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Abstract. For a given internal combustion (IC) engine stationary test plan, significant 

time savings during its realization could be achieved if the sequence of test points 

execution is adequately determined. The criterion for stabilizing the engine operating 

point is determined by the magnitude of the change in the most inert parameter, and in 

the general case, it is the temperature of the engine exhaust gases. A certain level of 

prior knowledge about the examined object is necessary to conduct such an analysis. If 

there are no results from previous tests, simulation models, or experiences, the Slow 

Dynamic Slope (SDS) tests are a great way to quickly gather the necessary information. 

The task of finding the optimal sequence for a stationary engine testing plan can be set 

as Travelling Salesman Problem (TSP). This paper will present the application of one 

of the heuristic methods for solving the TSP on the example of testing the IC engine, 

which is a very complex dynamic system. Following this model, it is possible to 

optimize the stationary test plan for any other dynamic system. The basic idea is to find 

such a sequence of stationary operating points, during the realization of which a minor 

deviation of the engine exhaust gas temperature is obtained, resulting in the operating 

point's shortest stabilization time. 

1. Introduction 

The tightening of legal regulations and increasingly strict market requirements in terms of performance 

and comfort demand lead to a continuous increase in the complexity of the vehicle's drive system. 

Although the powertrain may consist of various subsystems, the central point where all information 

intersects is the engine control unit (ECU). Modern vehicles are equipped with numerous additional 

systems that can be managed by separate control units, but a certain level of communication and 

information exchange between the peripherals and the central ECU must exist, so that the functionality 

and the possibility of conducting service diagnostics are satisfied. For this reason, modern ECU counts 

several thousand parameters based on which the management of the drive system and other vehicle 

systems will be formed. 

 

To optimally adjust the control parameters based on which the ECU will form proper system control, 

the so-called process of calibration of the parameters of the control unit is carried out. As a result of the 

increased complexity, nonlinearity, and multidimensionality of the object, the calibration of the control 

parameters of the ECU has become a process that requires the most significant financial and time 



IX International Congress Motor Vehicles and Motors (MVM 2022)
IOP Conf. Series: Materials Science and Engineering 1271  (2022) 012005

IOP Publishing
doi:10.1088/1757-899X/1271/1/012005

2

 
 
 
 
 
 

resources during internal combustion (IC) engine and drivetrain development. The algorithm of the 

control unit consists of numerous functions [1] and corresponding models that can be of different 

complexity. Mathematical models used for these purposes are divided into complex submodels of the 

physical process of a given subsystem and simplified submodels in the form of control maps or curves. 

 

The calibration and verification of mathematical models and parameters that will later be used on the 

ECU cannot be successfully realized without data gathered from in-laboratory engine testing. 

Considering the complexity of the object, the efficiency of the testing process is of crucial importance, 

and one of the methods that can be used for testing efficiency improvement is the Slow Dynamic Slope 

(SDS) method [2,3], which was the subject of earlier research [4,5].  

 

The methods of dynamic engine testing can contribute to stationary test plan improvement in terms of 

determining the operating points in which the tests make the most sense [6]. However, this paper will 

focus on the further use of this information and determining the most efficient experiment plan execution 

sequence. The method that will be explained in detail consists of configuring an efficient genetic 

algorithm (GA) that solves this problem extremely well and reduces the time needed for engine test 

bench operation. 

2. Dynamic Engine testing using Slow Dynamic Slope Method 

The idea of the SDS test is based on a slow continuous change of the control parameter. The continuous 

change of control parameters over time results in deviation (offset) of the measured output of the system 

concerning the stationary values that will occur if the test was carried out as a quasi-stationary. The 

values and position of the offsets will depend on the system's characteristics (system gain, time 

constants) and the slope of the input. In the ideal case, when increasing the value of the control parameter 

during a test, we expect this offset to have some constant value, and when decreasing this parameter by 

the same intensity in the opposite direction, we expect the offset to be symmetrical. By determining the 

mean value of the response during the ascending and descending control slopes, an approximation is 

obtained that adequately corresponds to the results of the quasi-stationary test. 

