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Abstract. The paper presents the solution for forward and inverse kinematics of the vertical 
5-axis turning centers with 2 linear and 3 rotational axes (Cy, X, Z, Bt and Ct) which for the 
5-axis milling achieves the motion accomplished by 3 linear and 2 rotational axes (X, Y, Z, 
Bt and Cy). It has been done in such a way to provide for machine motion programming as if 
machining were performed on a 5-axis gantry milling machine. This has essentially 
facilitated machine programming, because tool positions and orientations required for 
programming are determined disregarding the workpiece swiveling during machining and 
current positions and orientations taken by the tool during machining relative to the 
workpiece. Turning center has a 2-rotary-axis head with axes Ct and Bt which do not 
intersect. This type of angular head has increased the possibilities of machining and allowed 
for performing certain types of machining without machine’s taking the singular positions, 
but it has made the machine control algorithm more complex. A high number of rotating of 
the table, required for turning, causes heating of the table bearing support and base thermal 
dilatation. If milling or drilling is done immediately after turning, the table and X axis 
motion control should be corrected to eliminate the error in machining appeared due to 
dilatation, as has been done in this paper. 
Keywords: Vertical five-axis turning centers; Forward and inverse kinematics; Thermal 
errors 

 

 
 

1. Introduction  
 
Nowadays, the precision and productivity that users demand from 5-axis machining of 
complex workpiece surfaces is gradually increasing. To satisfy this requirement different 
structures of the 5-axis machines are developed. The machine denominations, where L is a 
linear axis and R is a rotation axis, will be given now. LLLRR-The cutting tool is supported 
by a two-rotary-axis head, one for head rotation and another for tool tilting. This 
configuration is used in large gantry machine tools. RRLLL-The workpiece is supported by 
a double turning table, i.e. the work table has two rotational axes. This configuration is 
commonly used in small compact machines or in machines with auxiliary rotary tables. 
RLLLR-The workpiece is supported by a rotary turning table and the tool has one rotational 
degree of freedom (swivelling head). 
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The present paper deals with the control algorithm development for vertical 5-axis turning 
centre, where the work table becomes the axis of auxiliary motion (Cy axis), whose 
swivelling, with cutting tool motion along the X axis according to the corresponding law, 
produces motion corresponding to the motion along the Y axis, not existing here. The ram 
carrying turning tools is replaced by the turning, drilling and milling unit for rotating tools. 
By addition of the replaceable two-axis angular head to this unit, the 5-axis milling and 
drilling is possible to achieve. This way, a machine with 2 linear and 3 rotational axes was 
obtained, which for the 5-axis machining achieves the motion accomplished by 3 linear and 
2 rotational axes. A machine with Cy, X, Z, Bt and Ct axes, the RLLRR machine type, was 
thus obtained. 
 
In the control algorithm given in this paper, the compensation for error caused by machine 
base thermal dilatation has been carried out, because it is the biggest error and because it is 
very difficult to eliminate it by corresponding structure, cooling and mounting.  When 
workpiece turning is performed with a large number of revolutions there occurs a 
substantial heating of the work table bearing support. The bearing support temperature is 
transferred to the machine base, causing its thermal dilatation. This causes the table 
rotational axis shift by a few tenths of a millimetre. The work table moving along the X and 
Y axes (xc and yc) has impact on milling and drilling accuracy. To eliminate the influence 
of the work table thermal dilatation on machining accuracy, real-time measurements and 
machine control algorithm correction are required, as has been done in this paper. 
 
Control algorithm of a vertical 5-axis turning centre was integrated into its control system, 
developed at Lola Institute too. The control system was obtained by extending the Lola-
Industrial Robot Language [1] with commands for machine tool, by integration of the new 
solutions for forward and inverse kinematics of this machine in this control system and by 
adapting of its trajectory planner to novel commands for tool moving. 
 
In this paper, forward and inverse kinematics has been solved for such machine with an 
angular head, where axes do not intersect (Fig. 1). Such angular head increases the 
machining possibilities and helps to avoid singularity positions of the machine work table. 
Some possible singular positions of the work table have been discussed. Control algorithm 
for the work table and Ct axis has been given, eliminating their singular positions. 
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Figure 1. Vertical 5-axis turning center with two axis head. 

