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M. M. Spalević, Quadrature Formulae of Radau and Lobatto Type
Connected to s-Orthogonal Polynomials, Ж. вычисл. матем. и ма-
тем. физ., 2002, том 42, номер 5, 615–626

Использование Общероссийского математического портала Math-Net.Ru подразумевает,

что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.221.182.138

4 марта 2023 г., 18:51:50



ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2002, том 42, № 5, с. 615-626 

УДК 519.6442 

Q U A D R A T U R E F O R M U L A E O F R A D A U A N D L O B A T T O T Y P E 
C O N N E C T E D T O s - O R T H O G O N A L P O L Y N O M I A L S ^ 

© 2 0 0 2 r . M e M , S p a l e v i c 
(Fac. ScL Dept. Math, and Informatic, P. O. Box 60, 34000 Kragujevac, Serbia-Yugoslavia) 

e-mail: spale@knez.uis.kg.асу и 
Received January 31, 2001; in final form, August 22, 2001 

При помощи обобщенной проблемы Гаусса, используя квадратурные формулы Гизетти и 
Оссичини, автор строит квадратурные формулы Гаусса-Турана типов формул Радо и 
Лобатто. Используя функцию влияния, автор оценивает остаточные члены этих формул. 
Предложен метод использования этих квадратур для вычислений. Приведены результаты 
численных экспериментов. Библ. 18. Табл. 5. 

1. INTRODUCTION 

Quadrature formulae are generally obtained by substituting the integral jh^f(x)dx to be evaluated with 

the integral ^(p(x)dx, where (p(x) is a function approximating/(x), whose indefinite integral is expressible 

in elementary functions. The choice of q>(x) is performed using interpolation methods. Thus the problem of 
approximating the integral of f(x) is reduced to the approximation of f(x) itself, that is to a problem not 
equivalent to the first one. Therefore, it is reasonable to think that it is possible to obtain quadrature formu
lae without using interpolation methods. In this way the theory of quadrature formulae is expounded in [1]. 
Our considerations will be based on the results which are expounded in [1], and because of that we will keep 
the notation from [1]. 

Let w(x) be a weight function on the interval [a, b], -°° < a < b < ©o. A quadrature formula of the form 

Ъ m 2s 

jw(x)u(x)dx = X X A h i u i H ) ( x i ) + RG(U)> (l Л ) 

а /=1/г = 0 

where A% = A(/"-,s\ x-t = x{-n,s\ which is exact for all algebraic polynomials of degree at most 2(s + l)m - 1, 
was considered firstly by Turan (see [2]), in the case when w(x)dx = dx on [-1,1]. The general case has been 
considered by Italian mathematicians Ossicini, Ghizzetti, Guerra, Rosati, etc. (see [3] and [1] for references). 

The nodes x-t in (1.1) must be zeros of a (monic) polynomial nm(x) which minimizes the integral 
ь 

F=F(a0, ...,am_{) = jw(x)nm(x)2s + 2dx, 
a 

where 

7im(x) = x +am_{x + ... + a{x + a0. 

In order to minimize F we must have 
ь 

jw(x)nm(x)2s+ lxkdx = 0, к = 0, 1, m - 1. 
a 

Such polynomials nm(x) = Ps^m(x), which satisfy this new type of orthogonality, power orthogonality, are 
known as 5-orthogonal (or s-self associated) polynomials with respect to the measure w(x)dx. 
[)MSC: Primary 41A55; secondary 65D30, 65D32. 
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An iterative process for computing the coefficients of ^-orthogonal polynomials in a special case, when 
the interval [a, b] is symmetric with respect to the origin and the weight function w is an even function, was 
proposed by Vincenti [4]. 

Gautschi and Milovanovic [3] gave a stable procedure for the numerical construction of s-orthogonal 

polynomials. In §3 of [3] a stable numerical procedure for calculating the coefficients Ahi in (1.1) was pro

posed. Some alternative methods were proposed by Stroud and Stancu [5] (see also [6]) and Milovanovic 

and Spalevic [7] (see also [8]). 
Remark 1. A particularly interesting case is one of the Chebyshev weight w(x) = (1 - jc 2 )~ 1 / 2 with the correspond

ing s-orthogonal polynomials, i.e., Gauss-Turan quadrature formulas. In 1930, Bernstein [9] showed that the monic 
Chebyshev polynomial minimizes all integrals of the form 

2 
_1 Л М - * 

Thus, the Chebyshev polynomials are ^-orthogonal on [-1,1] for each s > 0. Ossicini and Rosati found three other 
weights for which the s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and 
fourth kind (see [10]). 