  

During dynamic test sequences, the engine load parameter (represented as Effective Torque Me) was 

varied while the Engine Speed (n) was kept at a constant level. After the test was completed, the Engine 

Speed was successively changed until the entire global operation field of the engine was covered. 

 

Two concepts of this type of examination were carried out: 

• Tests with stationary preparation (Figure 1) during which the dynamic sequence begins with the 

stationary engine operation (curve index S), 

• Tests with dynamic preparation (Figure 2) during which no parts with a stationary operation are 

applied (curve index D). 

 

Also, each dynamic engine load pass is configured with a different total ramp time, i.e., a different 

gradient of the ascending and descending slope function. To see the effect of the speed of change of the 

control parameter on the final results (thus system response), the duration of the experiment was varied 

from 120 s to 600 s for each examined Engine Speed. The revolutions were kept constant in the range 

of 1500 to 3000 min-1. 

 

Each of these tests has certain specific advantages and disadvantages [6], but at this point, it should be 

noted that the SDS data were used to quickly collect information and generate approximate stationary 

results on a wide engine operation domain, and later that results will serve to optimize the detailed 

stationary test plan. 
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Figure 1. Engine load change for SDS tests 

with stationary system preparation at 

1500 min−1. 

Figure 2. Engine load change for SDS tests 

with dynamic system preparation at 1500 min−1. 

3. Experimental Setup  

The highest level of the engine test bench automation implies centralized supervision and control of all 

subsystems. The commercially available platform AVL PUMA Open [7] incorporates dyno control, 

control of other measuring devices, including a system for determining the composition of exhaust gases 

and analysis of the combustion process by engine indication, implementation of automated test plans 

with the possibility of calibrating the control parameters of the control unit. The use and maintenance 

of such a platform require exceptional financial and engineering resources and are justified in the 

companies of the global automotive industry. Automated engine test plans are implemented using 

commercially available software to define them; in this particular case, the AVL CAMEO software was 

used [8]. The AVL PUMA Open software's basic functionality in communication between the AVL 

CAMEO software and the Rotronics [9] brake controller, which does not support an interface for AVL 

CAMEO, is implemented within the NI LabVIEW programming environment. The AVL CAMEO 

software is an engineering tool that enables complete management of the test bench for engine testing, 

calibration of control parameters, and formation of simple mathematical models of parameters that 

characterize the engine working process. This software is primarily intended for testing the IC engines, 

but newer versions also provide support for testing hybrid powertrains and engines with a gearbox 

assembly. For this research purpose, the software module Test & Measure [8,10] was used and could be 

characterized by the following capabilities: 

 

• Formation and execution of the IC engine test plan based on the factorial design concept and 

other Design of Experiment (DoE) methods; 

• The possibility of optimizing the test plan by iterative means (direct model-based calibration); 

• Connecting to application systems of engine control units (ECUs) through standardized 

interfaces, with the most significant support for the ETAS INCA software environment [11]; 

• Possibility of integration with the AVL PUMA Open system. By automating the test table, it is 

possible to send centralized commands for acquisition control and collect information about the 

statistical measurement values at the currently tested engine operation point; 

• If the engine test plan is too extensive, there is support for networking test benches. 
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Thanks to the automated engine test bench and the SDS test method, Figure 3 shows the approximate 

results of exhaust gas temperature (T_31) measurements at the inlet section of the turbine for a wide 

operation field of the IC engine obtained in only 20 minutes of testing. Figure 4 shows the relative 

deviations compared to reference stationary tests of the same parameter (T_31). It is noted that the 

deviation is in the range of ±15%, but the trend of the change of T_31 has been obtained, and it will 

serve for further analysis and determination of the "almost" optimal sequence of execution of the 

stationary test plan. The engine under test was automotive PSA 1.4 HDI (40 kW at 4000 min-1).   

 

  

Figure 3. The exhaust gas temperature (T_31) 

during SDS with stationary preparation and 

120 s sweep duration (S120). 

Figure 4. Relative change of T_31 gathered by 

SDS S120 test compared with stationary testing 

results. 