 

2. Coordinate frames of machine components and matrices determining their 
relations 
 
This section defines coordinate frames for the components of vertical 5-axis turning centre 
and matrices determining their relations. Machine components, their links and coordinate 
frames are denoted using the Denavit-Hartenberg convention (D-H) [2,3,4]. The machine is 
viewed as a system consisting of two entities performing cooperative motion; one entity 
comprises a work table with a workpiece, swivelling according to a certain law, and another 
is a serial mechanism with 2 translational and 2 rotational axes, carrying the cutting tool. 
(Fig. 2) shows frames for machine components. The machine base is denoted by 0, and the 
last serial component by 4. The table rotation by angle c is denoted with Cy. The first 2 
serial links are translational and another 2 rotational, so the corresponding translatory 
movements d1 and d2 and angles 3 and 4 are variables. It was adopted that the angle 3 is 
positive when the component’s 3 rotation is in the negative mathematical direction, and that 
the angles 4 and c are positive when the component’s 4 rotation and the rotating table is in 
the positive mathematical direction. D-H parameters of machine components are given in 
Tab. 1. 

Table 1  D-H parameters of vertical 5-axis turning centre components 

Link Variable a [mm] ay [mm] d [mm]  []  [] 
1-Z d1 0 0 d1c 1=90,1=90 1a=90
2-X d2 0 0 0 0 0 
3 (-)3 a3 0 0 3=90 3a=90
4 4 0 0 0 4=-90 0 
5-Cy C xc 

yc 
0 0

 
0 
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Figure 2. Coordinate frames of vertical 5-axis turning centre components. 

 
The homogenous matrix that transforms the coordinates of a point from frame xnynzn to 
frame xmymzm is denoted by nTm. The homogenous transformation describing the relation 
between one link and the next is called Ai=A(i-1,i) matrix [4]. The following homogenous 
matrices for the coordinate frames of the machine links are defined to derive the kinematic 
equations for the machine: 
 

),x(),dz(),x(),z(),dz()0,1( 1010101a01c0   RotTransRotRotTransAA1

),dz((1,2) 212 TransAA   

),x(),ax(),z(),z()3,2( 323232a323   RotTransRotRotAA

),x(),z()4,3( 43434   RotRotAA  
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By using the convenient shorthand notation sin()=s and cos()=c the transformation 
matrices defined above are written as follows:  
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3. Programming of the machine 
 
5-axis programs are generated by CAD/CAM systems or, manually, by G codes. 
Programming of the milling operations on the vertical 5-axis turning centre is performed in 
the movable working table coordinate system xcyczc and not in the machine basic coordinate 
system x0y0z0 (Fig. 2). 
 
In programming by G codes the tool orientation is given in Euler angles or RPY angles via 
At, Bt, and Ct (in degrees) or by the tool direction vector which points from the tool tip 
towards the toolholder. If we define the approach vector a=ax5i+ay5j+az5k, where i, j and k 
are unit vectors along the xc, yc and zc coordinate axes of the rotating table, which lies in the 
zt direction from which the tool approaches the workpiece (Fig. 2), the components of the 
tool direction vector would be: -ax5, -ay5 and -az5. 
 
The output of the CAM systems is cutter locations, Xt, Yt, Zt, -ax5, -ay5 and -az5, which 
define the tool positions and the tool direction vectors with respect to the workpiece 
coordinate system given in the CL data file [5,6,3]. The tool path between two CL points is 
a straight line relative to the workpiece. CL motion commands from the CL data file are 
further converted in motion commands of the NC program (in G code). 
 
