

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 301 (2005) 384–385 www.elsevier.com/locate/jmaa

On a fixed point theorem of Kirk

Ivan D. Aranđelović

Faculty of Mechanical Engineering, 27 marta 80, 11000 Belgrade, Serbia and Montenegro Received 18 February 2004 Available online 2 September 2004 Submitted by W.A. Kirk

Abstract

W.A. Kirk [J. Math. Anal. Appl. 277 (2003) 645–650] first introduced the notion of asymptotic contractions and proved the fixed point theorem for this class of mappings. In this note we present a new short and simple proof of Kirk's theorem. © 2004 Elsevier Inc. All rights reserved.

Keywords: Fixed point; Asymptotic contraction

Let X be a nonempty set and $f: X \to X$ arbitrary mapping. $x \in X$ is a fixed point for f if x = f(x). If $x_0 \in X$, we say that a sequence (x_n) defined by $x_n = f^n(x_0)$ is a sequence of Picard iterates of f at point x_0 or that (x_n) is the orbit of f at point x_0 . W.A. Kirk [1] introduced the notion of asymptotic contractions and proved the fixed point theorem for this class of mappings. Now we present a new short and simple proof of Kirk's theorem.

Theorem 1 (W.A. Kirk [1]). Let (X, d) be a complete metric space, $f : X \to X$ continuous function and (φ_i) sequence of continuous functions such that $\varphi_i : [0, \infty) \to [0, \infty)$ and for each $x, y \in X$, $d(f^i(x), f^i(y)) \leq \varphi_i(d(x, y))$. Assume also that there exists function $\varphi : [0, \infty) \to [0, \infty)$ such that for any r > 0, $\varphi(r) < r$, $\varphi(0) = 0$ and $\varphi_i \to \varphi$ uniformly on the range of d. If there exists $x \in X$ such that orbit of f at x is bounded then f has a unique fixed point $y \in X$ and all sequences of Picard iterates defined by f converge to y.

E-mail address: iva@alfa.mas.bg.ac.yu.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.07.031

Proof. From the statement of the theorem it follows that φ is continuous, because the sequence (φ_i) is uniformly convergent. For any $x, y \in X, x \neq y$, we have

$$\lim d(f^n(x), f^n(y)) \leq \lim \varphi_n(d(x, y)) = \varphi(d(x, y)) < d(x, y).$$

If there exist $x, y \in X$ and $\varepsilon > 0$ such that $\overline{\lim} d(f^n(x), f^n(y)) = \varepsilon$ then there exists k such that $\varphi(d(f^k(x), f^k(y))) < \varepsilon$, because φ is continuous, and $\varphi(\varepsilon) < \varepsilon$. This implies that

$$\overline{\lim} d(f^n(x), f^n(y)) = \overline{\lim}_n d(f^n(f^k(x)), f^n(f^k(y))) \leq \overline{\lim}_n \varphi_n(d(f^k(x), f^k(y)))$$
$$= \varphi(d(f^k(x), f^k(y))) < \varepsilon,$$

which is a contradiction. So we obtain that

$$\lim d(f^{n}(x), f^{n}(y)) = 0, \tag{1}$$

for any $x, y \in X$, which implies that all sequences of Picard iterates defined by f, are equi-convergent and bounded.

Now let $a \in X$ be arbitrary, (a_n) be a sequence of Picard iterates of f at point $a, Y = \overline{(a_n)}$ and $F_n = \{x \in Y : d(x, f^k(x)) \leq 1/n, k = 1, ..., n\}$. *Y* is bounded because (a_n) is bounded. From (1) follows that F_n is nonempty and since f is continuous F_n is closed, for any n. Also, we have $F_{n+1} \subseteq F_n$. Let (x_n) and (y_n) be arbitrary sequences, such that $x_n, y_n \in F_n$. Let (n_j) be a sequence of integers, such that $\lim d(x_{n_j}, y_{n_j}) = \lim d(x_n, y_n)$. Now we have

$$\lim d(x_{n_{j}}, y_{n_{j}}) \leq \lim \left(d\left(x_{n_{j}}, f^{n_{j}}(x_{n_{j}})\right) + d\left(f^{n_{j}}(x_{n_{j}}), f^{n_{j}}(y_{n_{j}})\right) + d\left(y_{n_{j}}, f^{n_{j}}(y_{n_{j}})\right) \right)$$

=
$$\lim \varphi_{n_{i}} \left(d(x_{n_{i}}, y_{n_{j}}) \right) = \varphi \left(\lim d(x_{n_{j}}, y_{n_{j}})\right),$$

and so $\lim d(x_{n_j}, y_{n_j}) = \varphi(\lim d(x_{n_j}, y_{n_j}))$ which implies that $\lim d(x_{n_j}, y_{n_j}) = 0$, because *Y* is bounded. Thus $\overline{\lim} d(x_n, y_n) = 0$ and so $\lim d(x_n, y_n) = 0$. This implies that $\lim \operatorname{diam} F_n = 0$. By completeness of *Y* follows that there exists $z \in X$ such that $\bigcap_{i=1}^{\infty} F_n = \{z\}$. Since $d(z, f(z)) \leq 1/n$ for any *n*, we have f(z) = z. From (1) follows that all sequences of Picard iterates defined by *f* converge to *z*.

Remark. In the statement of this Theorem in [1], assumption "f is continuous" was inadvertently left out, but it was used in the proof of theorem.

Acknowledgment

The author is grateful to the referee for helpful suggestions and to the Ministry of Science of Republic of Serbia for its support.

Reference

[1] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003) 645-650.