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Abstract. Here, it suggests and obtains a new algorithms of  PID control based on fractional 
calculus (FC) in the producing of technical gases, i.e air production cryogenic liquid.  
Production liquid air low pressure was first introduced by P. L. Kapica and includes 

production liquor air pressure 2 6 7p bar      and expansion in the gas turbine. For 

application in the synthesis of control input temperature and the flow of air expansion 
turbine, it is necessary to determine the appropriate differential equations linear’s part of the 
building guidance as well as the procedural object.  The paper presents a new robust control 

algorithms of PI D 
 type which based on using fractional calculus.  The objective of 

this work is to find out suitable settings for a fractional  PI D 
controller in order to 

fulfill  different design specifications for the closed-loop system, taking advantage of the 

fractional orders,   and  . Last, problem of discretization of proposed PI D 
 will be 

treated as a key step in digital implementation.  

 
 
 

1. Introduction  
 
In classical control theory, state feedback and output feedback are two important techniques 
in system control. While it is not satisfied in most cases, the former technique requires that 
all variables are obtained directly. Although output feedback may avoid the restriction of 
state feedback, rather strong conditions such as the strict positive real condition, output 
feedback passivity and minimum phase, etc., are often on the system. Specially, the PID 
controller is by far the most dominating form of feedback in use today. Due to its functional 
simplicity and performance robustness, the proportional-integral-derivative controller has 
been widely used in the process industries. Design and tuning of PID controllers have been 
a large research area ever since Ziegler and Nichols presented their methods in 1942,  [1]. 
Specifications, stability, design, applications and  performance of the PID controller have 
been widely treated since then [2,3].On the other hand, fractional calculus is a mathematical 
topic with more than 300 years old history, but its application to physics and engineering 
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has been reported only in the recent years. Moreover, it is remarkable the increasing  
number of studies related with the application of fractional controllers in many areas of 
science and engineering, where specially fractional-order systems  are of interest for both 
modeling and controller design purposes. It has been  found that in interdisciplinary fields, 
many systems can be described by the fractional differential equations i.e. in the fields of 
continuous-time modeling, fractional derivatives have proved useful in linear  
viscoelasticity, acoustics, rheology, polymeric chemistry, biophysics,etc. [4-6]. However, in 
the recent years, emergence of effective methods to solve differentiation and integration of 
noninteger order equations makes fractional-order systems more and more attractive for the 

systems control community. The fractional PD controller [7], the fractional 

PI controller [8], the fractional controller PI D   [6], the CRONE controllers [9,10], and 
the fractional lead-lag compensator [11] are some of the well-known fractional order 
controllers. In some of these works, it is verified that the fractional-order controllers can 
have better disturbance rejection ratios and less sensitivity to plant parameter variations 
compared to the traditional controllers. The fractional controllers have been used in many 
practical applications such as lateral and longitudinal control of autonomous vehicles [12], 
control of power electronic buck converters [13], control of robotic time delay systems [7], 
control of hexapod robots [14], and etc. 
In this paper, we suggest  and obtain a new algorithms of  PID control based on fractional 
calculus (FC) in the producing of technical gases, i.e air production cryogenic liquid. The 

objective of this work is to find out suitable settings for a fractional  PI D  controller in 
order to fulfill  different design specifications for the closed-loop system, taking advantage 
of the fractional orders,   and  . 

 

2. Fundamentals of fractional calculus  

Fractional calculus (FC) as an extension of ordinary calculus has a 300 years old history. 
FC was initiated by Leibniz and L`Hospital as a result of a correspondence which lasted 
several months in 1695. Both Leibniz and L`Hospital, aware of ordinary calculus, raised the 
question of a noninteger differentiation (order 1/ 2n  ) for simple functions. It had always 
attracted the interest of many famous ancient mathematicians, including L'Hospital, 
Leibniz,Liouville, Riemann, Grünward, and Letnikov [4-6]. Futher, the theory of fractional-
order derivative was developed mainly in the 19th century. In his 700 pages long book on 

Calculus, 1819 Lacroix [15]  developed the formula for the n-th derivative of , m – 

is a positive integer, 

my x
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 where  mn  is an integer. Replacing the 

factorial symbol by the Gamma function, he further obtained the formula for the fractional 
derivative 
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On the other hand, Liouville (1809-1882) formally extended the formula for the derivative 
of integral order n  

,n ax n ax ax axD e a e D e a e arbitrary order                              (3) 

Using the series expansion of a function, he derived the formula known as Liouville`s first 
formula for fractional derivative, where   may be rational, irrational or complex. 

