the system and the 

horizontal plane of motion should not exceed the corresponding Coulomb forces of sliding friction. The interaction 

force between point A of the system and the horizontal plane of motion is defined by the vector sum of the control 

force 1F and the reaction force of nonholonomic constraint AR , so that, in accordance with (6), the necessary dynamic 

condition for realizing the defined motion of point A of the system can be written in the form of inequality  

 2 2
1 ,

fr
A A A AAF F R F μ N     (27) 

where
fr

AF and Aμ are the friction force and the sliding friction coefficient between point A of the system  and the 

horizontal plane of motion, whereas AN is normal reaction of the plane of motion of point A of the system. 



Analogously to what has been above mentioned for point A of the system, the necessary dynamic condition for point 

B of the system can be written in the form as follows 

 2 2
2 .

fr
B B B BBF F R F μ N     (28) 

 
Normal reactions of the horizontal plane of motion of points A and B of the system are 19.61NA BN N  . The 

diagrams below, based on previous considerations, show the laws of change of minimum required values of the 

sliding friction coefficients Aμ and Bμ . 

 

  
 

Fig. 7 Graphs of minimum required sliding friction coefficients Aμ and Bμ  
 

Minimum required value of the sliding friction coefficient between point A of the system and the horizontal plane of 

motion, based on (27), is  * 1.153s 0.282A Aμ μ t   , whereas minimum required value for point B of the system, 

based on (28), is  * 0.913s 0.334.B Bμ μ t  
 

Combining the necessary dynamic conditions (27) and (28) to realize the defined brachistochronic motion in 

accordance with restrictions (1) and (2), it is clearly deduced that minimum required value of the sliding friction 

coefficient is
* * 0.334Bμ μ  .

 
 

 

 

Conclusions 

 
This paper considers the brachistochronic planar motion of the mechanical system with nonlinear nonholonomic 

constraint, with specified initial and terminal positions, at unchanged value of mechanical energy. The procedure for 

developing differential equations of motion of the system based on the general theorems of mechanics is presented. 

The formulated brachistochrone problem, with adequately chosen quantities of state, is solved as the simplest task of 

optimal control by applying the Pontryagin maximum principle. The conducted numerical procedure for solving the 

two-point boundary value problem is grounded on the shooting method. Afterwards, the reactions of nonholonomic 

constraints, as well control forces, are defined to realize the brachistochronic motion. Using the Coulomb friction 

laws, a minimum required value of the sliding friction coefficient between the horizontal plane of motion and the 

considered system is defined. The authors consider that the results obtained in this work can be extended to the case 

when the sliding friction coefficients are below minimum required values. In that case, when the control forces are 
constrained, the task of optimal control becomes considerably more complex, which is the subject of future 

investigations.   
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