

Milutinović, D.¹, Slavković, N.¹, Kokotović, B.¹, Dimić, Z.², Glavonjić, M.¹, Živanović, S.¹

NOVI PRISTUP KINEMATIČKOG MODELIRANJA KAO OSNOVA ZA RAZVOJ DOMAĆEG DELTA ROBOTA³

Rezime:

U radu je predstavljen specifični pristup kinematičkog modeliranja kao osnove za razvoj i gradnju domaćeg DELTA robota. Upravljački sistem razvijenog prototipa je baziran na PC real-time Linux platformi i EMC2 softverskom sistemu za upravljanje mašina alatki i robota.

Ključne reči: DELTA robot, modeliranje robota, upravljanje i programiranje

1. UVOD

Zbog specifičnosti paralelnih mehanizama i složenosti modeliranja, upravljanja, projektovanja, izrade i korišćenja robota i mašina alatki zasnovanih na njima, istraživanje i razvoj ovih sistema su bazirani na visokom nivou kooperacije univerziteta, istraživačkih instituta i industrije [1]. Praktični rezultati ovih istraživanja su nekoliko komercijalno razvijenih robota i veći broj komercijalno razvijenih mašina alatki sa paralelnom kinematikom [2]. DELTA paralelni mehanizam na osnovu kojeg je razvijen prvi DELTA robot [3,4] je prihvaćen kao širi koncept iz koga je nastao veći broj paralelnih mehanizama sa 3-6 stepeni slobode, sa konstantnim dužinama spojki i translatornim ili obrtnim osnaženim zglobovima. DELTA robot je danas osnova savremenih linija i sistema za manipulaciju i pakovanje proizvoda prehrambene, konditorske i farmaceutske industrije. Takođe ima primenu i u montaži u mikroelektronici. Zahtevani standardi produktivnosti, pouzdanosti i higijene u ovim industrijama potiskuju postojeće serijske robote iz procesa proizvodnje.

Na složenost modeliranja, projektovanja, izrade i upravljanja ukazuje činjenica da mali broj proizvođača robota uključuje DELTA robot u svoj proizvodni program. S obzirom na potrebe za ovakvim robotima i u domaćoj industriji kao i za potrebe nastave i istraživanja pokrenut je projekat razvoja domaćeg DELTA robota čiji se rezultati u ovom radu ukratko predstavljaju [5].

2. O KONCEPTU DELTA ROBOTA

DELTA paralelni robot [3,4] je razvijen sa idejom da nema potrebe koristiti robote serijskih struktura sa motorima i od po nekoliko kilovata za manipulaciju objektima mase od nekoliko grama kao što je to slučaj kod manipulacije i pakovanja proizvoda prehrambene, konditorske i farmaceutske industrije. Slična potreba se javlja i pri montaži u mikroelektronici. Originalni shematski prikaz DELTA robota pokazan je na slici 1.

Ovakva, na prvi pogled kompleksna struktura mehanizma sa tri serijska kinematička lanca i većim brojem segmenata, slika 1a), omogućava da pokretna ploča - platforma ima samo 3 stepena slobode. Ovi stepeni slobode omogućavaju kretanje platforme duž X,Y i Z ose, pri čemu ona uvek ostaje paralelna nepokretnoj osnovi – bazi i bez rotacije oko ose normalne na nju. Četvrti stepen slobode, odnosno orijentacija end-efektora, se obezbeđuje na različite načine. Jedan od načina je postavljanjem aktuatora na

¹ Prof. dr Dragan Milutinović, <u>dmilutinovic@mas.bg.ac.rs</u>, Nikola Slavković, asistent, <u>nslavkovic@mas.bg.ac.rs</u>, mr Branko Kokotović, asistent, <u>bkokotovic@mas.bg.ac.rs</u>, prof. dr Miloš Glavonjić, <u>mglavonjic@mas.bg.ac.rs</u>, doc. dr Saša Živanović, <u>szivanovic@mas.bg.ac.rs</u>, Univerzitet u Beogradu, Mašinski fakultet, Kraljice Marije 16, 11120 Beograd

² Zoran Dimić, <u>zoran.dimic@li.rs</u>, Lola institut, Kneza Višeslava 70A, 11030 Beograd

³ Ovaj rad je nastao u okviru istraživanja na projektu TR35022 Razvoj nove generacije domaćih obradnih sistema, koji je podržan od strane Ministarstva za prosvetu i nauku, Vlade Republike Srbije.

bazu, čiji se moment prenosi pomoću dva kardanska zgloba i teleskopskog vratila, slika 1b). Drugi način je pomoću aktuatora na unutrašnjoj strani platforme, slika 1c).

