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Abstract: 
  

The human musculoskeletal system is comprised of various joints which are characterized by 
their unique morphology and kinematics. The joint coordinate system is tailored to comply with 
the observed mechanical properties of joints, making their research more intuitive and in 
accordance with standard clinical terminology. This coordinate system allows for spatial 
orientation to be described by three sequence independent Euler angles (the so-called “jaw-pitch-
roll” angles), which mirrors the sequence independency of the final position of human limbs. The 
knee joint is the most complex, both anatomically and mechanically. It can be modelled as a four 
link open kinematic chain to which the joint coordinate system is applied. This coordinate system 
is usually described in Denavit-Hartenberg parameters, and the rotation transformation matrix is 
obtained using standard methods of vector algebra. In this paper another approach is used to 
derive the rotation transformation matrix, namely, the Rodrigues’ rotation formula. The utility of 
this algorithm is evident: the Rodrigues’ method provides an elegant solution which is obtained in 
a concise and efficient manner.  
 
Key words: biomechanics, knee joint, joint coordinate system, rotation transformation matrix, 
Rodrigues’ rotation formula 
 
1. Introduction 
 

Complex anatomical structures often require creative engineering solutions, adapted for the 
specific experiment or research. One of the most challenging in biomedical engineering is the 
human knee joint. Due to high dynamic loads and its susceptibility to injuries, there is a great 
need for replacement prosthetics, as well as individual surgical plans. In order for these 
requirements to be met, the problem has to be approached from various fields of engineering 
(kinematics, dynamics, tribology, FEM analysis, etc.) and medicine. Thus, it is important for the 
coordinate system, which is applied during research, to comply with mechanical and medical 
requirements and to bridge the gap between medical and engineering research groups in terms of 
terminology.  

The joint coordinate system is created in relation to the bony landmarks of the joint [1], [2]. 
Also, it seamlessly fits the four link open kinematic chain, which conveniently describes the 
function of joints [1]. This coordinate system allows for three sequence independent Euler angles 
to be used [1], [3]. These angles (the so-called “jaw-pitch-roll” angles) are in accordance with 
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clinical rotations of the joint (flexion-extension, abduction-adduction and external-internal 
rotation) [1], [2], [3]. Under certain conditions, translations along the axes of this coordinate 
system correspond to the clinical translations, as well [1]. These translations within the joints are 
extremely small and difficult to measure, due to the lack of precision of the measuring 
instruments and the reference points being obscured [3], [4].  The magnitude of the displacement 
vector greatly relies on the choice of reference points [1]. This gives an even higher importance to 
the choice and positioning of the coordinate system. 

The manipulation of the four link open kinematic chain requires rotational transformation 
matrices to be derived. The usual mathematical approach involves careful examination of relative 
motions and vector algebra. Using the Rodrigues’ rotation formula makes this process much more 
efficient, as one only needs to determine the unit vectors which specify the rotational axes.  

 
1.1 The knee joint and its relevant anatomical and kinematical properties 
 

The knee joint is the most complex joint in the human body. It is comprised of bones, 
ligaments and tendons, all of which are responsible for proper functioning and stability of this 
joint [4], [5], [6].  

The bones which make the knee joint are femur, tibia and patella (see Fig. 2). The distal part 
of the femur is in contact with the proximal part of the tibia, and during various movements of the 
knee they perform a sliding-rolling motion. This motion occurs on the condylar surfaces (medial 
and lateral condyles of femur and tibia). These surfaces are protected by the articular cartilage 
and due to the presence of synovial fluid, the friction during motion of a healthy knee is often 
neglected [4], [6].  

 
Fig. 1. On the left: frontal view of the right knee joint. On the right: side view of the right knee joint.1 

The patella is a small bone embedded in the quadriceps tendon (see Fig. 1), which connects 
the quadriceps muscle group to the tibia. The function of the patella is to provide leverage, 
creating a much greater moment with the quadriceps force [4].  

Apart from the quadriceps muscle group, there are other muscles which are connected to the 
knee joint, but they have been proven to act only sporadically, in certain circumstances, to 
provide stability [4]. These muscles are often neglected during engineering research. Also, medial 
and lateral ligaments are not taken into consideration for the same reasons.  

During research, the coordinate system of the knee is often positioned in a way that provides 
the most convenient approximations. For example, when the total moment of forces acting in the 
knee is calculated, with a careful placement of the origin of the coordinate system, the influence 

                                                 
1 Image taken from an open source: https://comportho.com/wp-content/uploads/2016/07/328031.jpg, accessed: 03.04.2021.  



Rosić N., Rotation Transformation Matrix of the Joint Coordinate System with the Application to the Knee Joint 
 

3 

of cruciate ligaments can be neglected [4]. This is a widely accepted practice during evaluation of 
tibio-femoral and patello-femoral forces.  