4. Determining the optimal execution sequence for a stationary test plan  

Assuming that a sufficiently good test plan exists, further time savings in its execution can be achieved 

if a favorable sequence of execution of the operating points is determined. As was emphasized, the 

criterion of stabilization of the operating point is determined by the magnitude of the change of the most 

inert parameter, and in the general case, it is the temperature of the engine exhaust gases. The basic idea 

is to find such a sequence of stationary operating modes, during the implementation of which a minor 

deviation of the engine exhaust gas temperature is obtained. This will result in the shortest stabilization 

time for a given series of operating points.  

 

According to some predefined criteria, determining the favorable sequence of execution of operating 

points belongs to the category of optimization problems called "Traveling Salesman Problem" (TSP). 

The basic wording reads: 

• For a given list of cities and their mutual distances, what would be the shortest possible route, 

such that each city is visited only once and after completing the tour of all cities, the merchant 

returns to the city from which he started? 

 

The TSP mathematical formulation represents one of the most frequently considered numerical 

optimisation problems [12]. Algorithms were developed to determine possible solutions, and it was 

concluded that there is no way to solve this problem correctly except for an exhaustive search. The 

problem is that it is impossible to define a rule that would reduce the number of attempts to find a 

solution to a number smaller than the total number of solutions, that is, the total number of path 

combinations. 

 

There are several different mathematical formulations of TSP, and the basic formulation is Dantzig-

Fulkerson-Johnson [13] of the following form: 
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min ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑝

𝑗=1

𝑝

𝑖=1

 (4.1) 

∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑝

𝑝

𝑖=1

 (4.2) 

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝑝

𝑝

𝑗=1

 (4.3) 

∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1, 𝑆 ⊂ {1,2, … , 𝑝}

𝑝

𝑖∈𝑆,𝑗∈𝑆

 (4.4) 

𝑥𝑖𝑗 = 0 ∨ 1, ∀𝑖, 𝑗 (4.5) 
 

for nodes 𝑖 and 𝑗 , mutual distances 𝑑(𝑖, 𝑗) and for coefficient 𝑥𝑖𝑗 which takes the values  𝑥𝑖𝑗 = 0 ∨ 1  

depending on whether the route between nodes 𝑖 and 𝑗 belongs to the final optimal path. The first 

equation defines that it is necessary to minimize the total distance. The following two equations limit 

the number of branches of each node to one incoming and one outgoing branch. Equation 4.4 prevents 

the creation of sub-routes, i.e., routes that contain a smaller number of nodes (cities) than a total of 𝑝 

nodes. 

 

TSP has numerous applications in designing logistics and optimizing production processes. Just as the 

number of points (cities) is one of the parameters in defining the problem, the values that quantify the 

relationships between them (distance) can be expressed through money, time, or some other parameter. 

In the case considered here, there are 𝑝 engine operating points that need to be tested, and the relation 

between them is represented by the approximate value of exhaust gas temperature T_31. Given that 

during the stationary engine testing, there is no need to repeat the operating point by returning to the 

initial one, the case of an open TSP will be considered. Also, the repetition of one or more operating 

points is not of interest (nodes or branching), so the total number of potential sequences for executing 

the test plan can be described by the equation:  

 

𝑁 =
𝑝!

2
 (4.6) 

 

where 𝑝 is the number of points of the considered test plan, and dividing by 2 is the consequence of the 

formation of identical paths, only in the opposite order. For an examination plan of 𝑝 =  45 points, an 

approximate 𝑁 ≅ 6 ⋅ 1055 potential combinations of execution order. Solving TSP by exhaustive 

numerical search belongs to the category of algorithms of factorial dependence of execution duration as 

a function of the number of parameters. Due to many such combinations, it is impossible to realize 

(execute) a program that will find the optimal solution through an exhaustive search on an ordinary 

computer. 

 

The simplest algorithms are based on local path optimization. For this very reason, they are not able to 

globally optimize the problem [14], and the well-known among them are the Nearest Neighbor 

Algorithm, Cheapest Insertion Algorithm, Nearest Insertion Algorithm, Christofides Algorithm, and 

Replacement of pairs of routes (2-OPT, 3-OPT, 4 -OPT, k-OPT). 

5. Genetic Algorithm configuration for stationary engine testing optimization 

Genetic algorithms are based on the principles of natural processes of selection and evolution [15, 16]. 