0

( ) na x
n n
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

                                                           (4) 

where  . However, it can be only used for functions of the 

previous form. Also, it was J. B. J. Fourier,[16] who derived the functional representation 
of function 
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where he also formally introduced the fractional derivative version. Since from 19th 
century  as a foundation of fractional geometry and fractional dynamics, the theory of FO, 
in  particular,  the  theory  of  FC  and  FDEs  and  researches  of  application  have  been  
developed rapidly in the world. The modern epoch started in 1974 when a consistent 
formalism of the fractional calculus has been developed by Oldham and Spanier,[4], and 
later Podlubny,[6]. Applications of FC are very wide nowadays, in rheology, 
viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of dynamical 
systems, electrical engineering, bioengineering and so on, [4-12]. In fact, real world 
processes generally or most likely are fractional order systems. The main reason for the 
success of applications FC is that these new fractional-order models are more accurate than 
integer-order models, i.e. there are more degrees of freedom in the fractional order model. 
Furthermore, fractional derivatives provide an excellent instrument for the description of 
memory and hereditary properties of various materials and processes due to the existence of 
a ”memory” term in a model. This memory term insure the history and its impact to the 
present and future. A typical example of a non-integer (fractional) order system is the 
voltage-current relation of a semi-infinite lossy transmission line [17] or diffusion of the 
heat through a semi-infinite solid, where heat flow is equal to the half-derivative of the 
temperature [6]. 
 
 
2.1  Definition of  fractional differintegral  
 
As an essential preliminary consider some definitions concerning fractional derivatives. 
Fractional derivatives are typically treated as a particular case of pseudo-differential 
operators. Since they are nonlocal and have weakly singular kernels, the study of fractional 
differential equations seems to be more difficult and less theories have been established 
than for classical differential equations. Now, it is well known that, one may generalize the 

differential and integral operators into one fundamental tD  operator t which is known as 

fractional calculus: 
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The definition of fractional integral is described by  
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where  is the well known Euler's gamma function. There are three kinds of widely used 

fractional derivatives, namely the Grunwald-Letnikov (GL) derivative, the Riemann-
Liouville (RL) derivative, and the Caputo (C) derivative. The GL derivative and RL 
derivative are equivalent if the functions they act on are sufficiently smooth. Besides, the 
RL derivative is meaningful under weaker smoothness requirements.  The G-L definition is 
given by     
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where a, t are the limits of operator and [x] means the integer part of . As indicated 
above, the previous definition of GL  is valid for α > 0 (fractional derivative) and for α < 0 
(fractional integral) and, commonly, these two notions are grouped into one single operator 
called differintegral.  The RL derivative is given as: 
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and the Caputo derivative  
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where  is the classical -order derivative. Moreover, previous expressions 
show that the fractional-order operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and memory effects in most 
materials and systems. Also,  for the RL derivative, we have 
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But for the Caputo derivative, we have   
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Obviously,  varies continuously with , but the Caputo derivative 

cannot do this. On the other side, initial conditions of fractional differential equations with 
Caputo derivative have a clear physical meaning and Caputo derivative is extensively used 
in real applications.  For numerical calculation of fractional–order differ-integral operator 
one can use relation derived from the GL definition. This relation has the following form: 

  ,, nDRL
a  n
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 x  is the integer part of x  and  
jb
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 is the binomial coefficient given by 
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For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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For 0  (i.e., for the case of a fractional integral) the sum in the right-hand side must be 
omitted). A geometric and physical interpretation of fractional integration and fractional 
differentiation can be found in Podlubny’s work [18]. 
 
