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IIpu momomm o6o6uieHHol mpobnemel I'aycca, ucnmomne3ys kBagparypHbie (opMyisl I'mseTTn u
OccuyuH, aBTOP CTPOMT KBagpaTypHeie ¢opmynel I'aycca-Typana tumnos ¢opmyn Pamo u
JIo6arTo. Micnone3ys (DyHKIUIO BIHAHUSA, aBTOP OLECHUBAET OCTATOYHBIE YIEHBI 3THX (popMyIL.
IIpennoxen MeTON MCIONB30BAaHUA 3THX KBajpaTyp Ajd BbruuciaeHuil. IIpuBemeHbl pe3ynbTaThl
YHCNEHHBIX 9KcnepuMeHToB. bubn. 18. Ta6m. 5.

1. INTRODUCTION
Quadrature formulae are generally obtained by substituting the integral Jb f(x)dx to be evaluated with

the integral J @(x)dx, where @(x) is a function approximating f{x), whose indefinite integral is expressible

in elementary functions. The choice of @(x) is performed using interpolation methods. Thus the problem of
approximating the integral of f{x) is reduced to the approximation of f(x) itself, that is to a problem not
equivalent to the first one. Therefore, it is reasonable to think that it is possible to obtain quadrature formu-
lae without using interpolation methods. In this way the theory of quadrature formulae is expounded in [1].
Our considerations will be based on the results which are expounded in [1], and because of that we will keep
the notation from [1].

Let w(x) be a weight function on the interval [a, b], —o < a < b < eo. A quadrature formula of the form

m 2s

jw(x)u(x)dx D ZA,?, ®x)+RC(u), (1.1)

i=lh=

where A,?,- = Afl'?‘ 9, X = xf'"’ * which is exact for all algebraic polynomials of degree at most 2(s + L)m — 1,

was considered firstly by Turan (see [2]), in the case when w(x)dx = dx on [-1, 1]. The general case has been
considered by Italian mathematicians Ossicini, Ghizzetti, Guerra, Rosati, etc. (see [3] and [1] for references).

The nodes x; in (1.1) must be zeros of a (monic) polynomial ,,(x) which minimizes the integral

FEF(aoa cees Gy l) - JW(X)TC,,,()C)ZHFZ

a

where

-1
n,(x) = x" +a, x' +..+ax+a,.
In order to minimize F we must have
b
2s+ 1k
Jw(x)n:,,,(x) xdx =0, k=0,1,...,m-1.
a

Such polynomials =,,(x) = P, ,(x), which satisfy this new type of orthogonality, power orthogonality, are
known as s-orthogonal (or s-self associated) polynomials with respect to the measure w(x)dx.

DMSC: Primary 41A55; secondary 65D30, 65D32.
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616 SPALEVIC

An iterative process for computing the coefficients of s-orthogonal polynomials in a special case, when
the interval [a, b] is symmetric with respect to the origin and the weight function w is an even function, was
proposed by Vincenti [4].

Gautschi and Milovanovi¢ [3] gave a stable procedure for the numerical construction of s-orthogonal
polynomials. In §3 of [3] a stable numerical procedure for calculating the coefficients A ,,G, in (1.1) was pro-
posed. Some alternative methods were proposed by Stroud and Stancu [5] (see also [6]) and Milovanovié
and Spalevic [7] (see also [8]).

Remark 1. A particularly interesting case is one of the Chebyshev weight w(x) = (1 — x?)~12 with the correspond-
ing s-orthogonal polynomials, i.e., Gauss—Turdn quadrature formulas. In 1930, Bernstein [9] showed that the monic
Chebyshev polynomial minimizes all integrals of the form

k+1
Jlﬂm(x)l v k20,

1-
-1
Thus, the Chebyshev polynomials are s-orthogonal on [-1, 1] for each s > 0. Ossicini and Rosati found three other

weights for which the s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and
fourth kind (see [10]).