Slika 1. DELTA mehanizam

Takođe, postoje i složenija rešenja sa četvrtim kinematičkim lancem za orijentaciju end-efektora za specifične primene, slika 1d), kao i rešenja sa dodatna 2 ili 3 serijska stepena slobode za orijentaciju end-efektora, slika 1e). Sa aspekta kinematičkih mogućnosti DELTA robot može biti posmatran kao SCARA robot, s tim što mu je odnos nosivost/pokretna masa višestruko veći kao i brzine nego kod SCARA robota (brzine vrha preko 10 m/s uz ubrzanja i iznad 10g).

3. PRIKAZ REZULTATA ISTRAŽIVANJA

Polazeći od značaja rešavanja problema kinematičkog modeliranja za projektovanje, upravljanje i izradu DELTA robota sa, danas zahtevanim visokim performansama, razvijena je metoda kinematičkog modeliranja na bazi minimalnog broja parametara, koja je efikasnija od postojećih pristupa [6] ne samo u pogledu projektovanja, izrade, upravljanja i programiranja već i u pogledu razvoja efikasnih algoritama za kalibraciju i kompenzaciju [7,8].

Razvijena metoda kinematičkog modeliranja na bazi minimalnog broja parametara omogućava.

- analitičko rešavanje inverznog i direktnog kinematičkog problema nominalnog i tačnog modela (sa tzv. geometrijskim i negeometrijskim greškama) DELTA robota,
- izvođenje ukupne Jakobijan matrice kao i Jakobijan matrica direktne i inverzne kinematike u analitičkoj formi što je od posebne važnosti za analizu kombinovanih singulariteta i singulariteta inverzne i direktne kinematike,
- određivanje i optimizaciju projektnih parametara kao i analizu oblika i dimenzija radnog prostora,
- razvoj efikasnih algoritama za kalibraciju i kompenzaciju.

Ovo je dalje omogućilo razvoj:

- upravljačkog sistema otvorene arhitekture na PC real-time Linux platformi i sa upravljačkim sistemom EMC2 (Enhanced Machine Control),
- modularnog i rekonfigurabilnog DELTA robot.

Na slici 2 je pokazan CAD model sa radnim prostorom i okruženjem prototipa prvog domaćeg DELTA robota koji je kompletno razvijen i izrađen na Katedri za proizvodno mašinstvo, Mašinskog fakulteta u Beogradu, slika 3.

Slika 2. CAD model prototipa prvog domaćeg DELTA robota

Slika 3. Prototip domaćeg DELTA robota

Kao što je pomenuto, opštost usvojenog DELTA koncepta omogućava izrazitu modularnost i rekonfigurabilnost kao i stepenast napredak u razvoju, gradnji i primeni robota i mašina alatki baziranih na ovom konceptu. Razvojem prvog domaćeg DELTA robota pokazanog na slikama 2 i 3 stvoreni su uslovi za razvoj varijantnih rešenja robota i manjih mašina alatki koji je u toku. Koncept ovih rešenja čiji je razvoj u toku je pokazan na slici 4.

Slika 4. Koncept rekonfigurabilnih robota i malih mašina alatki sa translatornim osnaženim zglobovima

4. KINEMATIČKO MODELIRANJE

Geometrijski model osnove DELTA robota sa prva 3 stepena slobode je pokazan na slici 5. Koordinatni sistemi pridruženi bazi i platformi su označeni sa {B} i {P}. Tri kinematička lanca koja povezuju bazu i platformu čine spojke l_1 i zglobni paralelogrami l_2 . Centri osnaženih obrtnih zglobova na bazi su raspoređeni na krugu poluprečnika R pod uglom od 120°. Središta između centara pasivnih sfernih zglobova zglobnih paralelograma su raspoređeni na platformi po krugu poluprečnika r, pod uglom od 120°. Uglovi θ_i , i = 1,2,3 predstavljaju osnažene i upravljane unutrašnje koordinate dok vektor položaja centra platforme ${}^B \mathbf{p}_{Op} = [x_P \quad y_P \quad z_P]$ predstavlja vektor spoljašnjih koordinata. U nekim od dosadašnji metoda kinematičkog modeliranja su, čak i kod nominalnog modela, korišćene pomoćne promenljive, β_i i δ_i , i = 1,2,3 [9], prikazane na primeru jednog kinematičkog lanca, kod kojeg je zglobni paralelogram l_2 zamenjen jednim štapom, slika 6.