 

3. Basic ideas of PI D   feedack type control 
 
In recent years, fractional calculus has been applied in the modeling and control of various 
kinds of physical systems, as it is well known and documented in many control theories or 
in the literature data. In what concerns the area of automatic control, the fractional-order 
algorithms are extensively investigated. Thanks to the widespread industrial use of PID 

controllers, even a small improvement in PID features, achieved by using DPI , could 
have a relevant impact. Recently, published results [8-12] indicate that the use of a 
fractional-order PID controller can improve both the stability and performance robustness 
of feedback control systems. In [6],Podluny proposed a generalization of the PID controller 

namely fractional PID ( ) where DPI   and   are the order of integration and 

derivation respectively that can be real numbers. In fact, in principle, they provide more 
flexibility in the controller design, with respect to the standard PID controllers, because 
they have five parameters to select (instead of three). However, this also implies that the 
tuning of the controller can be much more complex. Therefore classical design method may 
not be applied directly to adjust all fractional controller parameters. In order to address this 
problem, different methods for the design of a fractional order PID (FOPID) controller have 
been proposed in the literature. Further research activities are running in order to develop 
new tuning rules for fractional controllers, studying previously the effects of the non integer 
order of the derivative and integral parts to design a more effective controller to be used in 
real-life models. Some of these technics are based on an extension of the classical PID 
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control theory. To this respect, in [19] the extension of derivation and integration order 
from integer to non integer numbers provides a more flexible tuning strategy and therefore 
an easier achieving of control requirements with respect to classical controllers. In [20] an 
optimal fractional order PID controller based on specified gain margin and phase margin 
with a minimum ISE criterion has been designed by using a differential evolution 
algorithm. In [21] a tuning method for fractional PID controller based on Ziegler-Nichols-
type rules was proposed. Monje et al., [22] present a frequency domain approach based on 
the expected crossover frequency and phase margin. A state-space tuning method based on 
pole placement was also used (see [23]). Recent tuning method based on Quantitative 
Feedback Theory (QFT) are presented in [24]. In this paper, a fractional order PID 
controller ( PI D  ) is used to control the production process of technical gases as follows: 

0 0( ) ( ) ( ) ( )p d t i tu t K e t K D e t K D e t                                         (17) 

 The most common form of a fractional order PID controller is the PI D   controller [6], 
involving an integrator of order   and a differentiator of order   where  ,   can be any 

real numbers. The transfer function of such a controller has the form  
     ( ) , , 0c p I DG s K K s K s                                     (18) 

The integrator term is s , that is to say, on a semi-logarithmic plane, there is a line having 
slope −d. /dec. Clearly, selecting 1  

0,

, a classical PID controller can be 

recovered. The selections of 1, 0, 1,      

D

respectively corresponds 

conventional PI & PD controllers. All these classical types of PID controllers are the 

special cases of the fractional PI controller given by (17), see Fig. 1. It can be 

expected that the controller   may enhance the systems control performance. One 

of the most important advantages of the  controller is the better control of 
dynamical systems, which are described by fractional order mathematical models. Another 

advantage lies in the fact that the 

D

P

PI
DPI

DI controllers are less sensitive to changes of 
parameters of a controlled system [6-12]. This is due to the two extra degrees of freedom to 
better adjust the dynamical properties of a fractional order control system. However, in 

theory, itself is an infinite dimensional linear filter due to the fractional order in 
differentiator or integrator.  

DPI

 
Figure 1. Generalization of the FOPID Controller: From point to plane 

 
Fractional order controllers such as CRONE controller, TID controller, fractional PID 
controller  and lead-lag compensator, [25]  have so far been implemented to improve the 
performance and robustness in the closed loop control systems. As compared to 
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conventional PID compensators, the TID compensator allows for simpler tuning, better 
disturbance rejection, and smaller effects of plant parameter variations on the closed-loop 
response.  Feedback control system compensator of the PID type is provided, wherein the 
proportional component of the compensator is replaced with a tilted component having a 

transfer function . The resulting transfer function of the entire compensator more 
closely approximates an optimal loop transfer function, thereby achieving improved 
feedback control performance.  On the other hand, the CRONE control was proposed by 
Oustaloup in pursuing fractal robustness [9], [10] where  “fractal robustness” is used to 
describe the following two characteristics: the iso-damping and the vertical sliding form of 
frequency template in the Nichols chart.  Also, it is possible to extend the classical lead-lag 
compensator to the fractional-order case which was studied in [26]. The fractional lead-lag 
compensator is given by 

ns /1

r

h

b
r s

s
CsC 








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where  0,0 0  Chb   and  1,0r .Transfer functions such as (18) are not easy to 

