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Abstract. The paper considers acceleration of a cylindrical liner caused by expanding 
products of internal detonation. A new model of liner motion is developed for the cases of 
axisymmetric (head-on) and grazing (side-on) detonation of the explosive charge. Suggested 
model relies on the two-stage regime of cylinder motion: (i) the first stage is the 
consequence of detonation wave – metallic liner interaction; as a result the initial velocity is 
imparted to the liner, (ii) the second stage is gas-dynamic push of the liner governed by 
detonation product expansion, similarly to the Gurney model. The model completely 
describes the cylinder motion in the cases of axisymmetric and quasi-steady grazing 
detonation. Comparison with extensive database of experimental results shows that proposed 
model provides very good description of measured data in the domain relevant for terminal 
ballistics applications. 

 
 
 

1. Introduction 
 
Behavior of cylindric metal liner under the action of impulsive internal loading brought 
about by explosive detonation is of great importance primarily in the analysis of high-
explosive warhead mechanisms, as well as from the aspect of structural integrity and safety 
of vessels with high-energy materials. Detonation of an explosive charge generates gaseous 
detonation products of extremely high pressure (~20 GPa) causing rapid expansion of 
cylindric metal liner. The goal is modeling of the cylinder motion and determination of its 
stress-strain state until the onset of fragmentation process.  

Gurney [1] formulated the classical model based on energy balance, analyzed in 
detail by Kennedy [2]. This model is still in wide use as a method for calculation of the 
final velocity of metallic liner, i.e. the initial velocity of generated fragments. However, 
Gurney's model does not take into account cylinder deformation and fails to describe the 
evolution of liner motion. Moreover, the model has certain limitations and requires 
experimental determination of Gurney energy [3].  

Numerous physically based models are suggested that characterize acceleration, 
deformation and fragmentation of metallic cylinder due to the action of detonation products 
[4], [5], [6]. These models employ different concepts of material behavior (elastic, ideally 
plastic, viscoplastic) and detonation product expansion.  
A new comprehensive analytical model of cylinder expansion under the action of 
detonation products will be briefly presented. 



 

2. Cylinder acceleration model 
 
The following assumptions will be used for modeling of the motion of metallic liner caused 
by explosive detonation: (i) detonation wave is one-dimensional and in steady-state, (ii) 
explosive material is instantaneously transformed into detonation products, and (iii) 
cylinder material is incompressible. 

Two stages of cylinder acceleration process will be considered: (i) the first stage 
implies the interaction of detonation wave and liner material; the result is virtually instant 
impart of the initial velocity to the cylindric liner, (ii) the second stage relates to the 
cylinder motion under the pressure of expanding detonation products, analogously to the 
Gurney model. In addition, two types of detonation will also be analyzed: (i) axisymmetric 
detonation of cylindric explosive charge that, in accordance to adopted assumptions, 
provides simultaneous onset of motion of the entire cylinder after detonation of complete 
explosive charge; cylindrical detonation wave is formed and head on interaction occurs 
between the detonation wave and the cylinder wall (Fig. 1a), (ii) in the case of grazing (side 
on) detonation, only the part of cylinder traversed by detonation wave is set into motion, 
while the detonation wave is orthogonal to the cylinder axis (Fig 1b). 

 
Figure 1. (a) Axisymmetric detonation of explosive charge (head on interaction of detonation wave and liner), and 
(b) grazing detonation (tangent, side on, interaction of detonation wave and liner) 
 

2.1. Initial velocity of cylinder 
 
The analysis of available experimental results (Fig. 2) shows that cylinder in the initial 
stage of motion has extremely high acceleration, i.e. in very short time interval reaches high 
velocity. This fact, as well as notable oscillatory character of liner velocity, indicates 
important effect of shock waves formed in the cylinder by the impulsive action of 
detonation wave. Backofen and Weickert [7], [8] analyzed numerous experimental data and 
introduced mentioned concept of two-stage acceleration of liner propelled by detonation 
products. Moreover, they suggested the empirical formula for calculation of the initial liner 
velocity vi. 

An analytical approach to the problem of interaction of detonation wave and 
metallic liner, resulting with the initial liner velocity vi, based on impedance matching 
technique [10] will be presented here.  
 
Normal interaction of detonation wave and liner. Normal (head on) interaction of the plane 
detonation wave and metallic liner is depicted in Fig. 3. 
Hugoniot shock adiabat of detonation products in velocity-pressure (u-p) coordinate system 
can be written in the form: 
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where ρ0 is explosive density, γ is polytrophic coefficient of detonation products, and Q is 
detonation heat. 