Considering the set of Jacobi polynomials, Ossicini and Rosati [11] showed that the only Jacobi polynomials which 
are s-orthogonal for a positive integer s are the Chebyshev polynomials of the first kind. Recently, Shi [12] (see also 
[ 13]) has proved that the Chebyshev weight is the only one (up to a linear transformation) having the property: for each 
fixed m, the solutions of the extremal problem 

1 / m \k 1 

w(x)dx = min | n(x)kw(x)dx 
k(x) = X + ... 

for every even к are the same. 
Gori and Micchelli [14] have introduced for each m a class of weight functions defined on [-1,1] for which explicit 

Gauss-Turan quadrature formulas of all orders can be found. In the other words, these classes of weight functions have 
the peculiarity that the corresponding ^-orthogonal polynomials, of the same degree, are independent of s. 

2. EXISTENCE AND UNIQUENESS OF RADAU AND LOBATTO FORMULAE 
Let 

b p 2 s m 

jp(x)u(x)dx = £ Al^Xa) + £ £ A l u ( h \ x ^ + RR(u), (2.1) 
a /2 = 0 /т = 0 /=1 

- o o < a < o o 9 p e yV0, with 

RR(U) = 0 У lie (3>2(s+\)m + p , 

be the generalized Gauss-Turan quadrature formula of Radau type. 
Let 

b p 2 s m q 

jp(x)u(x)dx = £ A\0ulh\a) + £ ]T AL

hlu(h\x^ + £ AL

h<m +,u(h\b) + R%), (2.2) 
a /2 = 0 Л = 0 i'=l /? = 0 

- c o <a <b <o°,q,p G N0, with 

RL(U) = 0 \/uE <3>

2(s+\)m+P + c l + i , 

be the generalized Gauss-Turan quadrature formula of Lobatto type. 
With (3>

k we denoted the set of all polynomials of degree at most k, ke jV0. 
By using the results, which have been given by Ghizzetti and Ossicini [1], it is easy to prove existence 

and uniqueness of the formulas (2.1) and (2.2). 
Define the generalized Gauss problem (see [1, pp. 41-43]). 
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Let us consider the elementary quadrature formula 
b n -1 m 

jp(x)u(x)dx = ^Ahiu{h)(x^R(u), E(u) = 0 => R(u) = 0, 
a h: = 0 i = 1 

where E is the linear differential operator of order n. The question is whether, having fixed integers p{ (with 
0 < pi < n - 1, (3k = 1, 2, . . . ,ra) 1 < it is possible to make use of the arbitrary nature of these parameters 

to drop from the formula the values u{h)(x^) of the derivatives of order higher than n - p{ - 1, / = 1, 2, ..., m, 
that is whether there can exist a formula of the type 

b m n-Pi-l 

jp(x)u(x)dx = X X KiU{h\xd + R ( u ) , E(u) = 0 — R(u) = 0. (2.3) 
a i = 1 h = 0 

The answer give the following theorem, which the proof can be done in the similar way as one of 
Theorem 2.5.1 in [1] (see also the Problem 2 in [1, p. 45]). 

Theorem 1. Given the nodes xb ..., xm9 which satisfy 

a<x{ < ... <xm<b, (2.4) 

the linear differential operator E of order n and nonnegative integers 0 < plr < n - 1, (3k = 1, 2, ..., m) 1 < ph 

consider the homogeneous differential problem 

E(u) = 0; u{h)(x^ = 0, h = 0, 1, я i = 1,2, . . . ,m. (2.5) 

If this problem has no non-trivial solutions (whence n < mn - {pt) it is possible to write a quadrature 

formula of the type (2.3) inform a family ofmn - {Pi -m parameters. If on the other hand the problem 

(2.5) has q linearly independent solutions Uj(x) (j = 1, 2, ..., q, with n - nm + ^"l

= {Pi < q < pt (V/ = 1, 
2, m); 1 < q) then the formula (2.3) may apply only if the q conditions 

h 
jp(x)Uj(x)dx = 0, j = 1,2, ...,q, 
a 

are satisfied; if so it is possible to write a quadrature formula of the type (2.3) inform a family ofmn -
i={Pi ~n + qparameters. 