implement for computational purposes. Simulations are usually carried out with software 
prepared to deal with integer powers of s only. Hardware implementations of controllers are 
nowadays usually achieved with electronic components allowing implementation of usual 
integer transfer functions easily, while how fractional transfer functions can be achieved 
with them is not clear at all. This makes the task of finding integer order approximations of 
fractional transfer functions a most important one where fractional transfer functions are 
usually replaced by integer transfer functions, with a behavior close enough to the one 
desired, but much easier to handle. Approximations are available both in the s-domain and 
in the z-domain. Moreover, one may find that many discretization schemes reported in 
literature which can be classified as either direct or indirect. The distinction is made based 
on whether an auxiliary continuous-time (s domain) approximation is constructed in the 
process. With direct methods, an intermediate continuous time approximation is not 
necessary, while with indirect methods such analogue approximation must be created. Most 
of the direct methods start with a suitable discrete approximation of the first order 
derivative or integral. Discretization scheme is then obtained by truncating some expansion 
of an appropriate non-integer power of the selected approximation. For example, a method 
based on power series expansion (PSE) of Euler operator,[27], or continued fraction 
expansion (CFE) is applied to Tustin operator,[28]. Further direct schemes are reported in 
[29-30]. Indirect methods are constructed in two steps where in the first step, a finite 
dimensional, continuous time approximation of the target fractional order system is found 
such as Oustaloup’s rational approximation (ORA), [31] or sub-optimum H2 rational 
approximation ,[32]. Once a satisfactory continuous-time approximation has been found, 
the second step of each indirect method is to find its discrete-time equivalent,as follows: 
approximations of  Euler and Tustin, response invariant transformations (impulse-invariant 
and step invariant) and others, see[33]. 
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4. Mathematical model of cryogenic process of mixing of two gaseous airs flows at 
different temperatures before entrance of expansion turbine 

 
Cryogenics is the science and technology dealing with temperatures less than about 120 K, 
although this historical summary does not adhere to a strict 120K definition. The techniques 
used to produce cryogenic temperatures differ in several ways from those dealing with 
conventional refrigeration. Also, liquid air is air that has been cooled to very low 
temperatures(cryogenic temperatures) so that it has condensed to a pale blue mobile liquid. 
To protect it from room temperature, it must be kept in a vacuum flask. In practice, these 
two areas often overlap and the boundary between conventional and cryogenic refrigeration 
is often indistinct. Significant reductions in temperature often have very pronounced effects 
on the properties of materials and the behavior of systems. New way to technical 
production liquid air work is obtained by C. Linde at the end of the nineteenth century. On 
with the help of the reversing heat exchangers, slightly used cooling air, which appears in 
the damping of the higher of the lower pressure, the successful simple and economical 
production liquor large amounts of air. Production liquid air low pressure was first 
introduced in 1938. by the Russian academician P. L. Kapitsa, and includes production 
liquor air pressure  2 6 7p b  ar  and expansion in the gas turbine. So, expansion turbine 

in the air production liquid used for expansion air with thermodynamics state  ,p pP p T  to 

state  ,k k K p T  lowering when the air temperature with   at  and the pressure   with pT kT

pp  at . Expansion of cold air after the start of equipment and waste heat arising due to 

exchange heat with the environment during the work. The amount of air that expansion in 
the gas turbine, according to [34], does not 25  exceed the amount of usable air. The air 
from the compressed state 1 turbocompressor, Fig. 2,(b) and cool to the state of the 2nd 
compressed air with pressure  are in the reverse exchangers heat, where the cold to the 

state of 3rd Part of the air with the environment reverse heat state 3* and part of the state 3, 
which consists 

kp

%

2p

 /m kg kge of compressed air, are in expansion turbine where the expansion 

achieved by the state 8, where pressure . Because of loss coefficient and other non-

reverse expansion is not adiabatic line to state 8 , but to state 8, which is right. Place for 

removal of air state 4 elected to state 8, at the end of expansion, is in the area near the upper 
border curve (in the TS diagram 

1p

ad

1,x 0  on  1 3 K  above the temperature saturated  

steam. Basic devices of the plant are (ТК –turbocompressor, H -  refrigerator air, RR –
reverse exchangers heat, ET – expansion turbine, RK - exchangers heat i.e. air condenser, 
PV-damping valve) 
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Figure 2. Scheme for plant liquid air flow pressure (a) and TS diagram of the process (b) 

