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An austempering study of ductile iron alloyed with copper
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Abstract: Austempered ductile iron (ADI) has proved to be an excellent material as
it possesses attractive properties: high strength, ductility and toughness are com-
bined with good wear resistance and machinability. These properties can be achi-
eved upon adequate heat treatment which yields the optimum microstructure for a
given chemical composition. In this paper the results of an investigation the aus-
tempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are
reported. The microstructure and fracture mode developed throughout these treat-
ments have been identified by means of light and scanning electron microscopy and
X-ray diffraction analysis. It was shown that the strength, elongation and impact en-
ergy strongly depend on the amounts of bainitic ferrite and retained austenite. Based
on these results, and optimal processing window was established.

Keywords: ductile iron, austempering, strength, impact energy, fracture, processing

window.

INTRODUCTION

Many applications of austempered ductile iron (ADI) have been reported1,2 since

it offers a combination of high strength, toughness and good wear resistance with low

cost. In addition, ADI has received a lot of attention in the research literature.

The mechanical properties of ADI depend on the austempered microstruc-

ture3–6 which, in turn, is a function of the austempering time and temperature.

Most of the recent research has been focussed on the effect of alloying elements on

the microstructure, properties and austempering response of ADI.7 As an alloying

element, copper widens the austenite zone of the phase diagram, increasing both

the transformation rate during an austenitising process and the carbon content in

the matrix. On the other hand, during the subsequent austempering process, copper
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may restrain carbide formation.8

The scope of this research was to study the effect of austempering variables

(time and temperature) on the microstructure and mechanical properties of ADI al-

loyed with copper.

EXPERIMENTAL

Ductile iron keel blocks with a chemical composition in wt.%: 3.6 C; 2.5 Si; 0.28 Mn; 0.04 Cr;
0.45 Cu; 0.014 P; 0.014 S; 0.066 Mg; were produced in a commercial electro-induction foundry fur-
nace. The melt was poured from about 1420 ºC into standard 25.4 mm Y block sand molds (ASTM
A-395), which ensured sound castings. Tensile specimens of 6 mm diameter and 30 mm gauge

length and unnotched Charpy specimens (55�55�10 mm) were machined from the Y blocks. Speci-

mens austenitized in a protective argon atmosphere at 900 ºC for 2 h were rapidly transferred to a salt

bath at the austempering temperature 300, 350 and 400 ºC, held for 1, 2, 3 and 4 h and then

air-cooled to room temperature.

Standard metallographic preparation techniques (mechanical grinding and polishing followed
by etching in Nital) were applied prior to light microscopy (LM) examinations. A Leitz meta-
lographic microscope was used for microstructural characterization, whereas an Opton Axioplan
light microscope equipped with the software Vidas was applied to measure the distribution of the
graphite nodules and the volume fraction of retained austenite. The change in the volume fraction of
retained austenite during austempering was determined by X-ray diffraction using a Siemens D-500
diffractometer with nickel filtered CuK

�
radiation. The diffractograms were analyzed applying the

direct comparison method.9

Tensile tests of austempered specimens were performed on an 50 kN hydraulic machine with a
constant cross-beam travel speed of 1 mm/min. The 0.2 % proof stress, the ultimate tensile stress
(UTS) and elongation at failure were measured. The austempered Charpy specimens were tested at
room temperature in a standard impact testing machine. At least three specimens were tested for
each heat treatment. The fractured surfaces were examined with a JEOL JSM-6460LV scanning
electron micrscope (SEM) operated at 25 kV.

RESULTS AND DISCUSSION

Microstructure

The morphology of the graphite nodules in the microstructure of the as-cast

ductile iron (Fig. 1a, b) is fully spherical, with the nodule count of 80 to 95 nod-

ules/mm2. Spheroidization is evident (> 90 %) with an average nodule size of 17

�m (Fig. 1a). The microstructure of the as-cast material is mostly pearlitic, over 80

% (Fig. 1b).