Considering the set of Jacobi polynomials, Ossicini and Rosati [11] showed that the only Jacobi polynomials which
are s-orthogonal for a positive integer s are the Chebyshev polynomials of the first kind. Recently, Shi [12] (see also
[13]) has proved that the Chebyshev weight is the only one (up to a linear transformation) having the property: for each
fixed m, the solutions of the extremal problem

1

L/ m k
J‘(H(x—x,-)] wx)dx = mi,lnl J.ﬂ:(x)kw(x)dx

\i=1 nx)=x +.. |

for every even k are the same.

Gori and Micchelli [14] have introduced for each m a class of weight functions defined on [~1, 1] for which explicit
Gauss—Turdn quadrature formulas of all orders can be found. In the other words, these classes of weight functions have
the peculiarity that the corresponding s-orthogonal polynomials, of the same degree, are independent of s.

2. EXISTENCE AND UNIQUENESS OF RADAU AND LOBATTO FORMULAE
Let

j pOu(x)dx = EAhou(m(a) + Z 3 Aju ") + R w), @.1)

h=0 h=0i=1

—o < g<oo,pE No,wuh

RR(U) =0 Vue 9)2(5'+l)m+p’

be the generalized Gauss-Turdn quadrature formula of Radau type.
Let

2s m

j p(u)dx = ZAW "a) + 2 2 A x) + ZA,, wertt"(B) + R"(u), @2)

h=0 =0 i=1 h=0

—oo<a<b<oo,q,pe Ny, with

L
R(u) =0 Vue 9)2(s+l)m+p+q+1»

be the generalized Gauss—Turan quadrature formula of Lobatto type.
With P, we denoted the set of all polynomials of degree at most k, k € N,

By using the results, which have been given by Ghizzetti and Ossicini [1], it is easy to prove existence
and uniqueness of the formulas (2.1) and (2.2).

Define the generalized Gauss problem (see [1, pp. 41-43]).
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QUADRATURE FORMULAE OF RADAU AND LOBATTO TYPE 617

Let us consider the elementary quadrature formula

n-1 m

b
jp(x)u(x)dx = z ZAhiu(h)(xi)+R(u), Euw)y =0 = Ru) =0,

h=0i=1

where E is the linear differential operator of order n. The question is whethér, having fixed integers p; (with
0<p;<n-1,Fk=1,2,...,m) 1 <p), it is possible to make use of the arbitrary nature of these parameters

to drop from the formula the values u(h)(x,-) of the derivatives of order higher thann—p;— 1,i=1,2,...,m
that is whether there can exist a formula of the type

m n-pi—1

j pu(xdx = 3> A" (x) + Rw), E) = 0— Ru) = 0. (2.3)

i=1 h=0

The answer give the following theorem, which the proof can be done in the similar way as one of
Theorem 2.5.1 in [1] (see also the Problem 2 in [1, p. 45]).

Theorem 1. Given the nodes x, ..., x,,, which satisfy
as<x <..<x,<b, 2.4)

the linear differential operator E of order n and nonnegative integers 0<p;<n-1,(Gk=1,2,...,m) 1 < p,,
consider the homogeneous differential problem

Ew =0; uPx)=0, h=01,..,n-p,—1, i=12 ..,m. (2.5)

If this problem has no non-trivial solutions (whence n < mn — Z:.’; | Pi) it is possible to write a quadrature
formula of the type (2.3) in form a family of mn — Z?L | Di —m parameters. If on the other hand the problem

(2.5) has q linearly independent solutions U(x) (j =1, 2, ..., g, with n — nm + z:": P <q<p (Vi=1,
., m); 1 £ q) then the formula (2.3) may apply only if the q conditions
b
jp(x)Uj(x)dx =0, j=12..,4q
are satisfied; if so it is possible to write a quadrature formula of the type (2.3) in form a family of mn —
- 2:.": | Pi —n + q parameters.