Slika 5. Geometrijski model DELTA robota

Slika 6. Uprošćeni model jednog kinematičkog lanca sa pomoćnim promenljivim β_i i δ_i , i = 1,2,3

Ovako složen model je zahtevao sračunavanje po nekoliko trigonometrijskih funkcija uglova β_i i δ_i da bi se rešili inverzni i direktni kinematički problem. Ovakvi pristupi su omogućavali zadovoljavajuća rešenja u pogledu brzine sračunavanja za PTP (Point To Point) upravljanje sa linearnom interpolacijom u unutrašnjim koordinatama kod robota koji su namenjeni za Pick & Place operacije.

4.1. Inverzni i direktni kinematički problem

Na slici 7 je prikazan kinematički model DELTA robota sa slike 5, pri čemu je svaki paralelogram predstavljen jednom spojkom. Koordinatni frejmovi {B} i {P}, vezani za bazu i pokretnu platformu su zbog prirode mehanizma uvek uzajamno paralelni i iste orijentacije. Vektori v definisani u koordinatnim sistemima {B} i {P} su označeni kao ^B v i ^P v.

Slika 7. Kinematički model DELTA robota

Vektor spoljašnjih koordinata koji definiše poziciju i orijentaciju end-efektora se može izraziti kao

$$\mathbf{x}_E = \begin{bmatrix} B \mathbf{p}_E \\ \phi \end{bmatrix} = \begin{bmatrix} x_E & y_E & z_E & \phi \end{bmatrix}^T$$
(1)

Vektor unutrašnjih koordinata se može izraziti kao

$$\boldsymbol{\Theta} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 \end{bmatrix}^T \tag{2}$$

pri čemu su θ_i , i = 1,2,...,4 skalarne upravljačke promenljive. Uglovi θ_1 , θ_2 i θ_3 su rotacije spojki l_1 , dok je θ_4 ugao rotacije end-efektora.

S obzirom da su koordinatni sistemi {B} i {P} paralelni to se između koordinata vektora položaja centra platforme ${}^{B}\mathbf{p}_{Op}$ i koordinata vektora položaja vrha end-efektora ${}^{B}\mathbf{p}_{E}$ mogu uspostaviti jednostavne relacije kao

$$x_P = x_E; \quad y_P = y_E; \quad z_P = z_E + l_E$$
(3)

gde je l_E dužina end-efektora.

Zbog činjenice da su koordinatni sistemi {B} i {P} paralelni takođe je lako uočiti da je

 $\phi = \theta_4 \tag{4}$

Relacije (3) i (4) su važne zbog jednostavnijeg rešavanja inverznog i direktnog kinematičkog problema jer se za njihovo rešavanje može koristiti samo vektor položaja koordinatnog početka koordinatnog sistema vezanog za platformu ${}^{B}\mathbf{p}_{Op}$. Na ovaj način se vektori spoljašnjih i unutrašnjih koordinata datih u jednačinama (1) i (2) mogu redefinisati kao

$$\mathbf{x} = {}^{B} \mathbf{p}_{OP} = \begin{bmatrix} x_{P} & y_{P} & z_{P} \end{bmatrix}^{T}$$
(5)

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}^T \tag{6}$$

Vektori definisani parametrima mehanizma:

vektori položaja centara obrtnih zglobova na bazi

$${}^{B}\mathbf{b}_{i} = \begin{bmatrix} R \cdot c\gamma_{i} & R \cdot s\gamma_{i} & 0 \end{bmatrix}^{T}$$
 (7)

• vektori položaja središta između centara pasivnih sfernih zglobova zglobnih paralelograma na platformi ${}^{P}\mathbf{p}_{i} = \begin{bmatrix} r \cdot c\gamma_{i} & r \cdot s\gamma_{i} & 0 \end{bmatrix}^{T}$ (8)

gde $\gamma_i = \frac{2\pi}{3} \cdot (i-1)$, i = 1,2,3 predstavlja ugaoni raspored centara na bazi i platformi dok su sa "s" i "c" označene funkcije *sin* i *cos*.

Drugi vektori i parametri su definisani kao što je pokazano na slici 7 gde su ${}^{B}\mathbf{a}_{i}$, ${}^{B}\mathbf{z}_{i}$ i ${}^{B}\mathbf{w}_{i}$, i = 1,2,3 jedinični vektori dok su l_{1} i l_{2} konstantne dužine spojki. Pri ovome je važno uočiti da u jediničnim vektorima

$${}^{B}\mathbf{a}_{i} = \begin{bmatrix} c\gamma_{i} \cdot c\theta_{i} & s\gamma_{i} \cdot c\theta_{i} & s\theta_{i} \end{bmatrix}^{T}, i = 1, 2, 3$$
(9)

figurišu unutrašnje koordinate θ_i .