Consider the formula (2.1), with the conditions (2.4) for xh / = 1 , 2 , . . . , m, for which is RR(u) = 0 
\/il G <3>2m(s+ l) + p -

Let n = 2m(s + 1) + p + 1. By virtue of the theorem 1 we must consider the boundary problem 

dnuldxn = 0, 

with 

u{h\a) = 0, h = 0, 1, . . . , / ? , uih\xi) = 0, h = 0, 1, ...,2s, i = 1,2, . . . ,m, 

and its non trivial solutions which are 
m 

xk(x - a ) p + ' J " J ( - * " ~ Х [ ) Ъ + 1 , / : = 0 , 1, m - 1 . 

/ = l 

Therefore, (2.1) is possible if and only if there are satisfied 
b m 

j(x-a)p+ip(x)xkY\(x-xi)2s + ldx = 0, к = 0, 1 , ...m- 1, 
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and this shows that the nodes xt must coincide with the zeros of the polynomial Ps m(x) of the s-orthogonal 
system relative to the measure (x ~ af + lp(x)dx. 

With such a choice of the nodes the formula (2.1) is unique since, with the notations of the theorem 1, 
we have that ran - ^T™= {pt ~ n + q in our case is 

m(2s +\) + p+ \ -n + m = 0. 

Consider the formula (2.2), with the conditions (2.4) for xh / = 1 , 2 , . . . , m, for which is RL(u) = 0 \/u e 

Let n = 2m(s + l )+ / ? + g + 2. By virtue of the theorem 1 we must consider the boundary problem 

(fuldx = 0, 

with 

u{h\a) = 0, h = 0, 1, u^h\xj) = 0, /г = 0, 1, . . . , 25 , / = 1,2, . . . ,m, 

u{h\b) = 0, /г = 0, 1, ...,q, 

and its non trivial solutions which are 
m 

xk(x-a)p+\b ~x)q+llf^{x-Xi)2s+l, & = 0, 1, m - 1. 
i = i 

Therefore, (2.2) is possible if and only if there are satisfied 

^ m 

j(x-a)p + \b -x)q+ 1 р(х)хк^\(х~Xi)2s + [dx = 0, £ = 0, 1, m - 1, 
/ = i 

and this shows that the nodes xt must coincide with the zeros of the polynomial Ps ,n(x) of the 5-orthogonal 
system relative to the measure 

(x - a)p* l(b - x)q+i p(x)dx. 

With such a choice of the nodes the formula (2.2) is unique since, with the notations of the theorem 1, 
we have that mn - ^Г " ?

= { p{ -n + q in our case is 

m 

(m + 2)n-p0- - pm+ i ~ n + m = tnn + 2n-(n-p- \)~m(n~2s - \)~ 
i= l 

- (ft - q - 1) - n + m = 2sm + 2m + p + q + 2~ n = 0 

3. THE BOUNDING FORMULAS OF THE REMAINDER IN (2.1) 

Concerning the assumptions on p(x), u(x) for the validity of (2.1) we have the following theorem: 

Theorem 2. Formula (2,1) is valid under the following hypotheses: 

p(x) e L[a,b], u(x) e AC"~l[a, /?], 

ifb is finite, 

x p(x) e L[a, ©о), u{x) e Д С ] ^ ' [ А , <»), W ( / / ) ( X ) J j ; " ~ G L [0 , O O ) . 

X 

The proof is the same as one of the theorem 4.13.1. in [1, pp. 132-133] and will be omitted. 
Let p be even, without loss of generality. 
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where 

fl /7 = 0j = 0 /2 = 0 

a n d M : = 2 ^ , 7 V : = / ? , f o r 0 < / : < n - 2 5 - 2 ; M : = n - / : - 1, N := p, for n - 2s - I < к < n - p - 2; M := n - к - 1, 
N := n - к - I, for n - p - I <k< n - 1. 

(b). If p > 2s then (3.6) holds with M := 2s, N := /7, for 0 < it < n - p - 2; M := 2s, N := n - it - 1, for 
n-p- 1 <k<n-2s-2;M :=n-k- l,N:=n-k- 1, for я - 2 s - 1 <k<n~ 1. 