Consider the formula (2.1), with the conditions (2.4) for x;, i = 1, 2, ..., m, for which is RR(u) =0

vu € 9)2m(s+ D+pe
Let n=2m(s + 1) + p + 1. By virtue of the theorem 1 we must consider the boundary problem
d'uldx" = 0,
with

W@ =0, h=01..,p, ux)=0 h=01,..2s, i=12 ..m,

and its non trivial solutions which are
xk(x—a)“ln(x—x,-)zs”, k=0,1,....m—1.
i=1
Therefore, (2.1) is possible if and only if there are satisfied

m

J.(x @) pL T[(e-x)™ dx = 0, k= 0,1,..m-1,

a i=1
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618 SPALEVIC

and this shows that the nodes x; must coincide with the zeros of the polynomial P, ,,(x) of the s-orthogonal
system relative to the measure (x — a)’ * \p(x)dx.

With such a choice of the nodes the formula (2.1) is unique since, with the notations of the theorem 1,
we have that mn — 2:": | Pi —n + q in our case is
m2s+1)+p+l-n+m = 0.

Consider the formula (2.2), with the conditions (2.4) for x;, i = 1, 2, ..., m, for which is RMu) =0 Vu €
€ g)])?_m(s+l)+p+q+l'
Let n =2m(s + 1) + p + g + 2. By virtue of the theorem 1 we must consider the boundary problem

d'uldx" = 0,
with
@ = 0. kol - u(h)(xi) =0, h=01,...,2s, i=12,...,m,
Wby =0, h=01,..q,

and its non trivial solutions which are

Ha-a) ' o= T[x-x)"" k=0,1,..,m-1.
i=1

Therefore, (2.2) is possible if and only if there are satisfied

b m
j(x—a)'”‘(b—x)"*‘p(’x)xk]'[(x—x,.)z“‘dx =0, k=0,1,...m—1,

i=1

and this shows that the nodes x; must coincide with the zeros of the polynomial P, ,,(x) of the s-orthogonal
system relative to the measure

(x—a)’ "' (b-x)""" p(x)dx.

With such a choice of the nodes the formula (2.2) is unique since, with the notations of the theorem 1,
we have that mn — 21’; | Pi —n + q in our case is

(m+2)n—p0—2p,~—pm+l—n+m =mn+2n—-(n—-p-1)-m(n—-2s-1)—
i=1

~(n—q-1)-n+m =2sm+2m+p+qg+2-n=0

3. THE BOUNDING FORMULAS OF THE REMAINDER IN (2.1)

Concerning the assumptions on p(x), u(x) for the validity of (2.1) we have the following theorem:
Theorem 2. Formula (2.1) is valid under the following hypotheses:

p(x) € Lla,bl, u(x)e AC" '[a,b],
if b is finite,
¥'p)e Lla, ), u@e AC Ta,), u”()[€"" pE)dE e L0, ).
The proof is the same as one of the theorem 4.13.1. in [1, pp. 132—-133] and will be omitted.
Let p be even, without loss of generality.
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QUADRATURE FORMULAE OF RADAU AND LOBATTO TYPE 619

(a). Let p < 2s. We have that n =2m(s + 1) + p + 1 is odd. For the remainder in (2.1) we have (cf. [1]):
b

R¥w) =R = j @0 u" (x)dx, (3.1)

where the influence function @(x) is expressed by
D(x) = @;,(x) for x;<x<x;.,, i=0,1,...m;, xy=a, X,., =D, (3.2)

and the functions @,(x), integrals of the differential equation ¢"’(x) = —p(x), are given by the formulae

2s i-1 n h— n—-h-1
o x) = ﬁ@” 1yﬁ+2§ylﬂm( +Z(UMMX“)UV (33)
h=0j=1
where i=1,2,...,m+1,and A, = Ay
For @,, , 1(x) we have
n-1
(pm+ l('x) J‘p(&) (x E"i )‘ d&‘ (3‘4)
From (3.2), (3.3) it follows, differentiating & times (with 0 < k<n-—1):
o ) = P(x) for xe (x;_,x), i=1,2...m+1, (3.5)
where
L x (x_g)n—k—l M oi-1 , (x JC)" h— , (x a)n h—k-1
0 (x) = —_[P(g)mdg‘F D 2(*1)1/4/1,( T Z( 1)'A O k=T (3.6)
B h=0j=0

andM:=2s,N:=p,forOSkSn—2s—2;M:=n—k—1,N:=p,forn—2s—1Sk.<_n—p—2;M:=n—k—l,
N=n-k-1,forn-p-1<k<n-1.

