Nikola Slavkovic

Associate Professor
University of Belgrade
Faculty of Mechanical Engineering

Sasa Zivanovic

Full Professor
University of Belgrade
Faculty of Mechanical Engineering

Nikola Vorkapic

Teaching Assistant
University of Belgrade
Faculty of Mechanical Engineering

Zoran Dimic

Research Associate
LOLA Institute Belgrade

Development of the Programming and
Simulation System of 4-axis Robot with
Hybrid Kinematic

This paper presents an approach for developing the programming and off-
line simulation systems for low-cost industrial robots in the
MatLab/Simulink environment. The approach is presented in the example
of a virtual model of a 4-axis robot with hybrid kinematics intended for
manipulation tasks. The industrial robot with hybrid kinematics consists of
the well-known 5R planar parallel mechanism to which two serial axes
have been added. The programming system developed in a MatLab
environment involves generating G-code programs based on given pick
and place points. The virtual model included in the simulation system is
configured in the Simulink environment based on the CAD model of the
robot and its kinematic structure. The kinematic model and the inverse
kinematic problem have to be included in the virtual model to realize the
motion of the virtual robot. The system of programming and simulation has
been verified through several examples that include object manipulation to
perform various tasks.

Keywords: kinematics, programming, virtual model, MatLab/Simulink,
CAD system.

1. INTRODUCTION

The paper discusses the programming and simulation of
a 4-axis robot with hybrid kinematics at the level of its
virtual model. The considered virtual model is based on
a robot with hybrid kinematics consisting of the well-
known planar parallel mechanism (five-bar planar
mechanism, BiSCARA, or pantograph) [1], to which
two serial axes (translatory and rotary) have been added.
The development of a five-bar mechanism started from
a US patent in 1934 [1,2]. Only after that, in 1978, Prof.
Makino patented the well-known SCARA robot [3].
After that, Donald C. Fyler came up with the idea to use
this five-bar mechanism as a robot [1,4].

Such robots are popular in academic institutions [5]
because they are suitable for education and
experimental work. The hybrid kinematics allows this
robot to use three degrees of freedom to reach a position
and one degree of freedom to reach orientation around
the vertical axis, making it suitable for manipulation
tasks. The significant advantage of the used parallel
robot is that two of its rotary motors are fixed at the
base, which results in lighter moving parts [1].

Most industrial robots are programmed either by
teaching (on-line) or by a programming language (off-
line). Industrial robots are successfully programmed for
some of today's tasks wusing their programming
languages and adequate software for simulation. The
off-line robot programming complexity lay in the fact
that each robot manufacturer uses its robot
programming language. This fact can be solved by

Received: January 2008, Accepted: March 2008
Correspondence to: Prof. Nikola Slavkovic
Faculty of Mechanical Engineering,

Kraljice Marije 16, 11120 Belgrade 35, Serbia
E-mail: nslavkovic@mas.bg.ac.rs

© Faculty of Mechanical Engineering, Belgrade. All rights reserved

using specialized CAM software for programming of
robots that generates directly native robot language
using appropriate postprocessors for robots. There are
also solutions for industrial robots that use G-code as a
programming language [6,7].

The subject of this paper will be the development of
the programming and simulation system for the virtual
robot model when the G-code is used as a program. The
programming and simulation system is developed in the
MatLab/Simulink environment. In this way, before the
pre-planned realization of the physical prototype, an
adequate environment for programming and simulation
is realized to verify the control programs. The G-code
was selected as a programming language because of the
pre-planned development of an open-architecture
control system based on the LinuxCNC software [8,9].
The open-architecture control system enables the
implementation of kinematic models of the different
robots and is suitable for education in the field of robot
control system development.

Working in a virtual environment allows the
verification of a program prepared for the real robot, i.e.
it is possible to prevent errors that occur during the
programming process, which would lead to a collision
between the robot segments themselves or robot
elements and the environment [10]. The virtual robot
programmed in G-code can be implemented within the
CAD/CAM system or open-architecture control system
of the robot itself.