Afterward, the tool path, given in NC program, is converted in the sequence of consecutive 
positions of all machine axes that will produce the desired tool location (inverse 
kinematics). The calculation of inverse kinematics can be performed either by the 
CAD/CAM system, by the post-processor or by the NC unit. The control system developed 
in Lola Institute for vertical 5-axis turning centre calculates complete path interpolation and 
inverse kinematics in real time. 
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4. Forward kinematics 
 
The forward kinematics is used to calculate the tool position and orientation Xt, Yt, Zt, Bt 
and Ct from the machine axis variables: c, d1, d2, 3 and 4. In vertical 5-axis turning centre 
we will determine the position and orientation of the component 4 and the tool relative to 
the rotating table. It is obvious from (Fig. 2) that the component 4 position and orientation 
relative to the machine base is given by the equation 0T4=A1A2A3A4 

and relative to the 
rotating table by the equation  
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(6) 

where is: )as(s)acd(cX yc33cxc331c5   ,  

)as(c)acd(sY yc33cxc331c5   , 2c15 ddZ   

Tool position relative to the rotating table is determined by matrix: 
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(7) 

Here lt is length, rt is radius and 4Tt is tool position matrix relative to the component 4 (Fig. 
2). In an initial position it is: c=3=4=Ct=Bt=0, 
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(8) 

Now, using the tool orientation matrix terms [n o a], obtained by Eq. (6), tool orientation 
angles will be determined. 
 

4.1. Calculations of the RPY tool orientation angles 
 
There follows the analysis and discussion of the solutions used to calculate angles -90  Bt 
 90 and -180  Ct  180 defined by RPY orientation angles. Tool orientation matrix for 
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RPY angles and for the case when At=180 reads:

   ORIZYX(Ct,Bt,At) = Rot(z,Ct) Rot(y,Bt) Rot(x,At), i.e. 
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From here it is obtained Rot(z,Ct)
- 1 [n o a] = Rot(y,Bt) Rot(x,At), i.e. 
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Using terms of the matrix Eqs. (9), (10) and (11), it is possible to determine the angles Bt 
and Ct in a few ways. These solutions will be analyzed now. Some solutions differ mutually 
by ±180, however, in some cases, when the argument of a function atan2 reads 0,0 
inaccurate results are obtained, which are inapplicable. 
 
The solutions of equations that yield values of the angles Bt and Ct will be analyzed using 
Eq. (9) to obtain tool orientation angle, by virtue of known values for these angles. 
Afterward, using the terms of this matrix, orientation angles will be calculated. Only 
solutions that for each tool orientation position yield solutions equal to starting tool 
orientation angles will be adopted. 

 

4.1.1. Calculations of the angle Bt 
 
The terms (3,1) and (3,3) of matrix Eqs. (9) and (10) yield: 

)a,n(2tanaB 5z5zt    (12)  

This solution is independent of the angle Ct, while the components nz5 and az5   (Fig. 3) of 
the argument of a function atan2 are not simultaneously equal to zero in any position of the 
tool, which would result in ambiguity or inaccurate solution. Consequently, this solution 
gives an accurate result in any tool position. 
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Figure 3. Tool orientation vectors. 

 
If calculations for the angle Bt are done after those for the angle Ct, then other expressions 
can be also used. Using terms (1,3) and (3,3) or (1,3) and (1,1) or (3,1) and (1,1), 
respectively, of Eq. (10) the expressions (13), (14) and (15) can be obtained. Like the 
expression (12), the expressions (13), (14) and (15) always yield accurate results. 
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nc,asac(2tanaB 5xC5yC5xCt ttt
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)ns 5yCt
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(14)       

 
(15) 

 

The term (1,3) of Eq. (11) (Fig. 3) yields the solutions 

)n,a(2tanaB 5x5xt   and )n,a(2tanaB 5x5xt   (16), (17)  

The values for these two solutions differ mutually by ±180. If Ct (90,180]
 
or if Ct (-

90,-180]
 
an accurate result is obtained by Eq. (16), and if Ct (-90,90) an accurate 

result is obtained by Eq. (17). However, for the values of Ct=-90 and Ct=-90, the 
components nx5 and ax5 

are always equal to zero. Therefore, these two equations are 
inapplicable in these cases.    
 