Na osnovu ovako definisanih vektora i geometrijskih relacija sa slike 7 se mogu izvesti sledeće vektorske jednačine:

$$k_i \cdot {}^B \mathbf{w}_i = {}^B \mathbf{p}_{Op} + {}^{P=B} \mathbf{p}_i - {}^B \mathbf{b}_i$$
(10)

$$k_i \cdot {}^B \mathbf{w}_i = l_1 \cdot {}^B \mathbf{a}_i + l_2 \cdot {}^B \mathbf{z}_i \tag{11}$$

Vektori

$$k_i \cdot {}^B \mathbf{w}_i = \begin{bmatrix} k w_{xi} & k w_{yi} & k w_{zi} \end{bmatrix}^T$$
(12)

se izračunavaju iz jednačine (10) u kojoj su, u slučaju rešavanja inverznog kinematičkog problema, sve veličine poznate. S obzirom da su svi vektori u jednačini (11) jedinični, to se kvadriranjem obe strane ove jednačine dobija da je

$$l_2^2 = k_i^2 - 2 \cdot l_1 \cdot ({}^B \mathbf{a}_i \cdot k_i \cdot {}^B \mathbf{w}_i) + l_1^2$$
(13)

odnosno

$$l_1^2 - 2 \cdot l_1 \cdot ({}^B \mathbf{a}_i \cdot k_i \cdot {}^B \mathbf{w}_i) + k_i^2 - l_2^2 = 0, \ i = 1, 2, 3$$
(14)

iz koje se mogu rešiti inverzni i direktni kinematički problem.

U slučaju rešavanja inverznog kinematičkog problema jednačine (14) čine ešalon odnosno nisu spregnute po unutrašnjim koordinatama θ_i . Rešavanjem svake od njih nezavisno dobijaju se po dva rešenja θ_i i θ'_i , slika 8. Kao što se može videti sa slike 8, u cilju izbegavanja singulariteta uvek se uzima prvo rešenje.

Efikasnost pokazanog pristupa modeliranja u pogledu brzine izračunavanja inverznog kinematičkog problema se ogleda ne samo u činjenici da se ne koriste pomoćne promenljive već i u tome što su, kao što je rečeno, jednačine u potpunosti raspregnute tako da je moguće paralelno procesiranje.

Jednačine (14), ali sada kao sistem, takođe omogućavaju i analitičko rešavanje direktnog kinematičkog problema odnosno izračunavanje spoljašnjih koordinata x_P , y_P i z_P koje figurišu u izrazima za kw_{xi} , kw_{yi} i kw_{zi} , i = 1,2,3, jednačina (12), a za zadate unutrašnje koordinate θ_i , i = 1,2,3. Kao i u slučaju rešavanja inverznog kinematičkog problema, detaljni postupak rešavanja je ovde izostavljen kako zbog obimnosti tako i zbog ograničenosti cirkulacije rezultata ali se navodi da se pojavljuju dva rešenja, slika 9, od kojih je fizički izvodljivo samo rešenje sa slike 9a).

Slika 8. Dva rešenja inverznog kinematičkog problema

Slika 9. Dva rešenja direktnog kinematičkog problema

5. SISTEM UPRAVLJANJA I PROGRAMIRANJA

Upravljački sistem razvijenog prototipa je baziran na PC real-time Linux platformi i EMC2 softverskom sistemu za upravljanje i ima strukturu koja je pokazana na slici 10.

Razvoj sistema upravljanja se odvijao u više faza. U cilju testiranja funkcija inverzne i direktne kinematike, ponašanja sistema u realnom vremenu i razvoja sistema programiranja prvo se konfiguriše virtuelni robot u EMC2 u Python grafičkom okruženju. Kinematički modul je baziran na jednačinama direktne i inverzne kinematike koje se programiraju u C jeziku i integrišu u jezgro EMC2 sistemskog softvera. Ovako konfigurisani sistem upravljanja omogućava testiranje funkcionalnosti novo konfigurisanih elemenata korisničkog interfejsa, interpolacionih parametara i programirane putanje u granicama radnog prostora, koji pored opsega unutrašnjih koordinata obuhvata i opsege kretanja pasivnih zglobova. Za kompletiranje sistema upravljanja razvijenog prototipa sa, u ovoj fazi, koračnim motorima korišćen je paralelni port PC-a za komunikaciju sistema upravljanja i pogona prototipa.