Unlike simpler algorithms for solving TSP, where only the current solution and its quality are considered 

in the observed iteration, genetic algorithms (GA) perform a simultaneous search of a larger population 

of potential solutions. For this reason, GAs belong to the category of heuristic search algorithms. Such 
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algorithms are often called metaheuristic because they are not based on an exclusively random search 

for the best solution, but rather the following series of steps are carried out: 

• Upon initialization, a certain number of random sequences (vectors) are generated. Vector 

elements represent the indices of the operating points for which the minimum is to be determined 

by the criteria. One such array represents a potential solution to the TSP and is called a path 

vector; 

• After forming a given number of such vectors, the value of the criterion function is determined, 

i.e., the total path length for each path vector is determined. This identifies better solutions that 

will be considered in the further steps of the algorithm, while worse solutions are rejected; 

• A reduced number of path vectors that have undergone selection (parents) are subjected to so-

called mutations, i.e., random changes, which form new path vectors (offspring). In addition to 

the changed path vectors, the previous path vectors (parents) are also passed into the next 

iteration because it can happen that the mutation had a negative effect even though the initial 

vector (parent) has potential, i.e., a quality genetic code in the sense of having parts of the route 

that are an integral part of the optimal solution (or are close to the optimal solution); 

• In the iterative process, the selection is performed according to the value of the criterion function 

and certain mutations, which ensures the transfer of the best genetic material, i.e. parts of the 

path within the TSP, to the next iteration. The condition for stopping the GA can be the control 

of the change of the final solution or the total number of iterations. If the algorithm is well-

adjusted, a sufficiently accurate solution (almost optimal) should be obtained after a certain 

number of iterations. 

 

Genetic algorithms enable a high level of flexibility in defining the way of changing the path vector, 

i.e., the previously mentioned mutations. Within the used genetic algorithm [17], mutations of the 

selected path vector are based on two of the randomly selected indices (points in the path) on which GA: 

• Performs full rotation of path vector elements between specified indices (points); 

• Replaces the value of the path vector at the given indices; 

• Performs a phase shift of part of the path vector with an adequate displacement of one element. 

 

In this way, for every parent path, three modified paths are formed, for which the criterion function is 

determined, and the process of further selection is carried out. All mentioned random choices are 

characterized by a uniform distribution of the probability function. 

6. Optimal execution sequence based on GA and SDS results 

In the following chapter, the DoE test plan of 45 operating points will be analyzed. Figure 5 shows the 

sequence of execution according to the DoE, and an analogy with the random selection of the sequence 

can be observed, i.e. it is impossible to establish any rule on which the given sequence was formed. If 

the condition of minimizing the total Euclidean distance between the points is set for the same set of 

points, and the approximately optimal solution is determined using GA, the results shown in Figure 6 

will be obtained. To get appropriate results, the total span in terms of engine speed and engine load 

would be at the same absolute level. 

 

Determining the shortest path within the n-Me domain is justified if there is demand for the smallest 

possible deviations of the control parameters during the experiment, but from the aspect of the necessary 

stabilization time, it is not possible to determine which is closer, a change in engine speed or a change 

in the engine load. To identify the impact of execution order, feedback on system performance is 

required. The approximate models of exhaust gas temperature T_31 for stationary and tests with SDS 

will be discussed in this sense. The criterion function, i.e., the matrix of cross distances, can be formed 

based on the value of the absolute deviation of the exhaust gas temperature between the modes of the 

given test plan according to: 

 

𝑴𝐷(𝑇_31)(𝑖, 𝑗) = |�̂�𝑇_31(𝐷𝑜𝐸(𝑖)) − �̂�𝑇_31(𝐷𝑜𝐸(𝑗))|, 𝑖, 𝑗 = [1, 𝑝] (6.1) 
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where 𝐷𝑜𝐸 indicates the operation points contained in the test plan, and �̂� represents certain 

mathematical models formed over different groups of data. Given that GA successfully finds (almost) 

optimal execution sequences for a given 𝑴𝐷, it is necessary to compare the results obtained based on 

SDS approximations and the ideal case of execution sequences, thus for stationary test results. In this 

sense, Figure 7 shows the cumulative exhaust temperature growth formed based on optimal execution 

sequences and different models �̂�𝑇_31 according to: 

 

∑|Δ𝑇_31| = ∑ 𝑴𝐷(𝑇_31)

𝑝−1

𝑖=1

(𝑖, 𝑖 + 1) (6.2) 

 

  

Figure 5. Initial sequence of execution DoE 

operating points for stationary engine testing. 