The term (2,3) of Eq. (11) gives the solutions  

)n,a(2tanaB 5y5yt   and )n,a(2tanaB 5y5yt 
 

(18), (19) 

The values for these solutions also differ mutually by ±180. If Ct (0,180), an accurate 
result is obtained by Eq. (19), and if Ct (0,-180) an accurate result is obtained by Eq. 
(18). However, for the values of Ct=0 and Ct=180, the components ny5 and ay5 are always 
equal to zero. Therefore, these two equations in these two cases are inapplicable. 
Sine of the angle Bt can be calculated, for the known value of the angle Ct, using the terms 
(1,3) or (2,3) of Eq. (9), therefore sin(Bt)=-ax5/cCt or sin(Bt)=-ay5/sCt. Cosine of the angle Bt 
can be calculated, in this case, using the terms (1,1) or (2,1) of mentioned equation, 
therefore cos(Bt)=nx5/cCt or cos(Bt)=ny5/sCt. However, using these terms does not always 
yield accurate results, and in some cases there occurs division by zero, so these terms are 
not suitable for calculations of the angle Bt. 
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4.1.2. Calculations of the angle Ct 
 
The terms (1,2) and (2,2) of Eq. (11) give  

)o,o(2tanaC 5y5xt 
 

(20) 

The components ox5 and oy5 of the argument of a function atan2 are independent of the 
angle Bt, they always lie in the x0y0 plane (oz5=0) and are never simultaneously equal to 
zero. Therefore, the expression (20) can be used to calculate the angle Ct.  
 
When the value of angle Bt is known, the angle Ct 

can be calculated using the expressions 
obtained by the terms (2,1) and (1,1) or (1,2) and (1,1) or (2,2) and (1,1) of Eq. (11), 
respectively.  
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Like Eq.(20), the Eqs. (21, 22 and 23) always yield accurate results.  
The term (2,3) of Eq. (10) gives the solutions  

)a,a(2tanaC 5x5yt   
and )a,a(2tanaC 5x5yt 

 
(24), (25) 

The values of these two solutions differ mutually by ±180. If Bt[-90,0) accurate results 
are obtained by Eq. (24), and if Bt[0,90) accurate results are obtained by Eq. (25). 
However, for Bt=0 the components ax5 and ay5 are always equal to zero. Hence, these two 
equations in this case are inapplicable. 
 
The term (1,2) of Eq. (10) gives the solutions  

)n,n(2tanaC 5x5yt   
and )n,n(2tanaC 5x5yt   (26), (27) 

If Bt(-90,90) Eq. (26) yields an accurate result, while Eq. (27) yields the result differing 
by ±180. However, for Bt=±90, the components nx5 and ny5 are always equal to zero. 
Consequently, these two equations in this case are inapplicable. 
 

5. Inverse kinematics 
 
The inverse kinematics is used to determine the set of axis variables c, d1, d2, 3 and 4 that 
will produce the desired cutter location (Xt, Yt, Zt, -ax5, -ay5 and -az5) given in the CL data 
file, or Xt, Yt, Zt, Ct  

and Bt given in G codes. Control unit primarily utilizes the inverse 
kinematics. In this case, during machining in each interpolation period, i.e. for each 
interpolated point of motion, it determines the cutting tool position and orientation relative 
to the swivelling table, respectively movable work table coordinate system. This section 
discusses some possible machine singular positions. Control algorithms are given for the 
work table and the axis Ct that eliminate their singular positions. 
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Here we will determine machine component positions in virtue of its tool position relative 
to the rotating table (Cy axis) given by the matrix Tt, Eq. (7). The component 4 position 
relative to the rotating table is defined by the expression:   

1
t

4
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 TTT  (28) 

This way, for tool orientation defined by RPY and for At=180 the preceding equation 
reads: 
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Multiplying both sides of Eq. (6) by the matrix Ac on the left side we obtain 

Eq. , i.e. 
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Multiplying Eq. (30) consecutively by , then by  and lastly by  on the left 

side we obtain Eq. , i.e. 
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 (31) 

 

5.1. Calculation of the angle c 
 
The term (2,4) of Eq. (30) reads:  

33yc5c5c asYcXs    (32) 