In both cases ((a) and (b)) we have 

n — к — 1 
qfflK*) = f ^ ^ , ^ ! ) , " ^ * e ( * m , * ) . ( 3 . 7 ) 

Now, we can conclude that 

Ф ( % ) = 0, к = 0, 1, / 2 - / 7 - 2 , Ф а )(/?) = 0, jfc = 0 , 1 , . . . , л - 1 , (3.8) 

and that the functions Ф(х), Ф ' ( х ) , Ф ( " " L V - 2)(JC) are continuous in [a, 6], while Ф ( " - 2 л _ 1 ) ( ^ ) , . . . ,Ф ( " _ 1 ) ( ^ ) 
have discontinuities of the first kind at the points x{, x w . From (3.7) we conclude 

(-\)кФ{к\х)>0 for xe (xm,b), к = 0, 1, (3.9) 

and, particularly, Ф(х) > 0 on (xm, /?). 
We now prove the following theorem: 
Theorem 3. Under the hypothesis that the weight function p(x) is not identically zero in any interval con

tained in [a, b], the influence function Ф(х) defined by (3.2) (together with (3.3) and (3.4)) belongs to the 
class C"~2s~2[a, b], and it is positive inside such an interval. 

Proof. The first part of the theorem has just been proved. Now, we will prove that the influence function 
is positive on (a, b). 

(i). Let firstly p < 2s. Prove that Ф(х) is positive on (a, xm] and, therefore, on (a, b) = (a, xm] и (xnv b). 
Consider Ф ( "" 2 ' ~ 2)(x). We will prove that Ф ("~ 2 v ~ 2)(x) has at most 2s + 2 zeros in each interval [JCz- _ A, x z], 

/ =1, 2, m. In fact, should it have 2s + 3 of them, for the Rolle theorem, Ф{"~ъ~1)(х) would have at least 
2s + 2 zeros inside [x, _ l 9 я,-], Ф(п~Ъ)(х) would have at least 2s + 1 zeros and so on, until we may conclude 

(a). Let p < 2s. We have that n = 2m(s + 1) + p + 1 is odd. For the remainder in (2.1) we have (cf. [1]): 
ь 

RR(u) = R(u) = j<b(x)uin\x)dx9 (3.1) 
a 

where the influence function Ф(х) is expressed by 4 

Ф(х) = cp / + {(x) for X;< x< xi+[, i = 0, 1, ra; JC0 = a, x m + 1 = b, (3.2) 

and the functions (р/х), integrals of the differential equation (p(n)(x) = -/?(jt), are given by the formulae 

- ^ © т ^ ^ ^ х х с - и ч ! ^ ^ ^ . - ! ) * ^ . ! ^ ! ^ , (3.3, 
a h = Oj = 1 /г = 0 

R 

where / = 1, 2, m + 1, and AAy- = . 
For ф т + {(x) we have 

^ /2-1 
<Pm + l (*) = J ^ ( ( n " j f ) f < 3 - 4 > 

From (3.2), (3.3) it follows, differentiating к times (with 0<k<n-l): 

Ф(к)(х) = <р\к)(х) for xe и _ 1 ? х г ) , i = 1,2, . . . , m + 1, (3.5) 
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that Ф(п~1)(х) would have at least two zeros inside [хг_ ь х г]. But this is absurd since from (3.6) there follows 
that, for x G (xz_ l 9 x,-), we have 

a 7 = 0 

and this function is decreasing since p is even. 

Particularly, Ф ( ' г- 2 5~ 2 )(х) = <p\n~2s~2)(x) in (a, x{) and <p{ e Cn'l[a9 x j . Let ф (

1

п " 2 5 ~ 2 ) (х) have a (a G N 0) 

zeros in (a, x{). Because of the conditions (pf\a) = 0, к = 0, 1 , . . . , n -p - 2, for the Rolle theorem, we have 

that < P i n " 2 A ~ °(x) has at least a zeros in (a, x t ) , etc., q>\n~p~2\x) has at least a zeros in (a, xA), ф^"^" l ) (x) 
has at least a zeros in (a, x x ). But, we can prove as above that Ф{п~p~ l)(x) has at mostp + 1 zeros in [a, x x ] . 
Therefore, we have a<p + 1, i.e., Ф ( ' г - 1 у - 2 ) ( х ) has at most p + 1 zeros in (a, X j ) . Therefore, Ф ("~ 2*~ 2 )(х) 
has at most p + 1 + (m - l)(2s + 2) zeros in (a, &) = (a, j q ) u [x l 9 xm] u (xm, £). 