The ADI microstructures are shown in Fig. 2a–d. The specimen austempered at

300 ºC for 1 h consisted of bainitic ferrite, retained austenite, and some amount of

martensite (Fir. 2a). When the austempering time was increase up to 2 h, the martensite

disappeared from the microstructure. Specimens austempered at 300 ºC showed a typi-

cal lower bainitic microstructure with an acicular appearance of bainitic ferrite. The

acicular appearance of bainitic ferrite in the matrix of retained austenite (with an aver-

age amount of 15–25 vol%) was also present in the microstructure after austempering

at 350 ºC (Fig. 2c). The highest austempering temperature yielded a plate-like mor-

phology of bainitic ferrite with a higher amount of retained austenite (Fig. 2d). It is ob-
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vious that after an austempering time longer than 1 h, no martensite could be detected

and the structure consisted only of bainitic ferrite and retained austenite. This may be

explained by the fact that at short austempering times, the carbon content was insuffi-

cient to retain the stability of the austenite and, therefore, it was transformed to

martensite. However, at longer austempering times, the carbon enrichment was suffi-

cient to stabilize the austenite even after air-cooling.

The time and temperature of isothermal transformation during the austem-

pering treatment have a marked influence on the relative amount of retained aus-
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Fig. 1. LM. Microstructure of an as-cast specimen: (a) unetched specimen; (b) etched specimen.

Fig. 2. LM. Microstructure after austempering for 1 h at (a) 300 ºC and for 2 h at: (b) 300 ºC: (c)

350 ºC and (d) 400 ºC. M-martensite.

a) b)

a) b)

c) d)



tenite (Fig. 3). From the shape of the curves in Fig. 3, it is apparent that two stages

are involved in the isothermal transformation. In the Stage I (times less than 2 h),

the amount of retained austenite increases with time. This may be explained by the

fact that the transformation to bainite was not completed. It is well documented10

that austenitic regions having low silicon and high carbon concentrations, e.g., re-

gions between graphite nodules, will not undergo transformation (to bainitic ferrite

and retained austenite) during short austempering times and the formation of

martensite cannot be prevented during the subsequent cooling from the austem-

pering to room temperature. With somewhat longer austempering times, the

amount of retained austenite increases reaching a maximum after 2 h. However, af-

ter 2 h the amount of retained austenite decreases, indicating the start of Stage II of

the austempering reaction, when the retained austenite decomposes to bainitic fer-

rite and carbide. This decrease is more pronounced at 400 ºC and is associated with

the decomposition of austenite to ferrite and carbide.6

Fractogrpahy

The fractured sufrace of an impact tested specimen austempered for 1 h at 300

ºC shows a fully brittle fracture (Fig. 4a). The fractographs of impact tested speci-

mens austempered at 300, 350 and 400 ºC for 2 h and impact tested are shown in

Fig. 4b–d. The specimen austempered at 300 ºC exibits a mixture of ductile and

brittle fracture, i.e., dimples and cleavage fracture appear (Fig. 4b). Only the speci-

men austempered at 350 ºC reveals a fully ductile dimpled fracture (Fig. 4c),

whereas at 400 ºC the fracture mechanism is generally brittle cleavage (Fig. 4d).

The effect of austempering variables on the mechanical properties

The variation of 0.2 % proof stress, UTS, elongation and impact energy with

austempering time for austempering tempeatures 300, 350 and 400 ºC is shown in

Fig. 5a–c. The strength remains basically unchanged, although some increase is

visible after 3 h of austempering at 300 and 350 ºC (Fig. 5a, b). The low values of
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Fig. 3. The effect of austempering

time on the volume fraction of re-

tained austenite at different austem-

pering temperatures.



elongation and impact energy (Fig. 5c) at short austempering times are connected

with the significant amount of brittle fracture caused by the presence of martensite

in the structure. With longer times, the martensite disappears from the structure,

whereas the amount of bainitic ferrite and retained austenite increases, resulting in

a maximum of elongation and impact energy after 2 h of austempering. With fur-

ther increasing of the time, a decrease in elongation and impact energy occurs. This

decrease is evident especially at 400 ºC. The low values of elongation and impact

energy correspond to a decrease in the amount of retained austenite at longer

austempering times.