 
Figure 2. Typical rapid increase of cylinder velocity at the very beginning of motion; experimentally obtained 
diagram from [9] 

 

 
Figure 3. Normal (head on) interaction of detonation wave and solid obstacle; characteristic velocities of the 
process are indicated  
 
When the detonation wave interacts with metallic liner, it reflects back, and Hugoniot 
adiabat of reflected wave has the form [10]: 
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where up is material velocity of detonation products at the moment of encounter with the 
obstacle. The shock adiabat of cylinder material is defined by the relation: 

( )m m m m m mp u c s uρ= + ,                                         (3) 
where um and pm are velocity and pressure in the part of the cylinder encompassed by shock 
wave, while cm and sm are the equation of state parameters for the considered material. 
The continuity condition between two considered media (gaseous detonation products and 
cylindric metal liner) implies that the velocities and pressures in the shock wave zone 
should be equal: 

 ,    m mu u p p= = .                                             (4) 

Equating the right hand sides of Eqs. (2) and (3), and using condition (4), quadratic 
equation emerges that enable determination of the unknown liner velocity um: 
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If we introduce well-known relations for the velocity of detonation products and the 
detonation heat: 
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the previous quadratic equation is easily solved. The obtained velocity um is at the same 
time the initial velocity of cylinder generated by the effect of detonation wave 

 i mv u= .                                                                (7) 

In order to simplify the analytical treatment of the problem, we will assume the effect of 
shock waves is dominant only at the onset of cylinder motion, i.e. the subsequent 
oscillatory motion produced by reverberations of shock waves in the cylinder can be 
neglected comparing to the motion under the action of rapidly expanding detonation 
products. 

It should be emphasized that previous assumption restricts the domain of possible 
application of the model. The influence of reflected shock waves is dominant in the case of 
liner with thin walls, i.e. if the ratio of masses of liner and explosive charge M/C<1. In 
applications of explosive propulsion relevant to weapon system design, the metallic liner 
mass is principally significantly higher that the mass of explosive charge. 
 
Initial velocity in the case of grazing detonation. It is experimentally proved [8] that the 
initial velocity of the outer (free) surface of liner, as a result of the action of shock wave, is 
about two times lower in the case of grazing detonation comparing to the case of 
axisymmetric detonation. Regarding the relation between the initial velocities of inner and 
outer surface of the cylinder, it can be concluded that the same ratio is also valid for the 
initial velocities of inner surface of cylinder: 

 ( ) ( )side-on head-on

1
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The initial velocity of the inner surface of cylinder can be determined in a way similar to 
the case of axisymmetric detonation. In this case, the pressure generated in the cylindric 
liner is balanced with the pressure in the rarefaction Taylor wave of detonation products 
[11], [12]. It can be easily shown [13] that the pressure in rarefaction wave for one-
dimensional model is defined by the relation: 
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Analogously to the procedure for the case of head on interaction, numerical solution of the 
equation 
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provides the velocity u=u0 that is equal to the initial liner velocity ( ) 0side-oniv u= . 



 

2.2. Acceleration of the cylinder by gas push process 
 
Let us consider the second stage of the cylinder acceleration. The metallic cylinder of 
known density ρm and geometry (Fig. 4) is considered. The cylinder is assumed to be long 
enough to neglect the end effects, i.e. the axial outflow of detonation products. The simpler 
case of axisymmetric detonation will be analyzed first. The cylinder motion starts when the 
entire explosive charge is detonated. It is shown that due to the action of detonation wave, 
the cylinder receives the initial velocity vi. One-dimensional model of the cylinder motion 
is considered, shock wave effects are neglected, and Gurney's postulate of detonation 
products homogeneity is adopted.  

 
Figure 4. Geometric model of axisymmetric propulsion of metallic cylinder 

 
Mass conservation law. Since the cylinder material is incompressible, the mass 
conservation law yields: 
 2 2 2 2 2 2 2 2 2
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where r1 and r2 are the radial positions of inner and outer cylinder surface, r10 and r20 are the 
corresponding initial cylinder dimensions, while rœ[r1, r2] is the Lagrange coordinate of an 
arbitrary cylinder point, and r0œ[r10, r20] is its initial value. The continuity equation can be 
also written in the form: 
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where v is the cylinder velocity. Integration of Eq. (13) gives: 
  1 1vr v r c= = ,                                                            (13) 

where c=c(t) is the function of time t only. It is clear that determination of the position r1 
and the velocity v1 of the inner cylinder surface enables computation of the position and 
velocity of any cylinder point using Eqs. (11) and (13).  
 