The off-line robot simulation and programming
software include almost all robotic arms on the market
to easily implement them in a simulation environment.
To resolve the issues for low-cost robots, i.e. simulation
and programming of a new laboratory prototype of
robots many researchers developed a system that

FME Transactions (200x) XX, x-x 1

integrated kinematics and motion control simulation
using MatLab/Simulink environment [11-15].

In [11] is developed a system that integrated
kinematics and motion control simulation using
MatLab/Simulink which can be connected with a
considered robot to verify the results of the simulation.
The paper [12] derived the theoretical model of the
kinematics analysis of the Gough Stewart mechanism
that has been built into the Simulink/MatLab package to
obtain the lengths, position, and orientation for the
manipulator at any time of motion. In paper [13] is
designed a DELTA parallel robot to realize the seed
sorting, which simplifies the FANUC parallel robot.
The CAD model of the robots is converted into a
SimMechanics model. The simple motion simulation
experiments are carried out to verify the correctness of
the model. The paper [14] presents the model-based
motion planning of a delta parallel robot in
Simulink/Simscape environment. A model was
developed and simulated for motion study and has been
simulated to solve the direct kinematics of the parallel
manipulator and to check its efficacy. In [15] is
proposed software to solve the problem of insufficient
robots in schools. The authors combined
MatLab/Simulink and AutoCAD to establish
forward/inverse kinematics and trajectory planning.

Configuring of the virtual robots, that include
complete kinematic model, in the Simulink/Simscape
environment [16-18] for the purpose of programming
and simulation of low-cost robots, i.e. a new prototype
of robots is part of presented research.

2. OUTLINE OF THE CONCEPT

A virtual model of the considered robot is a software
implementation of its structure and kinematic model,
which can execute generated G-code programs in the
developed Simulink environment. The approach
considered in this paper for developing industrial robots
programming and simulation systems in
MatLab/Simulink environment is presented in Fig. 1.

Considered approach for the development of
simulation system for low-cost robot consists of three
modules:

e creating a file that define pick and place points
significant for the manipulation tasks,

e the development of the program for the joint
space trajectory generation in MatLab
environment, and

e configuring of the virtual robot in the Simulink
environment.

The first module is simple and involves the
definition of a file that includes vectors of the points at
which the robot performs the tasks, i.e. the pick and
place points.

The module developed in the MatLab environment
consists of two parts. One refers to the development of
functions for generating a G-code program based on a
defined file of significant points. The other one refers to
the development of MatLab functions to generate the
joint space trajectories, based on generated or loaded G-
code. Joint space trajectory is generated based on the

2 = VOL. xx, No x, 200x

inverse kinematic problem, which is a function included
in this module.

The main idea of this paper is to present the whole
complete approach that includes both of these parts. The
reason for this lies in the fact that there is almost no
software that can be used for programing robot
manipulation tasks by G-code. To simulate any other
robot applications, such as robot laser engraving or 3-
axis milling, the first part does not have to be involved
and the second part could interpret the external G-code
generated in any other available market CAD system.
On the other hand, these two parts are independent
which enables the developed system to be used in
different robot applications. Here is highlighted laser
engraving, 3-axis milling or 3D printing but uses of the
developed system refers to any tasks that can be
performed to considered robot according to its
configuration and workspace.

- Definition of significant points

Pick and place points

A

MatLab

- Cartesian space path
- G-code generation
External

G-code
G-code file

VY - G-code interpretation Y
- Interpolation
- Inverse kinematics

Joint space trajectory
4

| Simulink

- Virtual model of
robot and environment

- Robot géomelric
model

Figure 1. Developed system for the robot programming and
simulation

The third module, developed in the
Simulink/Simscape environment, covers the
implementation of robot elements in STEP format,
generated in the CAD system, in the Simscape model or
*slx file. In this research, the commercial PTC Creo
software is used [19]. The configuration of a virtual
robot is done according to its kinematic structure that
also includes kinematic connections (joints). To transfer
the physical robot structure in the Simscape model it is
necessary to create a geometric model of a robot, Fig.
1., because of the kinematic chains, the direction of
robot joint axes, robot joint limits, reference robot
frame, etc. The geometric model of a robot will be
explained in detail in Section 3.