(b). If p > 2s then (3.6) holds with M :=2s, N:=p,for0<k<n-p-2; M :=2s, N:=n—-k -1, for
n—-p—-1<k<n-2s-2;M==n~-k-1,N:=n—-k-1,forn-2s—1<k<n-1.

In both cases ((a) and (b)) we have

b n-k-1
00 = [rOT=T s xe () 37

Now, we can conclude that

%@ =0, k=0,1,...,n-p-2, ®B) =0, k=0,1,..,n-1, (3.8)

and that the functions ®(x), ®'(x), ..., ®"~2-2(x) are continuous in [a, b], while ®"~>~D(x), ..., D"~ D(x)
have discontinuities of the first kind at the points xy, ..., x,,. From (3.7) we conclude

(1)@ (x)>0 for xe (x,,b), k=0,1,....,n-1, (3.9)

and, particularly, ®(x) > 0 on (x,, b).
We now prove the following theorem:

Theorem 3. Under the hypothesis that the weight function p(x) is not identically zero in any interval con-
tained in [a, b), the influence function ®(x) defined by (3.2) (together with (3.3) and (3.4)) belongs to the
class C"=>~2[a, b], and it is positive inside such an interval.

Proof. The first part of the theorem has just been proved. Now, we will prove that the influence function
is positive on (a, b).

(i). Let firstly p < 2s. Prove that ®(x) is positive on (a, x,,] and, therefore, on (a, b) = (a, x,,] U (x,,, b).

Consider @~ -2)(x). We will prove that @~ ~2)(x) has at most 2s + 2 zeros in each interval [x;_,, x;],
i=1,2, ..., m.In fact, should it have 2s + 3 of them, for the Rolle theorem, ®" -2~ D(x) would have at least
2s + 2 zeros inside [x;_, x;], @"~*)(x) would have at least 25 + 1 zeros and so on, until we may conclude
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620 SPALEVIC

that @~ Y(x) would have at least two zeros inside [x;_, x;]. But this is absurd since from (3.6) there follows
that, for x € (x;_, x;), we have

x i-1
q)(n—l)(x) = (pE"'l)(x) = —Jp(g)d§+ ZAO]"
a j=0

and this function is decreasing since p is even.

(n—2s-2) (n-2s~
1

Particularly, ®"-*-2(x) = @ (x) in (a, x;) and @, € C"~'[a, x,]. Let @, ?(x) have o (0.€ Ny)

zeros in (a, x;). Because of the conditions (p(lk)(a) =0,k=0,1,...,n~p-2, for the Rolle theorem, we have
that @'" "~ "(x) has at least 0. zeros in (a, x,), etc., ¢\""*~?(x) has at least o zeros in (a, x,), @\" 7~ (x)
has at least o, zeros in (a, x,). But, we can prove as above that @ -7~ 1(x) has at most p + 1 zeros in [a, x,].
Therefore, we have o0 < p + 1, i.e., ®”~2~2)(x) has at most p + 1 zeros in (a, x,). Therefore, ®" -2 ~2(x)
has at most p + 1 + (m — 1)(2s + 2) zeros in (a, b) = (a, x) U [x}, x,,] U (x,,, b).

We may then show that ®(x) does not vanish inside [a, b] and therefore is positive, because it is such on
(X, b). In fact, if @(x) should vanish at one point in (a, b), using (3.8) and applying Rolle theorem, we find
that @ ~25-2(x) would vanish at least n — 2s — 1 times, in contraposition with the preceding deduction, be-
causen—2s—1<p+1+(m-1)2s+2)gives 1 <0.