The term (1,2) of Eq. (30) yields 5yc5xc3 osocs   (33) 
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The terms (2,3) and (3,1) of Eq. (30) yield 5z5yc5xc3 n)acas(s   (34) 

The terms (2,1) and (3,3) of Eq. (30) yield 5z5yc5xc3 a)ncns(s   (35) 

 

It is possible to calculate s3 only by the help of the components of vector a, obtained from 
CL data file, but in this case it is needed to have the information on the sign of the angle 4. 
Namely, for 40,

 
the terms (2,3) and (3,3) of Eq. (30) yield 

)a1)(sign()acas(s 2
5z45yc5xc3    (36) 

and for 4=0 is s3=0.  

Now, Eq. (32) can be written in the following form: 

yc
2

y
x

2 )c(tan1

p
p

)c(tan1

)ctan( 





 (37)  

Eqs. (33) and (37) yield 35y5x aoXp   and 35x5y aoYp   (38) 

Eqs. (34) and (37) yield 5z35x5x naaXp  and 5z35y5y naaYp   (39) 

Eqs. (35) and (37) yield 5z35x5x aanXp 
 
and 5z35y5y aanYp   (40) 

Eqs. (36) and (37) yield )a1)(sign(aaXp 2
5z435x5x  

 
and 

)a1)(sign(aaYp 2
5z435y5y    for  04  (41) 

and  and  for 5x Xp  5y Yp   04 . 

Eq. (37) can be written in the form )c(tan1p)ctan(p 2
ycyx    and 

 i.e. 

.  

))c(tan1()ctan(pp2p)c(tanp 22
ycyx

2
y

22
x  

0p)ctan(pp2)c(tan)p( 2
yc

2
yyx

22
yc

2
x  

The solution for the preceding equation is 

: )p/())p()p(pppparctan((c 2
yc

2
x

2
yc

2
y

2
yc

2
x

2
y

2
xyx   . 

As the table swivelling angle decreases with the table moving in the direction of the  

axis, caused by thermal dilatations (yc>0), the sign – will be adopted in the preceding 
expression, such that:  

oy

)p,pppp(2tanac 2
yc

2
x

2
yc

2
y

2
xycyx90    (42) 

The table swivelling angle c in the expression (42) is denoted by c90 for the reason that this 
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expression always gives angle c in the range [-90,90], except when , which is a 

special case. For the case when the angular head axes intersect, a3=0, and there is no 
thermal dilatation, yc=0, the solution for Eq. (32) would read: c=atan2(-Y5,X5). 

2
yc

2
xp 

 

5.1.1. Algorithm for calculations of the angle c 
 
The X axis feed will be limited so that the cutting tool moves from the table axis to the 
maximum positive value. To achieve this, and given that the value of X5 can be negative 
too, the table swivelling angle c should be in the minimum range of [-180,180]. In order 
to reduce the additional positioning of the workpiece and angular head during milling, the 
range of [-360+c90,360+c90] will be adopted for the table swivelling angle c. Hence, it is 
necessary to extend the range of the angle c, obtained by the expression (42), from [-
90,90] to [-360+c90,360+c90]. To achieve this, but also to avoid uncontrolled work table 
swivelling in singular positions by approximately ±180 or ±360, this paper proposes a 
novel algorithm for calculating the angle c. It consists of three steps presented below. 
 
Step 1.  Step 1 involves the calculations of the angle c for the case without thermal 
dilatation. The range of the angle c obtained here is [-180,180]. For yc=0, the expression 
(42) reads: 

)p,p(2tanac xy   (43) 

Let angle c be denoted by cprev for the previous interpolation period. The angle c increment 
for the next interpolation period will be 

 prevccc   (44)  

Step 2. In Step 2 it is checked if the value of the angle c, calculated in Step 1 for a single 
interpolation period, changes by approximately c±180  or c±360. The procedure is 
presented, which makes this impossible and which, if necessary, extends the range of the 
angle c from [-180,180] to [-360,360]. For calculations of the angle c in the next 
interpolation step, the value will be assigned to cprev=c. 
 