FME Transactions

3. KINEMATIC MODELLING

The 4-axis robot with hybrid kinematics was chosen as
an example to show the application of the approach to
the development of programming and simulation
systems. Figure 2 shows the virtual model of the
considered robot. The parallel robot structure consists of
a base, a platform, and two kinematic chains with two
struts with lengths [; and [,. All elements of the parallel
mechanism are connected by rotary joints with one
degree of freedom. The parallel mechanism allows the
moving of end-effectors in the XY plane, while two
added serial axes (translatory and rotary) enable the
moving in the Z direction and orientation of the end-
effector about a vertical axis.

Figure 2. The 4-axis BiSCARA robot

Since the robot is based on a mechanism with hybrid
kinematics, the inverse kinematics problem (IKP), for
this robot, could be divided into two parts [20]:

e [KP for parallel mechanism, and
e [KP for serial parts of the mechanism.

3.1. Inverse kinematic problem

To solve IKP the geometric model of the robot is
established, Fig. 3. The world coordinate vector, Fig3a,
is defined as

X = BPE =[xz yg zg 9] (1)

In the same manner the joint coordinate vector is
derived as

q=1[0, 0, 0 dy]" 2)

The IKP for the parallel mechanism, Fig. 3b, is
presented in [8,21] with the exception that the robot is
in the initial position in a different configuration, which
leads to different equations for the first two joint
coordinates.

The vectors necessary for derivation of the solution
of angle 6, and 0, are:

e position vectors of the join centre at the base
Bbi = [bix O]Ta
e unit vectors a; and ®z; along struts with
lengths ; and [,, and
e unit vectors Sw;
where i=1,2 represents the number of the kinematic
chains. The unit vector Za; is defined as

FME Transactions

B [—Sin(9i)]

P= cos(6,) 3)

Based on the defined vectors, according to Fig. 3b,
observing one kinematic chain, the following vector
equations can be derived

"pp = b+ Kk Pw;
ki BWL' = ll Bai + lZ BZl'

(4)

where vector Zpp represent the position of moving
platform (point P) in the XY plane and is defined as

Bpp =[x ¥p]" (5)

From the system of equations (4), squaring the
second equation and determining the vector k; w; from
the first equation, the inverse kinematic problem of
parallel mechanisms is solved in a closed-form solution.

a) b)
Figure 3. Geometric model of the robot

In this way, the well-known trigonometric equation
is derived

Aicos(6;) + B;sin(6) = C; (6)
where
A; = —yp
B = xp — bix o
o BB x3- B b+ 2upby

By introducing the expression t =tg (%) in
equation (6) a well-known quadratic equation is
obtained whose solutions are

. bt A2 + B — (2
1z = A; + C;

(®)

VOL. xx, No x, 200x = 3

From equations (8) the joint coordinates 6, and 0, is
determined as

where i=1,2 represents the number of the kinematic
chains.

There are two solutions of the inverse kinematic
problem for parallel mechanism and the appropriate
solution has to be adapted to the part of the workspace
necessary to robot perform the task.

The IKP of added two axes, i.e. serial part of
mechanism covers the solution for the remaining two
joint coordinates 65 and d,. Figure 4 describes the
procedure for solving joint coordinate 8.

90°+0,+0,

a) O

Figure 4. Determination of the orientation angle

To solve joint coordinate 65 it is necessary to
determine angle a, Fig. 4a. The angle a is calculated
using equation

a = Atan2(_[l3 — b2, byy) (10)

Another important angle 8p, Fig. 4b, has to be
calculated by equation

0p = Atan2(s6p, cOp) 1D

where
sOp = /1 —cH? (12)
and
6 = (bix —xp)* +yp — 1§ — 13 (13)

Now using equations (10) — (13) the joint
coordinates 65, Fig. 4b, could be calculated as
0;=¢—0, —0,—a+90° (14)

It is obvious from Fig. 3a that joint coordinates d,
can be calculated from equation
d4_ = _ZE + lp (15)

The equations (9), (14), and (15) represent the
solution of inverse kinematic problem of considered 4-
axis robot with hybrid kinematics. These equations are
required for the realization of the virtual model.