Application of Lagrange’s equation to the motion of the cylinder. Following the idea 
formulated by Flis [14], the motion of the cylinder due to the rapid expansion of detonation 
products is modeled by the Lagrange’s equation in the form: 
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In the previous equation L is Lagrange’s function 
 L T U= − ,                                                          (15) 

T is the total kinetic energy of the system, U – the total potential of conservative forces, Q – 
the total non-conservative generalized force, and the position of the inner surface of 
cylinder r1 is adopted as the generalized coordinate. 
The total kinetic energy of the system consists of the kinetic energy of the cylinder TM and 
the kinetic energy of detonation products TDP: 

 M DPT T T= + .                                                     (16) 

The kinetic energy of the cylinder per unit length can be written as: 
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where M is the cylinder mass per unit length. 
The kinetic energy of the gaseous detonation products, having in mind the adopted 
assumption of their homogeneity (∂ρ/∂r=0), depends on the detonation products velocity 
profile. The power law for the detonation products is assumed: 
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where 1 1v r=   is the inner cylinder surface velocity, and α is an exponent. It can be shown 
[15] that the linear change of the detonation products velocity (α=1), which is also applied 
in the original Gurney’s concept [1], corresponds to the hypothesis of homogenous 
detonation products. The kinetic energy of detonation products can now be written as: 
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where C is the mass of explosive charge per unit length. 
The total potential U of conservative forces is equal to the internal energy of detonation 
products E 

 U E= .                                                             (20) 
The potential derivative can be expressed in the form: 
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where VDP is the volume occupied by detonation products, and p is their current pressure. 
The work of non-conservative forces is in fact the work of the forces that resist cylinder 
deformation. Normal radial and circular stresses have the dominant role in the cylinder 
deformation. Different approaches (e.g. [5], [6], and [16]) demonstrated that the distribution 
of radial stress was approximately linear: 
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Tresca’s hypothesis of the material plastic flow at the maximum shear stress is employed: 
 r yθσ σ σ− = .                                                      (23) 

Regarding the fact that the detonation products pressures are extremely high – significantly 
greater than the yield stress of conventional materials used in explosive propulsion – the 
viscoplastic model for dynamic yield stress is applied [4]: 
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where σ0 is the quasi-static flow stress, µ is dynamic viscosity, and ε is strain rate. Using 
Eqs. (22), (23) and (24), the deformation works of radial and circular stresses Wr and Wθ, 
and corresponding generalized forces can be calculated. The sum of these forces is the total 
non-conservative generalized force that can be written in the form: 
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Substitution of the kinetic energies, Eqs. (17), (19), the potential, Eqs. (20), (21), and the 
generalized force (25) in the Lagrange’s equation (14) leads to the final differential 
equation of motion of the inner cylinder surface: 
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where M/C is the ratio of the cylinder mass to the explosive charge mass: 

 
2

2
0 10

mwM
C r

ρ
ρ

= .                                                           (27) 

 
Detonation products pressure. In order to solve the equation of motion (26), the detonation 
products pressure p=p(r1) must be defined. Two approaches are possible: (i) the polytrophic 
expansion law for detonation products can be used, or (ii) application of an empirically 
based equation of state for detonation products. 
 Based on the first approach, the pressure p is determined under the condition that 
the polytrophic expansion starts from the Chapman-Jouget state [17], [3]. Using the results 
of the elementary detonation theory [18], the detonation products pressure can be 
determined as a function of the inner cylinder surface position: 
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The values of parameter γ are usually in the interval [2.7, 3.0], and if experimental results 
lacks the most common approximation is γ≈3. 
The second approach, based on the empirically established equation of state of detonation 
product, provides the more reliable results. Because of simplicity and data availability, 
Jones-Wilkins-Lee (JWL) equation of state is frequently used in practice: 
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where V is the detonation products expansion factor 
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while A, B, C, R1, R2 and ω are the experimentally determined parameters. The handbook 
[19] is comprehensive and reliable source of data for the JWL equation of state of different 
explosives.  

Substituting the pressure (Eq. (28) or (29)) in the equation of the cylinder motion 
(26), an ordinary differential equation of the second order emerges. This equation can be 
easily solved by numerical methods. Off course, the appropriate initial conditions are 
applied: 
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Second stage in the case of grazing detonation. In this case, the modeling of the cylinder 
motion implies determination of the cylinder velocity as a vector: the velocity magnitude 
should be calculated, as well as the direction of velocity vector. Regarding the velocity 
magnitude, basically the presented model for axisymmetric detonation can be used. If the 
lateral outflow is negligible (which is true for a slender cylinder), an elementary cylinder 
part is thought to be propelled by the corresponding elemental detonation products (Fig. 5). 
Therefore, in the second, gas-dynamic phase of the cylinder motion, it is insignificant 
whether this elementary mass of gaseous detonation products emanates from an 
axisymmetric or grazing detonation [15]. Hence, the proposed model of gas-push process 
based on the Lagrange’s equation will be also applied in this case. 