We may then show that Ф(х) does not vanish inside [a, b] and therefore is positive, because it is such on 
(xm9 b). In fact, if Ф(х) should vanish at one point in (а, й), using (3.8) and applying Rolle theorem, we find 
that Ф(п~ъ~2)(х) would vanish at least n-2s-l times, in contraposition with the preceding deduction, be
cause n-2s-l<p+l + (m - l)(2s + 2) gives 1 < 0. 

(ii). Let p > 2s. Prove that Ф(х) is positive on (a, b). 
Consider Ф ( п _ 2 л ~ 2 )(x). We can prove as above that Ф{п~ъ~2)(х) has at most 2s+ 2 zeros in each interval 

[*,•_!, x j , / = 1, 2, m. Therefore, Ф ("~ 2*~ 2 )(х) has at most m(2s + 2) zeros inside [a, b]. 
We may then show that Ф(х) does not vanish inside [a, b] and therefore is positive, because it is such on 

(x w , b). In fact, if Ф(х) should vanish at one point in (a, b), using (3.8) and applying Rolle theorem, we find 
that Ф(п~р~1\х) would vanish at least n -p times, Ф(п~р)(х) would vanish at least n-p times, etc., Ф{п~ъ'~2)(х) 
would vanish at least n-p times, in contraposition with the preceding deduction, because n-p< m(2s + 2) 
gives 1 < 0. 

(iii). Let p = 2s. Prove that Ф(х) is positive on (a, b). 
Consider Ф(п~ъ~2)(х). We can prove as above that Ф ( ' г - 2 *" 2 ) (х) has at most 2s + 2 zeros in each interval 

X / ] , / = 1, 2, m. Therefore, Ф ( , г ~ ъ 2 ) ( x ) has at most m(2s + 2) - 1 zeros inside [a, b], since 
ф С Я - * - 2 ) ( д ) = 0 в 

We may then show that Ф(х) does not vanish inside [a, b] and therefore is positive, because it is such on 
(x w , b). In fact, if Ф(х) should vanish at one point in (a, b), using (3.8) and applying Rolle theorem, we find 
as above that Ф(п~ъ~2\х) would vanish at least n - 2s - 1 times, in contraposition with the preceding de
duction, because n - 2s - 1 < m(2s + 2) - 1 gives 1 < 0. 

Now, we can estimate the remainder in the formulas of the type (2.1), by using (3.1). 
1°. If u(x) G ACn~[[a, b] and a, b e R we have 

\R(u)\< т а х Ф ( х ) У п _ 1 = Ф(г0)Уп_{, 
a<x<b 

where Vn_{ denotes the total variation of the function u{"~[)(x) absolutely continuous on the interval [a, b]. 
Because Ф'(х) vanish in exact one point of the interval (a, b) it holds (3t0 e (a, b)) max Ф(х) = Ф(^0). 

a < x < h 

2°. If u{n)(x) is bounded in [a, b], i.e., 

M„ = sup \uin\x)\, £ < o o , 

a<x< b 

we have 
ь 

\R(u)\<MnJ0(x)dx. 
a 

3°. If и G Cn[a, b], b < ©О, because Ф(х) > 0 on (a, b) we may apply the mean value theorem and write 
ь 

R(u) = u{n)(%)fax)dx, ^ G (a,b). 
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/7=0 
From (4.2), (4.3) it follows, differentiating к times (with 0<k<n - 1): * 

<Dw(jt) = y?\x) for x e (jc,._i, jcf), / = 1,2, . . . , m + l , 

where 

n-h-k-I 

\n~h-k-\)V 
/1 = 0 7 = 1 л = 0 

andM:= 2s, N := p, for 0 < к < n - p - 2; M := 2s,N:=n-k-IJor n-p -I < k< n-2s-2; M := n-к-I, 
N:=n-k- 1, f o r / г - 2 s - 1 <k<n- 1. 

For the derivatives of (pw + i(x) (x e (xm, b)), we can use the following formulas: 
/ 7 . M / г _/ ? _/ с _ 1 

/7 = 0 
with M := 9, for 0 < к < n - q - 2; M := n - к - 1, for n - q - 1 < к < n - 1. 