The variation of the 0.2 % proof stress, UTS, elongation and impact energy af-

ter 2 h of austempering at different temperatures is shown in Fig. 6a, b. The high

strength at the low austempering temperature (Fig. 6a) is associated with an

acicular appearance of bainitic ferrite with some martensite and retained austenite.

The fine structure of ferrite platelets and the low amount of retained austenite con-

tribute to this high strength. Also, the effect of other parameters must not be ne-

glected, i.e.,: dispersed carbide formation, high dislocation density and the lattice

distortion of the ferrite due to carbon supersaturation.11 As the austempering tem-

perature increases, the martensite disappears from the structure and the amount of
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Fig. 4. SEM. Fractographs of impact tested specimens austempered for 1 h at 300 ºC (a) and

austempered for 2 h at: (b) 300 ºC; (c) 350 ºC and (d) 400 ºC.



retained austenite increases. These changes result in reduced strength. Values of

elongation and impact energy show a maximum at 350 ºC, which coincides with

the highest amount of retained austenite (see Fig. 3).

According to the above results, the optimal processing window, i.e., austem-

pering at 350 ºC for 2 h, yields mechanical properties which are as follows: UTS:

1180 MPa; elongation: 8 %; impact energy: 106 J. These properties correspond to a

microstructure consisting of a plate-like morphology of bainitic ferrite and re-
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Fig. 6. The effect of austempering temperature on: (a) 0.2 % proof stress; (b) UTS; (c) elongation

and (d) impact energy after 2 h of austempering.

Fig. 5. The effect of austempering time on: (a) 0.2 % proof stress; (b) UTS and (c) impact energy

at different austempering temperatures.



tained austenite with a volume fraction of austenite of about 22 vol.%, whereby the

fracture mode is fully ductile. Comparing these values with the results referring to

the same processing window of ADI without copper addition (UTS: 1320 MPa;

elongation: 3.4 %; impact energy: 90 J),12 it is obvious that alloying with copper

decreases the strength, but improves the elongation and impact strength.

CONCLUSIONS

The microstructural and mechanical properties of ADI alloyed with 0.45 % Cu

were studied by means of light and scanning electron microscopy, X-ray diffrac-

tion analysis, as well as tensile and impact tests. It was shown that:

– The as-cast microstructure was a predominantly (over 80 %) pearlitic with

95 % nodularity of graphite nodules

– the strength, elongation and impact energy strongly depend on the amounts

of bainitic ferrite and retained austenite

– the optimal processing window for austempering was established to be 350

ºC, 2 h. The obtained microstructure consisting of bainitic ferrite and retained aus-

tenite, yields the best combination of mechanical properties, i.e.,: UTS: 1180 MPa;

elongation: 8 %; impact energy: 106 J;

– alloying with copper improves the elongation and impact energy, but de-

creases the strength of ADI.
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ISPITIVAWE AUSTEMPEROVAWA DUKTILNOG @ELEZA LEGIRANOG

SA DODATKOM BAKRA
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Austemperovani nodularni liv (ADI) pokazao se kao odli~an materijal koji

poseduje privla~na svojstva: visoku ~vrsto}u, plasti~nost i `ilavost koji su pove-

zani sa dobrom otporno{}u na habawe i ma{inskom obradivo{}u. Ova svojstva mogu

biti postignuta odgovaraju}om termi~kom obradom koja proizvodi optimalnu mikro-

strukturu za dati hemijski sastav. U ovom radu istra`ivawe bilo je sprovedeno na

nodularnom livu legiranom sa 0,45 % bakra ADI i austemperovano u opsegu vremena i

temperature. Mikrostruktura i oblik preloma postignuti kroz ove tretmane bili su

identifikovani pomo}u svetlosne, skening elektronske mikroskopije i rendgeno-

strukturne analize. Pokazano je da ~vrsto}a, izdu`ewe i udarna energija strogo

zavise od koli~ine beinitnog ferita i zadr`anog austenita. Optimalni opseg proce-

sirawa bio je utvr|en na osnovu ovih rezultata.

(Primqeno 28. jula, revidirano 2. novembra 2004)
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