 
Figure 5. Grazing detonation: the elementary cylinder mass propelled by the corresponding elementary mass of 
the gaseous detonation products 

The cylinder acceleration process by the grazing detonation wave can be considered quasi-
steady – the velocity of any elementary cylinder part has the same time history. If the 
position of detonation wave is defined by the coordinate x, the cylinder velocity in the case 
of grazing detonation can be expressed as: 
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The velocity direction is defined by the angle δ between the velocity vector and the line 
normal to the cylinder axis. By the classical Taylor model [20] of the cylinder motion by 
grazing detonation this angle is determined by: 
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The analysis of liner kinematics [21], [22] shows that the angle of liner rotation θ, and the 
angle of velocity vector δ can be numerically determined from the system of equations: 
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In the case of small rotation angles, the previous system of equation can be simplified to the 
Taylor equation (33) and θ=2δ.  
 

3. Comparison with experimental results and discussion 
 
In order to investigate validity of the suggested model computational results are compared 
with the available experimental data for axisymmetric, as well as for grazing detonation. 
 
3.1. Comparison with experimental data for axisymmetric detonation 
 
The results of presented one-dimensional model of the cylinder motion under the action of 
gaseous products of axisymmetric detonation are analyzed through comparison with the 
experimental data from [23]. Motion of steel cylinder after electric initiation by the bundle 
of copper wires is observed by high-speed digital camera. The characteristics of the 
explosive and cylinder used, which are at the same time the input data for the model, are 
shown in Table 1. 

Table 1. Characteristics of explosive and metallic cylinder 
Explosive  Cylinder 

(r10=14 mm, r20=17 mm ) 
pentrit (PETN) stainless steel JIS SUS 304 
density ρ0 (kg/m3) 950 density ρm (kg/m3) 7850 
detonation velocity D (m/s) 5420 yield stress σ0 (MPa) 340 
polytrophic constant γCJ 2.57 dynamic viscosity µ (kPas) 3.0 

 
Comparison of the experimentally determined radial displacement of the outer cylinder 
surface and the model results is shown in Fig. 6. Cylinder acceleration process is obviously 
impulsive and initial acceleration is of the order of 108 m/s2. Good correspondence between 
experimental and model results is noted, until the moment of fragmentation onset (~15 µs) 
accompanied with longitudinal cracks on the outer cylinder surface. From that moment, the 
cylinder loses structural integrity and the analyzed model can not be applied. Fragmentation 
process completes after tfº18µs when a massive leakage of detonation products is 
observed. The outer cylinder radius in the moment of fragmentation completion is r2f=30 
mm, and the corresponding cylinder strain is εf=0.76. 



 

The time history of cylinder velocity is presented in Fig. 7. As can be seen from the 
diagram, the outer cylinder surface velocity calculated by the Gurney formula is expectedly 
higher than the measured fragmentation velocity, whereas the model result is slightly lower 
than the experimental value. 

 
Figure 6. Radial position of inner and outer cylinder surface under the action of detonation products – comparison 
of the experimental data [23] and the model prediction  
 

 
Figure 7. Time history of the expanding cylinder velocity – Gurney model, experimental data [23] and model 
results 
 



 

3.2. Comparison with experimental data for grazing detonation 
 
There are numerous studies related to the experimental investigation of the metallic 
cylinder expansion by grazing detonation. The most part of these studies deal with 
modeling of copper cylinder expansion under the action of detonation products of different 
explosive compositions („cylinder test“). Measurement of the cylinder displacement, i.e. 
identification of expansion dynamics, enables determination of equation of state of 
detonation products, the Gurney energy of explosive used, etc. 