(>ii). Let p > 2s. Prove that ®(x) is positive on (a, b).

Consider ®"~2-2)(x). We can prove as above that @~ ~2)(x) has at most 2s + 2 zeros in each interval
[x;_ 1, x]1,i= 1,2, ..., m. Therefore, ®"~2~2(x) has at most m(2s + 2) zeros inside [a, b].

We may then show that ®@(x) does not vanish inside [a, b] and therefore is positive, because it is such on
(x> b). In fact, if ®(x) should vanish at one point in (a, b), using (3.8) and applying Rolle theorem, we find
that ®”-7-Y(x) would vanish at least n — p times, ®"~?X(x) would vanish at least n — p times, etc., ®"~~2(x)
would vanish at least n — p times, in contraposition with the preceding deduction, because n—p < m(2s + 2)
gives 1 <0.

(iii). Let p = 2s. Prove that ®(x) is positive on (a, b).

Consider @ ~2-2(x), We can prove as above that @ ~2-2(x) has at most 2s + 2 zeros in each interval
[x;_1, x], i = 1, 2, ..., m. Therefore, ®"*~2-2)(x) has at most m(2s + 2) — 1 zeros inside [a, b], since
(I)(n —-25- 2)(a) =0.

We may then show that ®(x) does not vanish inside [a, b] and therefore is positive, because it is such on
(x5 b). In fact, if @(x) should vanish at one point in (a, b), using (3.8) and applying Rolle theorem, we find
as above that ®~2-2(x) would vanish at least n — 25 — I times, in contraposition with the preceding de-
duction, because n —2s — 1 <m(2s +2) — 1 gives 1 0.

Now, we can estimate the remainder in the formulas of the type (2.1), by using (3.1).

19 If u(x) € AC"~'[a, b] and a, b € R we have

|R(w)| £ max ®(x)V,_ | = D(t)V

a<x<bh

n—11

where V,,_, denotes the total variation of the function u"~(x) absolutely continuous on the interval [a, b].
Because @'(x) vanish in exact one point of the interval (a, b) it holds (3¢, € (a, b)) max D(x) = D(¢,).

as<x<bh
20, If u"(x) is bounded in [a, b], i.e.,

M, = sup IM(”)(X)., b < oo,
a<x<h
we have
b
|R(w)| < M,,j(b(x)dx.
3% If u € C'[a, b], b < =, because ®(x) >0 on (a, b) we may apply the mean value theorem and write
b

R(u) = u(”’(g)jcb(x)dx, Ee (ab).

a
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QUADRATURE FORMULAE OF RADAU AND LOBATTO TYPE 621

4. THE BOUNDING FORMULAS OF THE REMAINDER IN (2.2)
Concerning the assumptions on p(x), u(x) for the validity of (2.2) we have the following theorem:

Theorem 4. Formula (2.2) is valid under the following hypotheses:
p(x)e Lla,b], ux)e AC" '[a,b].

The proof is the same as one of the theorem 4.13.1. in [1, pp. 132-133] a;1d will be omitted.
For the following considerations in the formula (2.2) we will distinguish the cases:

1% p>g>2s, 2% p=gq=2s, 3% p<g<2s, etc.,
and the subcases with p (or g) is odd or even.

Let, for example, p > g > 2s, p + g — even, without loss of generality. Thenn=2m(s + 1)+ p+qg+21is
even. For the remainder in (2.2) we have (see [1]):

b
R“w)=R(w) = J' @(0)u"(x)dx, @.1)

a

where the influence function ®(x) is expressed by
O(x) = @, (x) for x,<x<x,,,, i=0,1,...,m xy=a, X, =b, 4.2)
and the functions @;(x), integrals of the differential equation "”(x) = p(x), are given by the formulae