Now, we can conclude that 

ф(%) = 0, ifc = 0, 1, . . . , / 2 - / 7 - 2 , Ф а ) (Ь) = 0, к = 0, 1, . . . , я - 9 - 2 , (4.5) 

and that the functions Ф(х), Ф'(х),..., Ф{п ~lv - 2 )(x) are continuous in [a, b], while Ф(п ~2v ~ 1 } (x) , . . . , Ф(п ~ A)(x) 
have discontinuities of first kind at the points xb ..., x m . 
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4. THE BOUNDING FORMULAS OF THE REMAINDER IN (2.2) 
Concerning the assumptions on p(x), u(x) for the validity of (2.2) we have the following theorem: 
Theorem 4. Formula (2.2) is valid under the following hypotheses: 

/1 — 1 
p(x) G L[a, b], u(x) e AC [a, b]. 

The proof is the same as one of the theorem 4.13.1. in [1, pp. 132-133] and will be omitted. 
For the following considerations in the formula (2.2) we will distinguish the cases: 

1°. p > q > 2s, 2°. p = q = 2s, 3°. p < q < 2s, etc., 

and the subcases with p (or q) is odd or even. 
Let, for example, p>q>2s,p + q- even, without loss of generality. Then n = 2m(s + 1) +/? + g + 2 is 

even. For the remainder in (2.2) we have (see [1]): 
ь 

RL(u) = R(u) = j<&(x)u(n\x)dx, (4.1) 
a 

where the influence function Ф(х) is expressed by 

Ф(х) = ф / + 1 ( х ) for x f < x < x / + 1 , / = 0, 1, m; x 0 = a, xm+[ = (4.2) 

and the functions (p;(x), integrals of the differential equation <pin)(x) = p(x), are given by the formulae 

- J ^ ^ T * - 1 I <-' > ^ 7 Й Г ^ - 1 и >*ЧЗ£т5Г < 4 3 ) 

fl h = 0 j = 1 /г = 0 
where / = 1, 2, m + 1, and/Ц, = A^. 

For (pw + A(x) we have 
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where Vn_l denotes the total variation of the function uin l)(x) absolutely continuous on the interval [a, b]. 
:ause Ф(х) vanish in exact one point < 

2°. If uin)(x) is bounded in [a, b], i.e., 

Because Ф(х) vanish in exact one point of the interval (a, b) it holds (3t0 e (a, b)) max Ф(х) = Ф(Г0) 
a < x < b 

Mn = sup \u(n\x)\, 
a<x<b 

we have 

\R(u)\ <Mnj\<b(x)\dx. 
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If we put u(x) = (x-ay + l(b - х)" + l[Ps> m(x)]2s + 2 in (4.1), then 
b b 

(-l)?+1«!J"0(x)</x = ^p{x){x-a)p + \b-x)q+l[PsJ,x)]2s + 2dx. 
a a 

So, we obtain that 

f/к/ w f < 0 ' i f 4 i s even> Ф{х)(1х\ 
J [>0, if q is odd. 

Therefore, if Ф(х) does not vanish in (a, b) it holds a sign on this interval 
We now prove the following theorem: 
Theorem 5. Under the hypothesis that the weight function p(x) is not identically zero in any interval con

tained in [a, b], the influence function Ф(х) defined by (4.2) {together with (4.3) and (4.4)) belongs to the 
class Cn~2s~2[a, b], and one holds a sign inside such an interval 

Proof. The first part of the theorem has just been proved. Now, we will prove that the influence function 
holds a sign on (a, b). We will give the proof for two cases, without loss of generality. 

(i) Let firstly p > q > 2s. 
Consider Ф{п~~ъ~2)(х). We can prove as above that Ф(п~ъ~2)(х) has at most 2s + 2 zeros in each interval 

[xh xi + i], / = 0, 1, m. Therefore, Ф{п-Ъ~2)(х) has at most (m + l)(2s + 2) zeros inside [a, b]. 
We may then show that Ф(х) does not vanish inside [a, b]. If Ф(х) should vanish at one point in (a, b), 

using (4.8) and applying Rolle theorem, we find that Ф{п ~p~ [)(x) would vanish at least n-p times, Ф (" ~p)(x) 
would vanish at least n-p times, etc., ф<"-^~ {\x) would vanish at least n-p times, Ф{п~с^(х) would vanish 
at least n-p-I times, ф^п~с1 + 1\х) would vanish at least n-p -2 times, etc., Ф{п~ъ-2\х) would vanish at 
least n-p-q + 2s+ 1 times, in contraposition with the preceding deduction, because n-p-q + 2s+l< 
< (m -¥ \){2s + 2) gives 1 < 0. 