The reference points are located using pronounced markers on the bones (Fig. 2). The origin 

of the femoral coordinate system (XYZ, defined by unit vectors , ,I J K
  

) is located in the middle 
of the line between medial and lateral condylar prominences [2]. The Z-axis points from the 
origin to the center of the femoral head. The Y-axis is normal to the frontal plane, which contains 
the Z-axis and the most posterior points of condyles equidistant to it [1].  

 
Fig. 2. On the left: anterior aspect of the knee joint. In the middle: femur. On the right: distal parts of 

tibia and fibula 

The tibial coordinate system (xyz) is denoted by unit vectors i


, j


 and k


. The axis of tibial 
rotation (z-axis in Fig. 4) passes through the middle of the line connecting the medial and lateral 
condylar prominences, and through the middle of the line connecting the prominent points of 
medial and lateral malleolus. The y-axis is oriented anteriorly, passing through the middle of each 
tibial plateau [1].  

The X-axis of the femoral coordinate system, as well as the x-axis of the tibial coordinate 
system, are defined by the right hand rule. These coordinate systems are shown in Fig. 3 and 4.  

                                                     
Fig. 3. Femur and its coordinate system (XYZ)           Fig. 4. Tibia and its coordinate system (xyz) 
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During movement, three rotations and three translations can be discerned. According to 
clinical nomenclature, the rotations are [1]: 

1.  Flexion-extension (around the X-axis of the femoral coordinate system), 

2.  External-Internal rotation of the tibia (around the z-axis) and 

3.  Abduction-adduction (around the common perpendicular to the X and z axes). 

Clinical translations, which correspond to the translations along the axes of the joint 
coordinate system when the abduction-adduction angle is zero, are as follows: 

4.  Medial-lateral tibial thrust or shift (translation along the X-axis), 

5.  Anterior-poster. tibial drawer (along the common perpendicular to the X and z axes) and 

6.  Joint distraction-compression (translation along the z-axis). 

In case when the abduction-adduction angle is not zero, coupling among these translations 
exists, and translations along the axes of the joint coordinate system do not correspond to clinical 
translations [1]. These translations are often neglected during research (and in this paper, as well). 
However, the knee joint is always considered to have six degrees of freedom. 

 
Fig. 5. Four link open kinematic chain, geometrically defined using Denavit-Hartenberg parameters 

During research, the knee joint is often described as a four link open kinematic chain with 
three cylindrical joints. Two middle links in this mechanism are imaginary. This representation is 
convenient for mechanical analysis. Very often Denavit-Hartenberg parameters are applied (Fig. 
5), as well, since they provide a very concise geometrical description of the system, in which the 

axes intersect ( 1 2 3 0l l l   ), coordinate systems are rotated by 90  relative to each other 

( 1 2 90    ), 1 , 2  and 3  denote the rotational angles, and 1d , 2d  and 3d  denote the 

translations. In reference position, when the abduction-adduction angle is zero, 2 90   . 
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2. The joint coordinate system 
 

The joint coordinate system includes two fixed axes (Z and z, which belong to femoral and 
tibial coordinate systems), along with the so-called floating axis, which is a common 
perpendicular to the Z and z axes of these coordinate systems.  

The direction of these axes is specified by non-orthogonal unit base vectors 1e


, 2e


 and 3e


. 

 
Fig. 6. On the left: a joint coordinate system applied to the knee joint. On the right: coordinate 

transformations shown in detail. 
 

The femur is considered to rotate around the X-axis, while the tibia remains fixed. This 
rotation is denoted by the angle   and the X-axis is considered to be a fixed axis. The clinical 
positive direction of this rotation is the mathematically positive direction. Also, the tibia rotates 
around the z-axis, while the femur remains fixed. The angle of rotation is   and the z-axis is also 
a fixed axis, but the clinically positive direction.is the mathematically negative direction.  

Unlike these two rotations, the rotation which corresponds to abduction-adduction motion is 
considered to happen around the common perpendicular which is denoted as the floating axis (F). 
The angle of this rotation is  , and it is defined as the angle between X and z axes (between 
fixed axes). Mathematically, the sign of this clinical rotation is also negative. In reference 

position, when the abduction-adduction angle is zero, 90    (measured in reference to the 
vector 3e


 which is parallel to 3e


).  