2s  i-1

, (X X n—h-1 ' n—h-1
o) = jp@(x = - 2 P . 2( DA 43)
=0 j=1
where i=1,2,....,m+1,and A = A
For ¢,, . ;(x) we have
n-1 n—h-1
: b
Q1) = _[p(&)(x gi), dé + Z( 1)"A, ,”H%—-h)——l)!—. (4.4)
From (4.2), (4.3) it follows, dlfferentlatmg k times (with0<k<n-1): -
@Y = oP(x) for xe (x;_,x), i=1,2...m+1,
where
e M n—-h-k-1 N n—h-k-1
o (x— é) o hy = x) e, iy x—a)
(x) -jp(E..) - ZOJZI( R ey R R ey

andM:=2s,N:=p,forOSkSn—p—2;M:=2s,N:=n—k—l,forn—p—1SkSn—Zs—Z;M:=n—k~l,
N=n—-k-1,forn-2s-1<k<n-1.

For the derivatives of @, , ;(x) (x € (x,,, b)), we can use the following formulas:
b n—k— M n-h-k-1
0 _ (x-8)" ! N (x=b)
(pm+l(x) - J‘p(&) (n_k_ ])‘ d§+l20( ]) A/I.m+l(n_h_k_ 1)"
withM:=q,for0<k<n-qg-2;M:=n-k—-1,forn—-g-1<k<n-1.
Now, we can conclude that

oY@ =0, k=0,1,...n-p-2, @By =0, k=01,...,n-g-2, 4.5)

and that the functions ®(x), ®'(x), ..., ®"~2-2(x) are continuous in [a, b], while ®"=2-1(x), ..., ®@-D(x)
have discontinuities of first kind at the points x|, ..., x,,.
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622 SPALEVIC
If we put u(x) = (x —aP * (b — x)?* [P, ,(x)]**? in (4.1), then

b b
D't feed = [pe(x-a) ! b -0 P, 1 dx.

a

So, we obtain that

}(D(x)dx <0, ?f q ?s even,
>0, if ¢ isodd.

Therefore, if ®(x) does not vanish in (a, b) it holds a sign on this interval.
We now prove the following theorem:

Theorem 5. Under the hypothesis that the weight function p(x) is not identically zero in any interval con-
tained in [a, b), the influence function ®(x) defined by (4.2) (together with (4.3) and (4.4)) belongs to the
class C"=*~?[a, b, and one holds a sign inside such an interval.

Proof. The first part of the theorem has just been proved. Now, we will prove that the influence function
holds a sign on (a, b). We will give the proof for two cases, without loss of generality.

(i) Let firstly p > g > 2s.

Consider ®"~2-2)(x). We can prove as above that ®"~2~2)(x) has at most 2s + 2 zeros in each interval
[x, x; .11, i=0, 1, ..., m. Therefore, ®"~2-2(x) has at most (m + 1)(2s + 2) zeros inside [a, b].

We may then show that @(x) does not vanish inside [a, b]. If ®(x) should vanish at one point in (a, b),
using (4.8) and applying Rolle theorem, we find that @ -7~ 1(x) would vanish at least n — p times, @ ~P)(x)
would vanish at least n — p times, etc., @~ 9~ D(x) would vanish at least n — p times, ®"~9(x) would vanish
at least n — p — 1 times, @~ 9+ Y(x) would vanish at least n — p — 2 times, etc., @~ ~?(x) would vanish at
least n — p — g + 25 + 1 times, in contraposition with the preceding deduction, because n ~p~g +2s+ 1 <
<(m+ 1)2s+2)gives 1 £0.

(i) Let p< g <2s.

Prove that ®(x) holds a sign on (a, b). Consider ®"~%-2)(x). We can prove as above that ®~2~(x)
has at most 2s + 2 zeros in each interval [x;, x; ], i=1,2, ..., m— 1, and at most p + 1 zeros in (a, x,), i.e.,

at most g + 1 zeros in (x,,, b). Therefore, @~ ~2)(x) has at most p + g + 2 + (m — 1)(2s + 2) zeros inside
[a, b].