4 = VOL. xx, No x, 200x

3.2. Workspace analysis

Another characteristic of the robot structure, that is not
crucially important for the development of the virtual
model, is the robot workspace. It is necessary to
determine the dimensions and shape of the robot
workspace to program and simulate robot tasks in the
right way.

To determine the workspace, the method presented
in [21] can be used, which determines if the point
defined in Cartesian space is reachable or not, according
to the limits in the joints, based on solutions of the
inverse kinematic problem. Determining the dimensions
and shape of the workspace, in the case of designing a
new prototype, is an iterative procedure in which the
parameters of the mechanism are changed and at the end
adopted based on the satisfactory dimensions of the
workspace.

The adopted parameters of robot are I[; = 210mm
and [, = 270mm. Figure 5 presents the shape and
dimension of workspace of considered 4-axis robot in
XY plane. The third dimension of the workspace
depends on joint coordinate d,, which is adapted to
have a motion range of 100mm. According to robot
structure, it is obvious that the shape and dimensions of
workspace in the XY plane are the same along the Z
direction, i.e. adopted 100mm.

500

400

g 300}
5
)

200 [

100 [

-400 -300 -200 -100 0 100 200 300 400
x[mm]

Figure 5. Workspace of considered robot

For the application of robot tasks, the operators
could use all portions of the workspace with irregular
shapes or reduced workspace to appropriate
parallelepiped according to tasks, Fig. 5.

4. PROGRAMMING AND SIMULATION SYSTEM

Briefly, the developed system for programming and off-
line simulation for new low-cost laboratory prototype
robots starts from the generation of programs in a
MatLab environment. The G-code program is
interpreted and a joint space trajectory is determined.
Appropriate functions have been developed for each of
these steps. The joint space trajectory is then loaded to a
virtual robot configured in the Simulink/Simscape
environment. Using joints trajectory the virtual robot
simulate the motion of programmed tasks.

FME Transactions

4.1. MatLab programming system

The MatLab programming system is developed only for
manipulation tasks in G-code. For any other tasks, the
virtual environment can use G-code generated in some
available CAD systems.

The input parameter for the programming system is
the file that consists of the initial position of robot
configuration and significant points in which the robot
performs the task. This file is formatted as presented in
Fig. 6. The initial point is defined with vector p,. The
points of object picking are represented with vectors
P1i, D2i, etc., while the points of an object placing are
represented with vectors pq,, P20, etc. All these vectors
are defined in the robot reference coordinate system.

Based on created file the MatLab function
trajectoryWorld generates the robot trajectory in
Cartesian space, Fig. 6. The generated trajectory is
something similar to the well-known CLF (Cutter
Location File). Since the programming system was
developed for manipulation tasks, the trajectory was
generated based on the programmed rule that the gripper
goes first to the point above the manipulation object,
then to the point of picking the object, and at the end
again to the point above the object. The same rule
applies to the generation of the trajectory part when the
gripper places the object.

function trajectoryWorld
]

% significant points v .
N ; % cartesian space path
% initial point
_ . 0 230 0 0
py= [0 23000 200 165 -30 20
% pick and place points 200 165 -70 20
py; = [-200 165 -70 20]; -200 165 -30 20
190 90 -10 0
P1o = [190 90 -50 0; =190 90 -50 0
190 90 -10 0
function gcodeGeneration
[
(G-code) v

%
G90 G17)
G61

G0 X0. Y230. Z0. C0.

(WP#1)

GO0 X-200. Y165. Z-30. C20.

G1 X-200. Y165. Z-70. C20. F250.
M3

G1 X-200. Y165. Z-30. C20. F250.
GO0 X190. Y90. Z-10. CO.

G1 X190. Y90. Z-50. C0. F250.
M4

G1 X190. Y90. Z-10. CO. F250.

Figure 6. Developed programming system

In addition to the coordinates of the points, the file
in which the trajectory in world space is written also
contains information on the feed rate, whether the
gripper is moving at a rapid or not. It also indicates the
points of picking and placing objects. Now the file of
trajectory in Cartesian space is post-processed using the
function gcodeGeneration to obtain the G-code.