Figure 8. Comparison of the cylinder test experimental results [24] with the prediction of theoretical model. 
Change of the outer cylinder surface velocity as a function of its displacement is shown. The main properties of 
explosive compositions (density ρ0 and detonation velocity D) are indicated along with the relative errors of 
theoretical results at displacements of 6, 19 and 30 mm. Explosive compositions: a) octogen (HMX), b) PBX-9404 
(94/3/3 HMX/nitrocellulose/chloretyl phosphate), c) composition C-4 (91/9 RDX/organic binder), d) composition 
B (64/36 RDX/TNT) 

 
The study [24] is a comprehensive collection of experimental results related to the 

mentioned „cylinder test“. The inner radius of copper cylinder used is r10=12.7 mm, the 
cylinder wall thickness is δ=2.54 mm, and the cylinder length is L=12d10=305 mm. The 
following handbook values of physical and mechanical properties of copper are used in the 
computer program based on the suggested model: density ρ=8945 kg/m3, quasi-static yield 

a) b) 

c) d) 



 

stress s0=75.5 MPa, dynamic viscosity µ=103 Pas, and parameters in the equation of state – 
cm=3940 m/s and sm=1.49. Measurement of the cylinder motion is performed by a high-
speed camera in the streak mode. The cylinder expansion is described by the measured 
velocities in three characteristic positions, corresponding to the detonation products 
expansions of V=2, 7 and 11. These expansion factors coincide with the outer cylinder 
surface displacements of 6 mm, 19 mm, and 30 mm, respectively. The results of these 
experiments are compared to the model predictions in Fig. 8.  

 
e) f) 

  
g) h) 



 

 
i) j) 

 
Figure 8. (continued) Comparison of the cylinder test experimental results [24] with the prediction of theoretical 
model. Explosive compositions: e) TNT, f) TATB, g) PBX-9502 (95/5 TATB/Kel-F800), h) pentrite, i) NM – 
nitromethane, j) octol (75/25 HMX/TNT).  
 
The measured values of the radial velocity at three characteristic positions and theoretically 
determined velocity as a function of the outer cylinder surface displacement ∆r2 are shown 
for ten widely used explosive compositions. The explosive type and its experimentally 
determined properties – density ρ0 and detonation speed D are indicated on each diagram. 
Having in mind that for the most explosive compositions with defined densities the 
parameters of JWL equation of state are not available, the version of the analytical model 
with pressure determined by polytrophic expansion is applied. The polytrophic constant γ is 
determined according to the empirical equation [25]: 

01.8 0.6γ ρ= + ,                                                         (35) 

where the explosive density is taken in g/cm3. The relative errors of theoretically 
determined velocities compared to the measured values are also specified on the diagrams. 
As can be seen from the diagrams, the predicted velocities are in excellent accordance with 
experimental data. The relative error of velocity does not exceed 3% and is usually lower 
than 1%. 

Comprehensive experimental-numerical study of the metallic cylinder acceleration 
by the explosive detonation is presented in [26] and [27]. Copper cylinder expansion by the 
grazing detonation of explosive composition PBX-9501 (95/5–HMX/binder) was 
thoroughly investigated. The cylinder motion was diagnosed by high-speed camera and 
Fabry-Perot interferometry. Comparison of experimentally determined and theoretically 
predicted cylinder velocities is shown in Fig. 9. Thickness of the cylinder is 5.08 mm 
(r10=51.03mm, r20=56.11 mm), while the metal-explosive ratio is M/C=1.02. Theoretical 
results calculated on the basis of polytrophic expansion (γ=const.) and the JWL equation of 
state are mutually very close. These results are in good accordance with experimental data, 
except in the initial stage of motion dominated by shock waves, which is abstracted by 
introduction of the initial velocity. 



 

 
Figure 9. Copper cylinder velocity as a function of time: comparison of experimental results [26] with theoretical 
predictions for polytrophic expansion of detonation products and JWL equation of state 
 
Experimentally and theoretically determined profiles of the outer cylinder surface 49.65 µs 
after initiation are presented in Fig. 10. Calculated results fits experimental data very well, 
except at the cylinder end, which is the effect of detonation product outflow that is ignored 
in the suggested model. 

 
Figure 10. Outer cylinder surface profile: comparison of experimental data [26] with the results of suggested 
model 
 



 

4. Conclusion 
 
Cylindrical liner motion under the action of expanding detonation products has been 
considered in the paper. A new cylinder acceleration model is suggested for the cases of 
axisymmetric and grazing detonation of explosive charge. The model implies two-stage 
character of the liner motion: (i) early interaction of the detonation wave and metallic liner 
results in impart of the initial velocity to the cylindric liner, and (ii) the gas-push stage of 
rapid cylinder motion, similarly to the Gurney’s model. The initial liner velocity is 
determined by impedance matching technique. The cylinder motion in the second stage is 
modeled by the Lagrange’s equation, taking into account liner deformation, as well as 
detonation products pressure according to the polytrophic law or JWL equation of state.  
Comparison with comprehensive database of available experimental results indicates the 
model predictions are in good accordance with experimental data in the domain that is of 
practical importance for explosive propulsion.  
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