These Euler angles correspond to the so-called jaw-pitch-roll angles (the gyroscopic system), 
which are often used in the field of aeronautics [3]. The final orientation of the leg should be 
independent of the sequence in which the clinical rotations are performed. The joint coordinate 
system reflects this characteristic, because it satisfies the two conditions defined by Roth, that the 
perpendicular distance and angle between adjacent screw axes are constant [1], [7]. 
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If a Cartesian coordinate system is used, the final orientation of the body will depend upon 
the sequence in which the rotations around its axes are performed. When the sequence of 
rotations is changed, the axes of the joint coordinate system are changed as well. In this way, 
different sequence of rotations provides different motions in the joint coordinate system, but the 
order of rotations in the joint coordinate system itself is of no consequence [1]. The first rotation 
performed is the rotation around the fixed axis of the stationary body (femur in this case), the 
second rotation is the rotation around the floating axis, and the third rotation is performed around 
the second body fixed axis [1]. 

Thus, the final body orientation is independent of the sequence of rotations performed around 
the axes of the joint coordinate system. 
 
3. Rotation transformation matrix  
 

Often, during research, the femur is fixed, while the tibia is manipulated for purposes of 
measurements and evaluation. Thus, the need arises for a rotation transformation matrix, between 
femoral and tibial coordinate systems. 

 
X x

Y R y

Z z

   
      
   
   

 (1) 

To obtain the matrix  R , dot products between unit base vectors of these coordinate systems 

have to be evaluated:  

 R

i I j I k I

i J j J k J

i K j K k K

   
 

    
     

   
   
   

 (2)                    

According to Fig. 6, and keeping in mind that the angle   refers to the tibial rotation while 
the femur remains fixed, the angle   denotes the rotation of the femur around its fixed axis while 

the tibia remains fixed, as well as that the reference value of the angle   is 90 , the required dot 
products are as follows: 

 cos 90 cos sin cosi I       
 (3) 

 cos 90 sin sin sinj I       
 (4) 

cosk I  
 

 (5) 

Here, an auxiliary inertial Cartesian coordinate system is used, denoted by unit vectors  , 


 
and  , which is parallel to the coordinate system XYZ in the reference configuration. Also, the 
unit vector perpendicular to 2e


, is denoted as 2e 


: 

 
   

2 2 2 2

2

sin cos sin cos

sin cos cos cos sin sin cos

sin cos cos cos sin

i J e e J e J e J

e

   

      

    

          

      

  

       
  

 (6) 
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 2 2 2 2cos sin cos sin

cos cos sin sin cos

j J e e J e J e J   
    

        

 

       
 (7) 

   2sin cos sin cos sin sink J e          
    

 (8) 

 
     

2 2 2 2

2 2 2

sin cos sin cos

sin cos sin cos cos sin cos sin

sin sin cos cos cos

i K e e K e K e K

e e e

   

       

    

          

        

 

       
     

 (9) 

   
 

2 2 2 2cos sin cos sin sin cos sin cos

sin cos sin cos cos sin sin cos cos cos sin

j K e e e e        

           
         

        

      
   (10) 

   2sin cos cos sin cos sink K e          
    

 (11) 

Finally, the rotation transformation matrix is: 

 
sin cos sin sin cos

R sin cos cos cos sin cos cos sin cos sin sin sin

sin sin cos cos cos sin cos cos cos sin cos sin

    
           
           

 
     
    

 (12) 

The transformation matrix can be derived using vector algebra only, without any need for 

visual representation. For example, the dot product i J


 can be transformed using the properties 

of orthogonal unit base vectors, as is shown in (13), where [1]:  2 2 20,i e e e k i    
   

and 

   2 2i e k e k i     
   

. Further on, the properties of the coordinate system are used to 

determine the values of dot products: 2 sini e   
 

, 2 cose J  


, 2 cose j  


 and 

cosk I  
 

. It is obvious that the final result, and the transformation matrix itself, does not 
depend upon the order in which the rotations are performed [1]. 

      
      

   
   

2 2 2 2

2 2 2 2

2 2

2

sin cos

sin cos sin

sin cos cos sin sin cos cos cos sin

i J i e e i e k e k J

i e e J i e k e k J

e k i k J e

e j k I

k I

 

  

        

          

             
           

       

      

       

      

   

 

 

   (13) 

     
4. Rodrigues method of obtaining the rotation transformation matrix 
 
In this section the Rodrigues’ rotational formula will be used to obtain the rotation transformation 
matrix in a more efficient and elegant way. The formula is: 

     
2

A I 1 cos sind de e              
 (14) 
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Where  I  is the identity matrix,   is the angle of rotation and de 
   is the dual object of the 

unit vector of the rotational axis, defined as: 

1 3 2

2 3 1

3 2 1

0

0

0

d
a a a

e a e a a

a a a

   
                


 (15) 

The parameter   denotes the occurrence of rotation around the relevant axis. If 1  , 

rotation occurs, and if 0  , rotation does not occur (only translation is possible along this axis). 
Here, only the rotations around each axis of the joint coordinate system are considered. Thus, the 
final formula that will be used is:  

     
2

A I 1 cos sind de e            (16) 

 
Fig. 6. The knee joint represented as a four link open kinematic chain. 