Step 3. In Step 3 the angle c is determined for the case if yc0. First, in virtue of the 
expression (42) the value of the angle c90 is calculated. Using this and the value of the angle 
c obtained in Step 2, the range of the angle c is extended from  [-90,90] to [-
360+c90,360+c90]. 
 
The difference between the angle c90 obtained by the expression (42) and the angle c 
calculated in Step 2 will be denoted by  

ccc 9090   (45) 

Now, the value of the table swivelling angle (c90) will be corrected by ±180 or by ±360 as 
follows: 
If c<-7/4, then c=c90+2; 
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If c[-/4,-5/4], then c=c90+; 
If c[/4,5/4], then c=c90-; 
If c>7/4, then c=c90-2; 
Else c=c90; 

Note: If  in the expression (42), the discriminate of the argument of a 

function in this expression (42) being smaller than zero, therefore its argument is not a real 
number. In this case, the solution does not exist for angle c that will lead the surface of 
machining to the machine X axis. It should be waited for the table base to cool and for the 
table axis to return to the zero position. 

2
yc

2
y

2
x pp 

 

5.2. Work table singular positions 
 
A special issue associated with rotary axes is the problem of singular configuration. 
Sometimes the singular configuration represents the borderline between two possible 
solutions for the inverse kinematics, but most often the singular configuration is at the end 
position of one of the rotary axes. The problem with the singularity is that the C axis 
sometimes has to make a quick turn, often 180, in order to produce the desired tool 
motion. In the subsection 5.1.1. the algorithm given prevents the work table to swivel by 
180 or 360, in a single interpolation period.  
This algorithm has also extended the table swivelling range to [-360+c90,360+c90], 
whereby many singular positions were avoided as well. 
 
Some possible singular positions of the work table have still remained. They will be 
discussed now. Analyzing the expression (42), it is noticeable that in some specific 
situations, in order to correct motion caused by thermal dilatation yc, the work table 
swivelling occurs by 180 or 90 in short time intervals. These singular positions will be 
presented below. 

1. If px=0, then ),p(2tanac yc
2
yc

2
y   . This entails that for the case when 

pyyc, and for yc>0, there holds c180, and for yc<0,
 
it holds c0. If pyyc, the 

discriminate  is smaller than or equal to zero, therefore the assigned 

motion is not achievable. 

2
yc

2
ypD 

2. If py=0, then )p,(2tanac 2
yc

2
xyc   . This entails that for the case when 

pxyc and for yc>0, there holds c90, and for yc<0, it holds c90. If pxyc, the 

discriminate 
 
is smaller than zero, therefore the assigned motion is not 

achievable. 

2
yc

2
xpD 

3. A special case of machining is when py=0 and yc=0. Then c=atan2(0,px) holds, so in 
changing the sign of the parameter px, there occurs the table swivelling by the angle of 
180. Table swivelling is performed here at programmed velocity and programmed 
acceleration, while the remaining 4 axes do not rotate. The control algorithm itself 
provides for further continuation of motion along the X axis in a positive direction.   
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ble

r 180 and to change the sign of the angle Bt. This will change the parameters px and py 
work table singular positions. 

les Bt and Ct, using Eq. (9), we can calculate tool orientation matrix 
coefficients. Afterward, using terms (1,2) and (2,2) of Eq. (30), we can calculate the angle 
3 by the equation:  

During previous 3 motions the machine passes through singular points, so abrupt ta  
swivelling occurs. Owing to the two-axis angular head with the axis that do not intersect it 
is possible in singular position to change its orientation in the way to change the angle tC  

fo
in Eq. (42), and thereby avoid 
 

5.3. Calculations of the angle 3 
 
The angle 3, similar to the angle Ct, as described in subsection 4.2.2, can be calculated in a 
number of ways. In case that programming is done in G code and if tool orientation is 
assigned by the ang

)ocos,osoc(2tana 5yc5xc5yc5xc3 
 

(46) 

In 4.1.2. it has been shown that components ox5 and oy5 of the argument of a function atan2 
do not depend on the angle Bt, that they always lie in the x0y0 plane and that they are never 
simultaneously equal to zero. Hence, for this case, the expression (46) can be used for 
calculations of the angle 3. When the table swivelling angle c equals zero, the expression 

0) used to calculate the angle Ct is identical to the expression (46), which now reads: 

se in order to determine the machine axis position all 9 tool orientation matrix 
terms cannot be used, but only the component
yields     

(2
3=atan2(ox5,-oy5). 
 