 
Liquid air quantity can be determined on the basis of heat balance,[34]: TVm

    2 ,
' 1 /7 10 4 8h m h m i m h h q kJ kgeTV TV do                             (20) 

where are  /q kJ kgdo - heat from the environment brought by air, kg  /m kg kgTV  - 

mass liquid air,  /em kg

0doq 

kg  - mass air which expansion in expansion turbine. In the ideal 

case when the  and  liquid air mass is  1 10 0nrT T T   
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The main advantage of the procedure Kapic's according to the toe cap in relation to other 
procedures production liquid air [35] to be in the low pressure  still does not have to 

spend inordinate work for production liquid 
2p

 1 kg  air. Since the turbine is capable of much 

greater bandwidth than the reciprocating compressor is adapted to this process for large 
plants such as the face in practice. For qualitative assessment of gas turbine, with 
thermodynamics’ point of view is used isentropic (internal) level of utility which is 
determined by the following terms: 

, 0,80 0,85
h h T Tp ph k k

T Th h h T Tp pk k
 

 
    

   
                     (22) 

For the development of the expansion works after refrigeration air, in the " Factory of 
technical gas” in Bor, built two expansion turbines, one gas turbine is always in operation, 
the other in the reserves, and the factory in preparation for the start after longer delays both 
turbine running in parallel. Energy received in expansion turbine in the work spent to drive 
fan that absorptive air from the atmosphere, regardless of air flow in the gas turbine. 
Ventilator compressed air and thus prevent an unlimited increase in the number of turbine 
rotor speed, a compressed air is emissive in the atmosphere which is not justified from the 
energy aspect. Technical adiabatic  the work of expansion of air in gas turbine is: 
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    
1

3
, 10 / 1 1 / ; /t ad p k pl k k R T p p kJ





  
    

 
kg                           (23) 

Power returned to the turbine - effective power, the expansion  /m kg s  of the pressure  

to  have the value: 
pp

kp

 , ;eT i m t ad T mN N m l kW                                            (24) 

where are:  iN kW  - the internal (isentropic)  gas turbine power,  m - mechanical degree 

of utility gas turbines (due to friction in the bearings and stuffing box).  

 1   3 /5 Nx t g hi t m     - deviation values flow from the nominal value of gas’s air flow at 

the entrance to the expansion turbine: 37600 /56G mNN h    
,      2 5ix t  t K -value of 

temperature deviation from the nominal value of gas’s air temperature at the entrance to the 
expansion turbine,  5N 124T K ,    1 1( ) t Kz t - value of temperature deviation from 

the nominal value of temperature gas’s air environment with exchangers,heat  1N 153T K , 

   2 3( )z t  t K -value of temperature deviation from the nominal value of temperature  

air with the end of the cold  heat exchangers  3 101NT K ,    Ay t m

946

m

A

- deviation value 

position of the nominal value of the position control valves TV  14AN  ,7Y mm , 

   By t m

946TV B

m


- deviation value position of the nominal value of the position control valves, 

30, 2BNY  mm .On Fig. 3 it is presented diagram of process and symbolic-

functional scheme with relevant  variables. 
 
4.1. System description of mechatronic system in state space 
 
For application in the synthesis of proposed control input temperature and the flow of air 
expansion turbine, it is necessary to determine the appropriate differential equations linear’s 
part of the cryogenic process of mixing of two gaseous airs flows at different temperatures 
before entrance of expansion turbine. Linear’s differential equations that describe the work 
process are given as appropriate equation of state and output as follows 

     

   

0,2 0 45,736 28,07 0 0
( )

0 0,2 0,174 0,085 0,088 0,112

1 0

0 1z

x t x t u t

x t x t

    
           

 
  
 

i

 z t




   (25) 

or,  in condensed form is 

           ,u z ix t Ax t B u t B z t x t Cx t                             (26) 
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Figure  3. Diagram of the process  (а) symbolic-functional scheme (b) 

 

where corresponding vectors are,    ( )
T

A Bu t y t y t    ,    1 2( )
T

z t z t z t    , and 

, , ,u ZA B B C

(W s

are matrices with appropriate dimensions. From the above it is clear that model 

presents a MIMO system( multiple input, multiple output) where the number of inputs 
being to equal  to that of outputs, system us square and it is possible  to apply  a control 
strategy uncoupling, whereby each of the inputs is made affect presented by one output 
only.In that way, one may obtain  so called  non-interactive system where is transfer 
function of given system is decoupled, diagonal, and nonsingular matrix. To decouple 

the system, a new input is introduced by means of feedback 

)