We may then show that ®@(x) does not vanish inside [a, b]. In fact, if ®(x) should vanish at one point in
(a, b), using (4.5) and applying Rolle theorem, we find that ®"~2*-2)(x) would vanish at least n — 2s — 1
times, in contraposition with the preceding deduction, because n —2s— 1 <p+t+ (m—1)(2s + 2) gives 1 <0.

Remark 2. The simplest case p = 2s = ¢ has been analyzed in [15] (see also the Problem 13 in [1, p. 147]). Thus,
in this paper we complete the results from [15] (see also [1]) for the quadrature formulas (2.1), (2.2).

Now, we can estimate the remainder in the formulas of the type (2.2), by using (4.1).
19 If u(x) € AC"~'[a, b] we have

|R(w)| = Tai(blq)(x)lvn—l = |®@p|V

n—1»

where V,_, denotes the total variation of the function 4 ~1(x) absolutely continuous on the interval [a, b].
Because @'(x) vanish in exact one point of the interval (q, b) it holds (¢, € (a, b)) max @(x) = ().

asx<bh

20 If u"(x) is bounded in [a, b], i.e.,

Mll = Sllp Iu(n)(‘x)"

as<x<h
we have
b
IR < M, [l dx.

a
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3% If u € C"[a, b], because ®(x) holds a sign on (a, b) we may apply the mean value theorem and write

b
Rw) = u™E) j @(x)dx, Ee (a,b).

5. CALCULATION OF QUADRATURE RULES (2.1), (2.2)

We give two results, which give a connection between the generalized Gauss—Turdn quadrature (1.1) and
the corresponding formulas of Radau and Lobatto type (see for example [16]).

Lemma 1. [f we have the generalized Gauss—Turdn quadrature of Lobatto type (2.2), with distinct real

zeros x; = x(m) i=1,2, ..., m, all contained in the open interval (a, b), there exists then a generalized

Gauss—Turdn quadrature formula (1.1), where w(x) = (b — x)7* (x — a)’ * \p(x), the nodes x( "

are the zeros
of s-orthogonal polynomial &, (-, w(x)dx), while the weights A i are expressible in terms of those in (2.2) by

2s

Ay = Z(fl)[(b—x)‘“‘(x—a)”“]ik VA h=01,.,2s i=1,2..,m.

k=nh

Proof. Let g(x) = (b —x)?* (x —aP *'n(x), t € Py, 1ym-; and x; = x™ . We have by (2.2)

Jp(x)g(x)dx = ZZ[(b 0 (x-a) L AL

i=1lk=0
and by (1.1)

m 2s

IW(x)ﬂ(x)dx = Z 2 AS 7P

i=1lh=
So, we have that

m 28 m  2s

Zz[(b—x)d+l(x—a)p+ln(x)].(rkix[A/I:i _ ZZAI(I}’ (h)(xi).

i=1lk=0 i=lh=

Applying the Leibnitz formula for the k-th derivative in the second sum, we find

2s 2s k
>0 a)"“n(x)]” ,Ab=2[2()[<b 0" (x a)"“]‘k"”n“”(xﬁ A =

k=0 ! k=0Lh=0

= i[i(,ﬁ)[(b—x)"“(x—a)"*‘Jik o A oj W)

h=0\k=h h=0

it

where

o

A=Y (’Z)[(b )™M a—a) A, h=01, 28 i= 1,2, . m.
k=h
Similarly we can prove:
Lemma 2. [f we have the generalized Gauss—Turdn quadrature of Radau type (2.1), with distinct real

(m)x . . . . . .
zeros x; = x,-m ,i=1,2, ..., m,all contained in the open interval (a, b), there exists then a generalized

Gauss—Turdn quadrature formula (1.1), where w(x) = w¥(x) = (x — ay’ * \p(x), the nodes xﬁm)* are the zeros
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of s-orthogonal polynomial (-, w¥*(x)dx), while the weights AS,- are expressible in terms of those in (2.1) by

= Zife-or ]

(k—h) R
Ay, h=01,..,2s, i=12..,m.
Xi

x=

Remark 3. Recently the interest in the nodes and the coefficients of the formulas (1.1), (2.1), (2.2) has been un-
derlined by some papers, dealing with a method of approximation of a function by means of moment preserving splines
(see [16-18]).