Figure 6 shows part of the G-code from the example
shown in Section 5. Besides the standard beginning of
the program that defines programming in absolute
coordinates and interpolation in the XY plane, parts of
the code related to object manipulation can also be seen.
In these parts, crucial commands are M3 and M4 that

FME Transactions

activate the gripper to pick or place an object. These
auxiliary functions can be remade in LinuxCNC
software [7].

4.2. Joint space trajectory generation

This module, although it uses some of the information
defined in the previous module when generating G-code
for manipulation tasks, is programmed to be completely
independent due to the possibility of simulating some
other tasks on a virtual robot. The developed functions
for joint space trajectory generation stars from G-code
generated in a developed module or market CAD
systems.

First, the function gcodelnterpreter reads and parses
one by one line of G-code. The result of it is an inter-
file that consists of the points defined in reference
frame, speed, etc. In other words, the file defines the
segments of the trajectory and the end-effector feed rate
on those segments, Fig. 7.

Then, based on the inter-file the function
interpolation divided all segments by using the rule of
linear interpolation in Cartesian space resulting in the
interpolated trajectory. This rule is programmed
according to segments length, speed, and time
increment.

function gcodelnterpreter G-code | function interpolation

% reading and parsing G-code % segment interpolation

matchWords = {'G",X",'Y",Z"/C"\F'}; < fori=1:size(w,1)
L=sqrt((x2-x1)"2 +...
if contains(nline,'G")|| contains(nline,’X") || .|. dx = (x2 -x1)/L;
fori=1:6
T = L/feedcal;

;-s.ﬁnd = strfind(nline, matchWords{i});|
if ~isempty(isfind)

N = floor(T/ti) + 1;

forJ =1:N
ifi==2 World count = count + 1;
x(count,1) = x1 + j*dx*L/N;

cX = val; cooordinates

>
»

end

Interpolated Cartesian space trajectory

q=1[t;0, 0,05 dy]

0.001 -3.450 3.450 -2.813 7.500
0.002 -4.107 4.107 -3.353 7.584
0.003 -4.732 4.732 -3.867 7.669
0.004 -5.329 5.329 -4360 7.754 qG,1) = i*ti;

0.005 -5.902 5902 -4.834 7.838 q(1,2:5) = IKP(x(i.));
0.006 -6.453 6.453 -5.291 7.923 end

0.007 -6.984 6.984 -5.733 8.008
0.008 -7.498 7.498 -6.161 8.093
0.009 -7.997 7.997 -6.577 8.177

function trajectoryJoint

% inverse kinematics

fori=1:size(x,1)

Joint space trajectory
Time series

Figure 7. Generating the joint space trajectory

After the linear interpolation of trajectory in
Cartesian space the function trajectoryJoint involving
the inverse kinematic solution, equations (9), (14), and
(15), generates the joint space trajectory with an added
vector of interpolated time as the first column. The
result presents the time-series of joint coordinates
necessary for the simulation of generated Simscape
virtual robot.

4.3. Simulink model of 4-axis robot

The CAD model of considered robot, necessary for the
realization of virtual robot in Simulink environment, is
realized in PTC Creo software. From CAD software the
STEP files of robot segments are exported and they
present the input in the Simulink environment to

VOL. xx, No x, 200x = 5

configure the virtual robot. Configuring a virtual robot
involves implementing a kinematic structure, which of
course involves kinematic connections between
segments, in a software environment. Figure 8 present
the structure of the considered robot realized in the
Simulink environment taking into account the direction
of robot joint axes, robot joint limits, reference robot
frame, etc.

To simulate robot tasks it is grateful to have a
completely virtual environment not only a virtual robot.
Figure 8a presents the complete structure (robot and
environment) in Simulink for the example described in
Section 5. It is divided into three subsystems in the
Simulink to easily change the robot environment for
simulating other tasks. These subsystems are:

e joint time-series in MatLab environment,
e model of robot, and
e model of the environment.