( )u t

   ( )c cu t K x t F v t                                                           (27) 

where are  -th row of matrix C and ic i

 
1

2

1

2
min , 0

,det 0 , 0,1,2,..., 1,
....... 1, 0,

m

p
u

jp i uu
i

j
i u

p
m u

c A B

j c A Bc A B
N N p j n

n c A B j

c A B

 
            
      
  

 (28) 

So, one can obtain   

1 2 11 11 1
1 2, ... m

Tpp p
c c mF N K N c A c A c A                          (29) 

 
The transfer function  of the original system is ( )W s
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   1

45.736 28.07

0.2 0.2( )
0.174 0.85

0.2 0.2

u
s sW s C sI A B

s s



 
      

 
   

                                           (30) 

and after applying new control i cF . Taking into account  

the proposed procedure f , c

s

o

   1
( ) u c uW s C sI A B K B

  

r cF K  it follows 

1 2 1 2

1 1

[1 0], [0 1], 0, 0,

, ,u c u c u

c c p p

N B F B K B A 

   

  
                                  (31) 

and                                            1 1/ 0
( )

0 1/

s
W s C sI

s
  

   
 

                                           (32) 

Now, decoupling system is 

1 1

2 2 10.088 0.112

x v

2x v z


  


 z

                                            (33) 

 
5.  The proposed fractional PIDs 
 
Unlike conventional PID controller, there is no systematic and rigor design or tuning 

method existing for  PI D   controller.  Here, design goals are choosing suitable   and 
  as well as  load disturbance rejection.The controller parameters are the proportional gain 

pK , the derivative gain dK , the integral gain iK , as ell as  noninteger order  of derivative  w

  and integrator  ,Eq. 34. Load disturbances are typically low frequency signals and 

their attenuation  is a very important characteristic of a controller. It is shown [1], that by 
maximizing the integral gain iK , the effec of load disturbance at output will be minimum. t 

 ( ) , , 0p I D
c

K s K K s
G s

s

  

  
 

                                  (34) 

Here, in order to obtain step response, simulation model has been developed using Simulink 
Library of  MATLAB by using a special toolbox for non-integer control. For the simulation 
purpose, here we present the Crone approximation algorithm. It is based on the 
approximation of a function of the form: 

( )C s ks , R                                                               (35) 

which uses a recursive distribution of  poles a N nd N  zeros:  

,

1

,

1
s


( ) ,

1

N
z n

n

p n

C s k
s









                                                      (36) 

Gain  is adjusted so that if  is 1 then k  k ( ) 0C s dB  at . Zeros and poles are 1 /rad s

found side a frequency interval in  ,l h   an for a  d are given, positive  , by  
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1

, , 1

, , 1 ,1

/ , / , , 1, 2,...,

, 2,..., ,

N N
h l h l p n z n

z n p n z l

n

n N

 

        
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





   

  

N
       (37) 

For a negative   the role of zeros and poles is interchanged. The controller is reckoned 
from , , ,lk h   and . Here, they are presented simulation results  for N 1ix , Fig.4 

1, 1, 0.1, 0.99, 0.99p d iK K K            50, 20, 10, 0.9, 0.8p d iK K K        

 
a)                                                                                    b) 

  Figure 4.   a)  step response of 1ix , for 1, 1, 0.1, 0.99, 0.99p d iK K K        

                b) )  step response of 1ix , for 50, 20, 10, 0.9, 0.8p d iK K K        

and  for 2ix  as follows, Fig.5: 

1, 1, 0.1, 0.99, 0.99p d iK K K       ,   30, 10, 40, 0.9, 0.5p d iK K K        

 
a)                                                               b) 

  Figure 5.   a)  step response of 2ix , for 1, 1, 0.1, 0.99, 0.99p d iK K K        

                b) )  step response of 2ix , for 30, 10, 40, 0.9, 0.5p d iK K K        

 
 
6. Discussion  
 

Here, in this paper it is proposed  new robust control algorithms of PI D   type which 
based on using fractional calculus  in the control of producing of technical gases, i.e air 
production cryogenic liquid.  Design goals are suitable setting  the controller parameters 
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p, ,i dK K K ,  noninteger order  of derivative   and integrator   to fulfill  different design 

specifications for the closed-loop system, for example, load disturbance rejection. Also, the 

problem of discretization of proposed PI D   is considered as a one of  important  steps in 
digital implementation. In order to obtain step response, simulation model has been 
developed using Simulink Library of  MATLAB by using a special toolbox for non-integer 
control. 
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