Figure 6. The shortest execution path within 

n˗Me operation domain. 

 

 

Figure 7. Cumulative deviation of exhaust gas temperature T_31 for optimal 

execution sequences based on different stationary approximation models. 
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In the worst case, if the sequence of execution were random (Figure 5), the average deviation of the 

exhaust gas temperature would be about 140 °C. If the optimized execution order is determined based 

on the minimum distance criteria in the n-Me space (Figure 6), the mean temperature deviation of T_31 

would be 34 °C. 

 

In the ideal case, for the known stationary test results, the mean value of the exhaust gas temperature 

deviation is 7.7 °C per operating point. If the models obtained from SDS testing were used to determine 

the optimal sequence, the mean values of the deviations per operating point would range from 20.5 °C 

to 9.2 °C, depending on the type and duration of the SDS experiment, which is very close to the ideal 

case. 

 

Figure 8 and 9 shows the sequences obtained based on the minimization of the total distance of the 

operating points in terms of the absolute temperature curves T_31. The approximately optimal execution 

sequences for the 𝑴𝑫 based on the approximate reference stationary model and the stationary 

approximation of the exhaust gas temperature determined by the dynamic test S120, are shown. Given 

that the principal trend of exhaust gas temperature values is very similar in both models, the results of 

GA application in the execution sequence are also very similar. 

 

  

Figure 8. The execution sequence of the 

operating regimes determined by GA for the 

reference stationary model T_31. 

Figure 9. The execution sequence of the 

operating regimes determined by GA for the 

model is based on SDS (S120). 

The initial matrix of the mutual distances of the test plan points in terms of temperature deviation T_31, 

for the model, formed based on the SDS test S120, is given in Figure 10. After determining the 

approximately optimal path according to the criterion of minimizing the deviation of the exhaust gas 

temperature, a matrix of cross distances is shown in Figure 11. If the execution sequence is optimal, this 

diagram should indicate monotonically increasing (or decreasing) differences in exhaust gas temperature 

according to the execution sequence of operating points. Given that GA cannot provide a correct 

execution sequence of operating points based on the minimization of the criterion function, a slight 

irregularity is observed in the central part of the diagram in Figure 11. Considering the principle flow of 

the temperature difference shown in this diagram and the speed of execution of GA, of only 6 seconds, 

the presented results are more than satisfactory. For the execution sequence shown in Figure 9, the mean 

deviation of the temperature of the exhaust gases according to the operating point during the stationary 

test of the engine would be about 12.5 °C. 
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Figure 10. Initial matrix of distances  𝑴𝐷 for 

DoE 45 test plan and SDS S120 T_31 model.  

Figure 11. GA resulting matrix of distances  

𝑴𝐷 for DoE 45 test plan and SDS S120 T_31 

model. 

7. Conclusions 

Forming the IC engine test plan requires prior knowledge about the tested object. For example, prior 

knowledge is needed to define the system's boundaries in terms of allowed combinations of control 

parameters, or prior knowledge is necessary for choosing the appropriate architecture of mathematical 

models to be used in the formation of the mentioned approximations. Dynamic testing is a very effective 

way to collect information about the investigated object. During dynamic engine testing, the time needed 

for stationary operating point stabilization is saved, but it is necessary to define an appropriate dynamic 

test plan and develop a method for interpreting the results of such a test. In this paper, the dynamic 

method is presented on IC engine tests during which one control parameter changes relatively slowly - 

the SDS method.  

The IC engine exhaust gas temperature belongs to the category of parameters characterized by longer 

stabilization time. With approximate exhaust gas temperature characteristics obtained based on SDS 

testing, an approximately optimal test plan execution sequence is formed to obtain the shortest possible 

stabilization time between operating points of the given test plan. The analysis was carried out by setting 

the problem as the open path TSP and forming the corresponding genetic algorithm for solving it. 
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