(ii) Let p <q<2s. 
Prove that Ф(х) holds a sign on (a, b). Consider Ф(п~ъ'~2)(х). We can prove as above that ф(п-2*-2\х) 

has at most 2s + 2 zeros in each interval [xh xi + i], i = 1, 2, m - 1, and at mostp + 1 zeros in (a, x{), i.e., 
at most q+ 1 zeros in (xw, b). Therefore, Ф ( / ? ~ 2 л '" 2 )(x) has at most p + q + 2 + ( m - l)(2s + 2) zeros inside 
[<*, b]. 

We may then show that Ф(х) does not vanish inside [a, b]. In fact, if Ф(х) should vanish at one point in 
(a, b), using (4.5) and applying Rolle theorem, we find that ф< , г- 2 у- 2>(х) would vanish at least n - 2л - 1 
times, in contraposition with the preceding deduction, because n - 2s - I <p +1 + (m - l)(2s + 2) gives 1 < 0. 

Remark 2. The simplest case p = 2s = q has been analyzed in [15] (see also the Problem 13 in [1, p. 147]). Thus, 
in this paper we complete the results from [15] (see also [1]) for the quadrature formulas (2.1), (2.2). 

Now, we can estimate the remainder in the formulas of the type (2.2), by using (4.1). 
1°. If u(x) e ACn " [[a, b] we have 

= тах |Ф(х ) |У и _ , = \<SXt0)\Vn_{, 
a < x < b 
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R(u) = и{п)(ЩфШх, (a, b). 

5. CALCULATION OF QUADRATURE RULES (2.1), (2.2) 

We give two results, which give a connection between the generalized Gauss-Turan quadrature (1.1) and 
the corresponding formulas of Radau and Lobatto type (see for example [16]). 

Lemma 1. If we have the generalized Gauss-Turan quadrature of Lobatto type (2.2), with distinct real 
zeros xt = x - m ) , / = 1, 2, m, all contained in the open interval (a, b), there exists then a generalized 

Gauss-Turan quadrature formula (1.1), where w(x) = (b- x)q + l(x -of* lp(x), the nodes x- m ) are the zeros 

ofs-orthogonal polynomial 7CW(-, w(x)dx), while the weights A% are expressible in terms of those in (2.2) by 

2s 

Z = ] £ д А \ ( b - x ) q + \ x - a ) p + { f x = x^A^h h = 0, 1, 2s, i= 1,2, . . . ,m. AG 

k = h 

Proof. Let g(x) = (Ь-х)^1(х-аУ + %(х) , к e 2P2(, + andx t = х\т). We have by (2.2) 

m 2s 

jp(x)g(x)dx = ^^[(Ь-хГ+1(х~аГ+1п(х)]^=хЛ^ 
i = 1 k = 0 

and by (1.1) 

jw(x)n(x)dx = ^^Aln^Xxi). 

/=1/2 = 0 

So, we have that 
in 2 s m 2 s 

ХХ[(Ь-х)"+1(х-а)"+'я(х)]^Х- = Х Х ^ Л ) -
/ = Ik = 0 /=l/? = 0 

Applying the Leibnitz formula for the k-th derivative in the second sum, we find 

k = 0 

(b-x)q+\x-a)p+{K(x) 

2s f 2s 
bOU = 0 

AL

U = X J [ ( J - ^ ' t J C - a r ' f V ' W / l L -

h = 0\k = h 
1 = 

/ /7=0 

where 

Л / 7 / 

k = h 

= ^(l)[(b-x)q+\x-a)p+i]x^ h = 0 , 1 , . . . , 2 s , i = l , 2 , . . . , m . 

Similarly we can prove: 
Lemma 2. 7/*н>е /ШУ^ the generalized Gauss-Turan quadrature of Radau type (2.1), with distinct real 

zeros X/ = xfl)* , / = 1, 2, m, a// contained in the open interval (a, b), there exists then a generalized 

Gauss-Turan quadrature formula (1.1), where w(x) = w*(x) = ( х - а У 7 * /?(х), the nodes x{ are zeros 
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3°. If и e Cn[a, b], because Ф(х) holds a sign on (a, b) we may apply the mean value theorem and write 
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к = h 
/ \P+1 

(x-a) 
h = 0, 1, 2s, i = 1, 2, m. 