The generation of joint time-series is presented in
previous sections and uses only From Workspace
element in Simulink. The model of environment can be
easily modelled in a CAD environment and
implemented by appropriate connection in the Simulink
model. These connections are the created coordinate
frames in CAD or Brick Solid element in the Simulink.

em1 em1

joint

4
coordinates em2 7 Ef em2

a) robot model environment
model
s
’
Jp @ s
PS * 0 pde e Fp
£ o T e @
‘» theta_lp2

emt

D, s
al ds 7 L 7
B b—de_of b
E PS ol POl ’ dqs .} g
af & tool
thetat Tk theta_rp1
E _’ nkar theta_p2
b
s
@ ds 1/ 7
=Rl = o
E * g \
theta3 inka i
b) E ‘) linear4

;-J!: Iﬁﬂ

theta1 link1r

Figure 8. Simulink model of the robot

The structure of configured virtual robot in Simulink
is presented in Fig. 8b. It consists of a base and three
kinematic chains. The base is represented with the Brick
Solid element connected with World Frame, Solver
Configuration, and Mechanism Configuration elements.

6 = VOL. xx, No x, 200x

Two of the three kinematic chains present the parallel
part of the considered mechanism, while the third
present the serial part. The first two kinematic chains
are interconnected with joint connections. Each of them
is connected to the base. The third (serial) chain is
connected to one of the first two, depending on
kinematic calculation. Any kinematic chain is consists
of Brick Solid elements and appropriate Revolute Joint
and/or Prismatic Joint elements.

The active joints in these kinematics chains have to
be actuated by joint time series generated in MatLab
while passive joints numerical compute their position.
The actuated revolute joint is presented in Fig. 8c. It is
actuated with joint angle, velocity, and acceleration,
Fig. 8c, which are provided by appropriate connection
to receive the signal from the joint coordinate
subsystem, Fig. 8a.

5. SYSTEM VERIFICATION

The developed system for programming and off-line
simulation has been verified through several examples
that include object manipulation to perform various
tasks.

One example of an objects manipulation experiment
is shown in Fig. 9a. The planned experiment is implied
of taking rectangular cross-section parts (blue
parallelepipeds) of arbitrary position and orientation and
placing them (red parallelepipeds) in a precisely defined
position on a pallet site. The placing site can be also the
conveyor belt, which can be modelled in a CAD
environment and placed by appropriate connection in a
virtual environment.

Figure 9. An example of the system verification

The start position and orientation of the objects are
defined in the file at the beginning of experiments, Fig.
1. When a real robot performs a task, these positions
could be obtained from a camera mounted on the robot
itself. Before the simulation is started the G-code
program is generated based on created file. The virtual
robot executes a program in G-code, which allows a

FME Transactions

simulation of robot motion according to the generated
trajectory in joint space. It is of importance to simulate
the robot's approach to each position in the appropriate
orientation for taking objects, Fig. 9a, as well as display
the gripper position and orientation at the time of
placing the object, Fig 9b. The simulation covers all the
movements of the robot, but not the display of the
gripper picking, manipulating, and placing the objects.
This is not important for verifying the accuracy of the
program, because it is planned to attach on robot plate
the vacuum or electromagnetic gripper.

After reviewing the complete simulation, it can be
concluded that the virtual robot works correctly
according to the generated G-code program and that
approaches all positions with appropriate orientations
for both picking and placing of objects.

6. CONCLUSION

The main advantages of using virtual robots are the
ability to check the motion of the end-effector along the
programmed path taking into accounts the limitations in
the joints motions, and visual detection of collisions
between segments and end-effector with the
environment.

This paper presents an approach for developing the
programming and simulation system of a 4-axis virtual
robot with hybrid kinematics in the MatLab/Simulink
environment. A virtual model of the considered robot is
a software implementation of its CAD and kinematic
models in the Simulink environment, which can execute
generated G-code. The inverse kinematic problem is
implemented in the virtual model to realize the motion
of the virtual robot, as the real robot does. The
developed program in a Matlab environment based on
realized functions generates a G-code for the robot
manipulation task. The developed virtual robot can
simulate any other robot task such as laser engraving, 3-
axis milling, 3D printing, i.e. the virtual robot can use
the G-code generated in some other CAD system. The
developed system for programming and simulation of
the configured virtual robot has been verified through
several examples that include object manipulation to
perform various tasks.