As mentioned in section 3, when CAD/CAM system is used in programming, its output are 
the assigned tool position and direction vector a given in the CL data file. This means that 
in this ca

s ax5, ay5 and az5. The term (3,3) of Eq. (31) 

)asac,acas(2tana 5yc5xc5yc5xc3    (47) 

And: 

)asac,acas(2tana 5yc5xc5yc5xc3 
 

(48) 

Previous 2 equations, for the case when the work table swivelling angle c equals zero, are 
identical to Eqs. (24) and (25). As mentioned in 4.1.2. the values of these two solutions 
mutually differ by 180. For Bt=0 the components ax5 and ay5 equal zero, so Eq. (47) 
always yields 3=0, while Eq. (48) always gives here 3=180, irrespective of the current 
value of the angle 3. Now, we will present the algorithm that will in the application of 
either of the two previous equations preven  at abrupt angular head swivelling round the 

n for the angle 3 for Bt=0. Let 3prev 
denote the 

d. 
;   

 3-3prev[-/2,3-/2], then 3=3+;   
;   

vertical axis and that will yield solutio
angle 3 in the previous interpolation perio
If 3-3prev[/2,3/2], then 3=3-
If
If ax5=0 and ay5=0, then 3=3prev
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When programming is performed in CAD/CAM system, by the help o
angle 4 can be calculated using the terms (1,2) and (2,2) of Eq. (31), 

5.4. Calculations of the angle 4 
 

f the CL data file, the 
such that: 

)a),acas(s)acas(c(2tana 5z5yc5xc35xc5yc34   (49) 

In case that tool orientation is given by the angles Bt and Ct, the angle 4 
can be calcu  

in other manner using differen erms of Eqs. (30) and (31), such as, e.g.  
lated

t t

)a,n(2tana 5z5z4   (50) 

.5. Calculations of the parameters d  and d  (the X and Z axes positions) 

The term (1,4), Eq. (30), determining motion along the X axis yields:                               

 

5 1 2

 

xc335c acYsXcdX 5c1    (51) 

The term (3,4), Eq. (30), determining motion along the Z axis yields:                                

work table, matrix Tt, by the help of 
e expressions (42), (46) or (47) or (48), (49) or (50), (51) and (52), respectively, we have 

ositions c, 3, 4, d1 and d2 of machine  

lowing 
 is 

illing machine, which essentially 

lar 
g axes, which increases the achievability of machining in some 

ases. For the case of control of the angular head with intersecting axes, the mentioned 

ror by 
e. Also, this algorithm extends the angle range, so it is greater 

5c12 ZddZ    (52) 

This way, using the cutting tool position relative to the 
th
calculated the p
 

6. Conclusion 
 
It has been shown that on the 5-axis turning centre with 2 linear and 3 rotational axes, 
besides the turning, it is possible to achieve 5-axis milling, drilling and boring identical to 
that on the milling machine with 3 linear and 2 rotational axes. Control algorithm al
for this was presented. Thanks to the proposed control algorithm, machine programming
possible in identical way as done for the 5-axis m
simplifies writing the machining program or taking over the CL data from CAD/CAM 
systems developed for the milling machines. 
Forward and inverse kinematics has been solved for the case of utilizing the 2-axis angu
head with non-intersectin
c
algorithm is simplified. 
 
The proposed algorithm fully eliminates the inaccuracy of machining caused due to base 
thermal extension. Here the solving of the table swivelling angle was a specific problem. 
The algorithm was given that performs compensation of the base thermal extension er
correcting mentioned angl
than ±360. Thus, additional positioning of the work table and angular head during 
machining is decreased.  
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 necessary, it is possible to incorporate into the control algorithm the compensations for 
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