Remark 3. Recently the interest in the nodes and the coefficients of the formulas (1.1), (2.1), (2.2) has been un
derlined by some papers, dealing with a method of approximation of a function by means of moment preserving splines 
(see [16-18]). 

Example. As an example we consider the Chebyshev weight p(x) = ^Ji _ x

2 j on the interval / = [a, b] = 

= [-1, 1] in the Lobatto case. Therefore, we have 

w(x) = \ \ - x ) m + \ \ + x ) p + m . 

In Table 1 the nodes x-t of the corresponding Gauss-Turan quadrature formulae (1.1), for s = 2, m = 4, 
are given. 

In Table 2 the weights A% of the corresponding Gauss-Turan formulae are given. For these calculations 
we have used the methods from [3] and [7] (see also [8]). 

For p = 1 (=g, without loss of generality) in Table 3 the weights A\xi of the corresponding Gauss-Turan 

formulae of Lobatto type (2.2) are given. Table 4 gives the corresponding coefficients A\IQ , A^5 in the end-
points - 1 , 1 . The numbers in parentheses denote decimal exponents. The programs were realized in the dou
ble precision arithmetics in FORTRAN 77. 

In the cases when the derivatives of the integrand we can obtain relative simply, the quadratures (1.1), 
(2.1), (2.2) can be used for the approximate calculation of such integral. We give an example where it is 
preferable to use a formula of Gauss-Turan type. 

Table 1 

i x2i~i *2i 

1 -8.41567404859432(-1) -3.28168606801998(-1) 
2 3.28168606801998(-1) 8.41567404859432(-1) 

Table 2 

/ h Л / ; + 1, / 

1 0 7.5765832442755(-2) 6.2654888450913(-3) 
1 2 3.6654414242426(-4) 9.3958203613400(-6) 
1 4 1.4588085631151(-7) 
2 0 5.1328279010533(-1) 2.1311377827516(-2) 
2 2 6.5184626213695(-3) 1.1042906602195(-4) 
2 4 1.3566511670870(-5) 
3 0 5.1328279010533(-1) -2.1311377827516(-2) 
3 2 6.5184626213695(-3) -1.1042906602195(-4) 
3 4 1.3566511670870(-5) 
4 0 7.5765832442755(-2) -6.2654888450913(-3) 
4 2 3.6654414242426(-4) -9.3958203613400(^6) 
4 4 1.4588085631151(-7) 

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 42 № 5 2002 

of s-orthogonal polynomial 7tm(-, w*(x)dx), while the weights A% are expressible in terms of those in (2.1) by 
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Table 3 

/ h AL AL 

1 0 6.5802713035484(-1) 8.4368409927532(-3) 
1 2 2.6795494468975(-3) 4 3.1286893729615(-5) 
1 4 1.7136968279902(^6) 

2 0 6.6823331015210(-1) 3.2209234340733(-3) 
2 2 8.3649374736572(-3) 3.8429666602366(-5) 
2 4 L7038885475690(-5) 

3 0 6.6823331015210(-1) -3.2209234340733(-3) 
3 2 8.3649374736572(-3) -3.8429666602366(-5) 
3 4 1.7038885475690(-5) 

4 0 6.5802713035484(-1) -8.4368409927532(-3) 
4 2 2.6795494468975(-3) -3.1286893729615(-5) 
4 4 1.7136968279902(-6) 

Table 4 

h AL AL 

0 2.4453588628796(-l) 2.4453588628796(-l) 
1 1.4578947060761(-3) -1.4578947060761(-3) 

Table 5 

m 5" P (=4) re 

2 1 о 1.0(-09) 

3 1 0 3.6(-I5) 

4 1 0 5.6(-16) 

2 1 1 2.5(-12) 

2 1 2 6.5(-15) 

2 2 1 4.5(-16) 

By using the quadrature formula (2.2) and our methods we have calculated the integral 
l 

t 
J = я / ( l ) = f — £ — A t = 3.97746326050642..., 

for some m, ^, p (= ^). / 0 is the modified Bessel function. 
In general case the number of evaluations of integrand for (2.2) is m(2s + 1) +/? + g + 2, but here one is 

m + 2. 
In Table 5 the relative errors re of these calculations are given. 
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