The presented approach of developing the
programming and off-line simulation systems is crucial
for the new laboratory prototypes of low-cost industrial
robots that are not implemented in market software for
simulation. The further research direction will cover the
optimization of robot parameters and development of a
prototype of a considered 4-axis robot with hybrid
kinematics.

ACKNOWLEDGMENT

This work has been financially supported by the
Ministry of Education, Science and Technological
Development of the Serbian Government, through the
project “Integrated research in macro, micro, and nano
mechanical engineering (contract No. 451-03-9/2021-
14/200105), and by the Science Fund of the Republic of
Serbia, grant No. 6523109, Al - MISSION4.0, 2020-
2022.

FME Transactions

REFERENCES

[1] DexTAR, User’s Manual, Version 1.0, by
Mecademic Inc., 2014-2015.

[2] Pollard Jr., W.L.G.: Spray Painting Machine, US
Patent 2,213,108, filed October 29, 1934, issued
August 27, 1940.

[3] Makino, H., Kato, A., and Yamazaki, Y.: Research
and commercialization of SCARA robot,
International Journal of Automation Technology,
Vol. 1, No. 1, pp. 61-62, 2007.

[4] Fyler, D.C.: Control Arm Assembly, US Patent
4,712,971, filed February 13, 1985, issued
December 15, 1987.

[5] Cano-Ferrer, X.: Educational Five-Bar Parallel
Robot, from https://hackaday.io/project/173325-
educational-five-bar-parallel-robot, accessed on
2022-01-30.

[6] Milutinovic, D., Glavonjic, M, Slavkovic, N.,
Dimic, Z., Zivanovic, S., Kokotovic, B., Tanovic,
Lj.: Reconfigurable robotic machining system
controlled and programmed in a machine tool
manner, International Journal of Advanced
Manufacturing Technology, Vol. 53, No. 9-12, pp.
1217-1229, 2011.

[7] Milutinovic, D., Slavkovic, N., Kokotovic, B.,
Milutinovic, M., Zivanovic, S., Dimic, Z.
Kinematic modeling of reconfigurable parallel
robots based on DELTA concept, Journal of
Production Engineering, Vol.15, No.2, pp. 71-74,
2012.

[8] Slavkovic, N., Vorkapic, N., Zivanovic, S., Dimic,
Z., Kokotovi¢, B.: Virtual Biscara robot integrated
with open-architecture control system, in:
Proceedings of the 14th International Scientific
Conference MMA 2021 — Flexible Technologies,
23-25.09.2021, Novi Sad, pp. 63-66.

[9] LinuxCNC, from http:/linuxcnc.org/, accessed on
2021-05-07.

[10] Vokapic, N., Zivanovic, S., Dimic, Z., Kokotovic,
B., Slavkovic, N.: Virtual Horizontal Machining
Center LOLA HBG 80 for Program Verification
and Monitoring, FME Transactions, Vol. 49, No. 3,
pp- 696-703, 2021.

[11]Lee, W.-c., Kuo, S.-a.: Simulation and Control of a
Robotic Arm Using MATLAB, Simulink and
TwinCAT, in: Proceedings of 2020 International
Conference on Advanced Robotics and Intelligent
Systems (ARIS) IEEE, 2020, pp. 1-5.

[12] Alwan, H.M., Sarhan, R.A.: Kinematics Simulation
of Gough-Stewart Parallel Manipulator by Using
Simulink Package in Matlab Software, Journal of
University of Babylon for Engineering Sciences,
Vol. 27, No, 2, pp. 10-20, 2019.

[13]Li, M., Bi, D., Xiao, Z.: Mechanism simulation and
experiment of 3-DOF parallel robot based on
MATLAB, in: Proceedings of the 2015

International Power, Electronics and Materials
Engineering Conference, May 2015, pp. 489-494.