Slika 10. Struktura sistema upravljanja i programiranja

Kao što se vidi sa slike 10 programiranje je konvencionalno. U toku učitavanja G-koda EMC2 softver izvršava grafičku simulaciju putanje. Pri startovanju programa instrukcije G-koda se izvršavaju u realnom vremenu i generišu upravljački signali koji se mogu usmeriti na realni ili virtuelni robot. Virtuelni robot omogućava završnu verifikaciju G-koda slično postojećim sistemima za off-line programiranje robota, slika 11. Takođe, pored provere mogućnosti ostvarivanja kretanja u zadatim opsezima aktivnih i pasivnih zglobova moguća je i vizuelna provera kolizija sa objektima manipulacije odnosno perifernom opremom. Nakon verifikacije program se može bezbedno izvršiti na realnom robotu.

Slika 11. Virtuleni DELTA robot

6. ZAKLJUČAK

Polazeći od značaja rešavanja problema kinematičkog modeliranja za projektovanje, upravljanje i izradu DELTA robota sa, danas zahtevanim visokim performansama, razvijena je metoda kinematičkog modeliranja na bazi minimalnog broja parametara, koja je efikasnija od postojećih pristupa [6] ne samo u pogledu projektovanja, izrade, upravljanja i programiranja već i u pogledu razvoja efikasnih algoritama za kalibraciju i kompenzaciju [7,8]. U radu je predstavljen specifični pristup kinematičkog modeliranja kao osnove za razvoj i gradnju domaćeg DELTA robota. Upravljački sistem razvijenog prototipa je baziran na PC real-time Linux platformi i EMC2 softverskom sistemu za upravljanje mašina alatki i robota. Razvojem prvog domaćeg DELTA robota pokazanog na slikama 2 i 3 stvoreni su uslovi za razvoj varijantnih rešenja odnosno rekonfigurabilnih robota i manjih mašina alatki koji je u toku. Koncept ovih rešenja čiji je razvoj u toku je pokazan na slici 4.

7. LITERATURA

- [1] J.P. Merlet (2000) Parallel robots, Kluwer Academic Publisher, Dordrecht, ISBN 0-7923-6308-6.
- [2] M. Weck, D. Staimer (2002) Parallel Kinematic Machine Tool Current State and Future Potentials, Annals of the CIRP, 51(2), pp. 671-681.
- [3] R. Clavel (1990) US patent No. 4,976,582.
- [4] L. Rey, R. Clavel (1999) The Delta Parallel Robot, Parallel Kinematic Machines, Eds. C. R. Boer, L. Molinari-Tosatti and K.S. Smith, Springer, pp. 401-417.
- [5] D. Milutinović, M. Glavonjić, Lj. Tanović, P. Bojanić, R. Puzović, S. Živanović, B. Kokotović, M. Popović, N. Slavković, G. Mladenović (2011) Rezultati istraživanja i razvoja nove generacije obradnih sistema, 37. JUPITER konferencija, 33. simpozijum NU-Roboti-FTS, Zbornik radova, str. UR.51-UR.64, Mašinski fakultet, Beograd, ISBN 978-86-7083-724-9.
- [6] F. Pierrot, A. Fournier (1990) Fast models for the DELTA parallel robot, IFIP, Rome, Italy, pp. 123-130.
- [7] D. Milutinović, M. Glavonjić, S. Živanović (2002) Novi paralelni mehanizam na bazi DELTA koncepta, 28. JUPITER konferencija, 24. simpozijum NU-Roboti-FTS, Zbornik radova, str. 3.121-3.126, Mašinski fakultet, Beograd.
- [8] Lj. Tanović, P. Bojanić, M. Glavonjić, D. Milutinović, V. Majstorović, i drugi (2011) Razvoj nove generacije domaćih obradnih sistema, TR-35022, Godišnji izveštaj, Mašinski fakultet Beograd.
- [9] F. Sternheim (1987) Computation of the direct and inverse kinematic models of the Delta 4 parallel robot, in: Robotersysteme, 3, pp. 199-203.

Milutinovic, D., Slavkovic, N., Kokotovic, B., Dimic, Z., Glavonjic, M., Zivanovic, S.

DEVELOPMENT OF THE DOMESTIC DELTA ROBOT BASED ON A NEW KINEMATIC MODELING APPROACH

Summary:

This paper presents a specific kinematic modeling approach as a basis for the design and development of domestic DELTA robot. The control system of the developed prototype is based on PC real-time Linux platform and EMC2 software for computer control of machine tools and robots.

Keywords: DELTA robot, robot modeling, control and programming system