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Abstract

W.A. Kirk [J. Math. Anal. Appl. 277 (2003) 645—-650] first introduced the notion of asymptotic
contractions and proved the fixed point theorem for this class of mappings. In this note we present a
new short and simple proof of Kirk’s theorem.
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Let X be a nonempty set anfl: X — X arbitrary mappingx € X is a fixed point forf
if x = f(x).If xo € X, we say that a sequence,) defined byx,, = f"(xo) is a sequence
of Picard iterates of at pointxg or that(x,) is the orbit of f at pointxg. W.A. Kirk [1]
introduced the notion of asymptotic contractions and proved the fixed point theorem for
this class of mappings. Now we present a new short and simple proof of Kirk's theorem.

Theorem 1 (W.A. Kirk [1]) . Let (X, d) bea complete metric space, f: X — X continuous
function and (¢;) sequence of continuous functions such that ¢; : [0, c0) — [0, o0) and
for each x,y € X, d(f (x), f/(y)) < ¢i(d(x, y)). Assume also that there exists function
@10, 00) — [0, co) such that for any » > 0, ¢(r) < r, ¢(0) =0 and ¢; — ¢ uniformly
on therange of d. If there exists x € X such that orbit of f at x is bounded then f hasa
unique fixed point y € X and all sequences of Picard iterates defined by f convergeto y.
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Proof. From the statement of the theorem it follows tlats continuous, because the
sequencéy;) is uniformly convergent. For any, y € X, x # y, we have

imd(f"(x), f*() <limg,(d(x,y)) =¢(d(x,y) <d(x,y).
If there existr, y € X ande > 0 such thatim d(f”(x), f"(y)) = ¢ then there existé such
thatp(d(f*(x), f*(y))) < ¢, because is continuous, ang(e) < ¢. This implies that
imd (f" ), f" ) =lmd(f" (@), £ () <Tmen(d(f ). f45))

=p(d(f @, ff)) <e.
which is a contradiction. So we obtain that

limd(f"(x), f"(y)) =0, (1)

for any x, y € X, which implies that all sequences of Picard iterates defined bgre
equi-convergentand bounded.

Now leta € X be arbitrary(a,,) be a sequence of Picard iteratesfoét pointa, ¥ =
(an) andF, = {x € Y: d(x, f*(x)) <1/n, k=1,...,n}. Y is bounded becaude,) is
bounded. From (1) follows thaf, is nonempty and sincg is continuousF,, is closed,
for anyn. Also, we haveF, .1 C F,. Let (x,) and(y,) be arbitrary sequences, such that
Xn, yn € Fy. Lt (n;) be a sequence of integers, such thatdim,;, y,;) = limd(xu, yp).
Now we have

lim d(xn_,w )’n_/) <lim (d(xnjs fm (xn_/)) + d(fnj (xnj)v fm ()’n_/))
+ d()’n_/v fr (Ynj)))
=lim gy, (d(x,lj, y,,].)) = p(lim d(xn;, y,lj)),
and so limd(xy;, yn;) = ¢limd(xy;, y»;)) which implies that limi(x,;, y»;) = 0, be-
causeY is bounded. Thudimd(x,, y,) = 0 and so limi(x,, y,) = 0. This implies
that limdian¥, = 0. By completeness of follows that there exists € X such that

MNi2q Fn = {z}. Sinced(z, f(z)) < 1/n for anyn, we havef(z) = z. From (1) follows
that all sequences of Picard iterates defined'lmpnverge tqq. O

Remark. In the statement of this Theorem in [1], assumptighi§ continuous” was inad-

vertently left out, but it was used in the proof of theorem.
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