 
The knee joint is represented as a four link open kinematic chain with three cylindrical joints 

(Fig. 6). Each cylindrical joint in the system has its own Cartesian coordinate system ( 1 1 1X Y Z , 

2 2 2X Y Z , 3 3 3X Y Z ). The Cartesian coordinate system 0 0 0X Y Z  represents the inertial frame of 
reference. In reference position, all of these Cartesian coordinate systems are parallel to each 
other. The unit vectors which correspond to the axes of rotation are denoted in the same way in 
which it has been done previously (see Fig. 6). These are the unit vectors 1e


, 2e


 and 3e


. 

However, they are also in accordance with the positive mathematical direction of rotation. As it 
has been stated above, the direction of rotation is the clinical positive direction, which is not 
always the mathematical positive, relative to the relevant axis.  
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For the purposes of using the Rodrigues’ formula, these vectors have to be defined in the 

coordinate system of the axis they refer to. For example: (1)
1e


denotes that the unit vector 1e


 in 

the coordinate system 1 1 1X Y Z . Thus, they are defined as follows: 

(1) (2) (3)
1 2 3

1 0 0

0 , 1 , 0

0 0 1

e e e

     
             
          

  
 (17) 

Their dual objects are then: 

(1) (2) (3)
1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

d d de e e

     
                        
          

 (18) 

The Rodrigues’ formula is now applied for each rotation: 

     
2(1) (1)

0 1 1 1

1 0 0

A I 1 cos sin 0 cos sin

0 sin cos

d de e   
 



 
             
  

 (19) 

     
2(2) (2)

0 2 2 2

sin 0 cos

A I 1 cos sin 0 1 0

cos 0 sin

d de e

 
 

 


 
             
  

 (20) 

     
2(3) (3)

2 3 3 3

cos sin 0

A I 1 cos sin sin cos 0

0 0 1

d de e

 
   

 
             
  

 (21) 

As femur and tibia rotate independently, the final rotation transformation matrix referring 
from the tibial coordinate system 3 3 3X Y Z  to the femoral coordinate system 1 1 1X Y Z  is: 

   
0 1 1 0

1
0 0 1 1 1 0 1 0

0 1 1 0

X X X X

Y A Y Y A Y

Z Z Z Z


 

      
                
       

      

        (22) 

      
0 2 2 3 0 3

0 0 2 2 2 2 3 3 0 0 2 2 3 3

0 2 2 3 0 3

X X X X X X

Y A Y , Y A Y Y A A Y

Z Z Z Z Z Z
   

          
                         
           

          

     (23) 

      
1 3 3

1
1 0 1 0 2 2 3 3 1 3 3

1 3 3

X X X

Y A A A Y A Y

Z Z Z


   

    
           
     
     

        (24) 

 1 3

sin cos sin sin cos

A sin cos cos cos sin cos cos sin cos sin sin sin

sin sin cos cos cos sin cos cos cos sin cos sin

    
           
           



 
     
    

 (25) 

which is the same rotation transformation matrix as shown in (12). 
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5. Conclusions 
 
Due to the described anatomical and mechanical complexity of the knee joint, an adequate 

coordinate system and the choice of reference points are of crucial importance.  
The joint coordinate system allows for the knee joint to be analyzed in terms of standard 

clinical translations and rotations. This makes the research of this joint more intuitive and eases 
the communication between clinicians and engineers.  

The Euler angles, which correspond to the clinical rotations around the axes of the joint 
coordinate system, are the jaw-pitch-roll angles commonly used in aeronautics. It has been shown 
in existing literature that the final body orientation is independent of the sequence of these 
rotations around the axes of the joint coordinate system.  

It is often convenient to represent the knee joint as a four link open kinematic chain, with two 
imaginary links. This system is easily manipulated, when provided with the rotation 
transformation matrix which refers the tibial coordinate system to the femoral coordinate system. 
While the four link mechanism is usually geometrically described by Denavit-Hartenberg 
parameters, it is more convenient to tie a Cartesian coordinate system to each cylindrical joint, all 
parallel to each other in reference position. Then, a straightforward way to obtain the rotation 
transformation matrix has been shown, using the Rodrigues’ transformation formula. Obtaining 
the rotation transformation matrix is crucial, as kinematics and dynamics of the knee joint can not 
be studied without it. Furthermore, this method is especially useful for implementation in 
programing codes, due to the simplicity of the algorithm. 
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