-1
Example. As an example we consider the Chebyshev weight p(x) = (Jl - xz) on the interval I = [a, b] =

=[-1, 1] in the Lobatto case. Therefore, we have
wix) = (1-x)"79(1+ 07"

In Table 1 the nodes x; of the corresponding Gauss—Turdn quadrature formulae (1.1), for s = 2, m = 4,
are given.

In Table 2 the weights A,(f'i of the corresponding Gauss—Turdn formulae are given. For these calculations
we have used the methods from [3] and [7] (see also [8]).

For p = 1 (=g, without loss of generality) in Table 3 the weights A,E,- of the corresponding Gauss—Turan

formulae of Lobatto type (2.2) are given. Table 4 gives the corresponding coefficients A,';O , A,fs in the end-

points —1, 1. The numbers in parentheses denote decimal exponents. The programs were realized in the dou-
ble precision arithmetics in FORTRAN.77.

In the cases when the derivatives of the integrand we can obtain relative simply, the quadratures (1.1),
(2.1), (2.2) can be used for the approximate calculation of such integral. We give an example where it is
preferable to use a formula of Gauss—Turéan type.

Table 1
i X2i-1 X
1 —8.41567404859432(-1) —3.28168606801998(—1)
2 3.28168606801998(-1) 8.41567404859432(-1)
Table 2
G G
! h Ay Ay
1 0 7.5765832442755(=2) 6.2654888450913(-3)
1 2 3.6654414242426(-4) 9.3958203613400(-6)
1 4 1.4588085631151(-7)
2 0 5.1328279010533(-1) 2.1311377827516(-2)
2 2 6.5184626213695(-3) 1.1042906602195(—4)
2 4 1.3566511670870(-5)
3 0 5.1328279010533(-1) —2.1311377827516(-2)
3 2 6.5184626213695(-3) —1.1042906602195(-4)
3 4 1.3566511670870(-5)
4 0 7.5765832442755(-2) —6.2654888450913(-3)
4 2 3.6654414242426(-4) —9.3958203613400(-6)
4 4 1.4588085631151(-7)
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Table 3
i h Ail: i AII; +1,i
1 0 6.5802713035484(-1) 8.4368409927532(-3)
1 2 2.6795494468975(-3) © 3.1286893729615(-5)
1 4 1.7136968279902(-6)
2 0 6.6823331015210(-1) 3.2209234340733(-3)
2 2 8.3649374736572(-3) 3.8429666602366(-5)
2 4 1.7038885475690(-5)
3 0 6.6823331015210(-1) -3.2209234340733(-3)
3 2 8.3649374736572(-3) -3.8429666602366(-5)
3 4 1.7038885475690(-5)
4 0 6.5802713035484(-1) —-8.4368409927532(-3)
4 2 2.6795494468975(-3) —-3.1286893729615(-5)
4 4 1.7136968279902(—6)
Table 4
h Ajo Ajs
0 2.4453588628796(~1) 2.4453588628796(-1)
1.4578947060761(-3) —1.4578947060761(-3)
Table 5
m s p (=9 re
2 1 0 1.0(-09)
3 1 0 3.6(-15)
4 1 0 5.6(-16)
2 1 1 2.5(-12)
2 1 2 6.5(-15)
2 2 1 4.5(-16)

By using the quadrature formula (2.2) and our methods we have calculated the integral

for some m, s, p (= q). I, is the modified Bessel function.

J = miyl) = j

1
¢

e

5

SNL=1

dt = 3.97746326050642...,

In general case the number of evaluations of integrand for (2.2) is m(2s + 1) + p + g + 2, but here one is

m+ 2.

In Table 5 the relative errors re of these calculations are given.
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