VOL. xx, No x, 200x = 7

[14]Makwana, M.A., Patolia, H.P.: Model-based
motion simulation of delta parallel robot, Journal of
Physics: Conference Series, Vol. 2115, No. 1, p.
012002, 2021.

[15]Qassem, M.A., Abuhadrous, 1., Elaydi, H.:
Modeling and Simulation of 5 DOF educational
robot arm, in: Proceedings of 2010 2nd
International Conference on Advanced Computer
Control IEEE, March 2010, pp. 569-574.

[16]Import a Robotic Arm CAD Model, from
https://www.mathworks.com/help/physmod/sm/ug/i
mport-robot-arm-model.html, accessed on 2022-02-

01.
[17]Model and Control a Manipulator Arm with
Robotics and Simscape, from

https://www.mathworks.com/help/robotics/ug/mod

el-and-control-a-manipulator-arm-with-
simscape.html, accessed on 2022-02-01.

[18]Multi-Loop PI Control of a Robotic Arm, from
https://www.mathworks.com/help/control/ug/multi-
loop-pid-control-of-a-robot-arm.html, accessed on
2022-02-01.

[19]PTC Creo, webpage, from https://www.ptc.com/,
accessed on 2022-02-01.

[20]Milutinovic M., Slavkovic N., Milutinovic D.:
Kinematic Modeling of Hybrid Parallel-Serial Five-
Axis Machine Tool, FME Transactions, Vol.41,
No.1, pp. 1-10, 2013.

[21]Slavkovic, N., Zivanovic, S., Vorkapic, N.:
Configuring a virtual prototype of a BiSCARA
robot (in Serbian), TEHNIKA, Vol. 70, No.3, pp.
311-317,2021.

PA3BOJ CUCTEMA 3A ITIPOTPAMUPAIBE N
CUMYJIAIINJY 4-OCHOT POBOTA CA
XUBPUIHOM KMHEMATHKOM

H. CnaBkoBuh, C. ’Kuanosuh, H. Bopkanuh,
3. Iumuh

VY paay je mpukazaH TNPUCTYH pa3BOjy CUCTEMa 3a
nporpamupame U off-line cumynanujy pasBUjeHHX
IIPOTOTUIIOBA PO0O0TA, KOjU HHUCY HMMIUIEMEHTHPAaHU Yy
nocrojehe codrBepe 3a pobore, y MatLab/Simulink
okpyxemy. IIpucTyn je mpuka3zaH Ha MpUMepy pa3Boja
BHpPTyenHOr 4-ocHOr poboTa ca XUOPUIHOM
KMHEMAaTHKOM, HAMEHCHOT 32 3aJaTKe MaHUITyJalHje.
Pa3smaTpann WHAYCTpUjCKH poOOOT ca XUOPUIHOM
KMHEMAaTHKOM C€ cacToju oa J00po To3HaTtor ISR
PaBaHCKOT MEXaHW3Ma Ca IMapajJeTHOM KHHEMATHKOM,
KoMe cy jgomate jnaBe cepujcke oce. Cucrem
nporpamupama pasBujeH |y Matlab okpyxemwy
oOyxBara TreHepucame (G-KOI IIporpama Ha OCHOBY
3a7aTHX Tayaka y KojuMa poOOT HM3BpIIaBa 3ajaTax.
Bupryennun wmopen je xoudurypucan y Simulink
OKpyXemy Ha ocHOBY CAD mMopnena poboTa M HEroBe
KHHEMaTH4Ke CTpyKType. KnuHemMaTtnuko Mozpenupame u
WHBEP3HH KHHEMATHYKU MPOOJIEM Cy PEHICHH y IHJbY
peanmzanyje Kperama poboTa TpeMa TeHepHCaHOM
nporpamy. PasBujeHM cucTeM 3a HpOTpaMHpame H

8 = VOL. xx, No x, 200x

CUMYJIAIKjy je Bepu(HUKOBaH KpoO3
KOjU YKJBbY4Yyjy MaHHWIYJIauujy
00aBJbamy PasIMUUTHX 3a/1aTaKa.

HEKOJIMKO TpHMepa
objekTnMa TpH

FME Transactions

